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INTRODUCTION

This paper develops a theory of games when the players have more
accurate information than that assumed in conventional game theory. Our
concept of perfect information, in contrast to the standard geme-theoretic
concept, is consistent with the notion of institutional information used in
standard economic theory. Under the conventional game-theoretic definition
of perfect information, each individual knows the actual strategies that
the other individuals have selected, and the corresponding solution has
each individual taking the known strategies of the others as given. This
information is less accurate than that implied in discussions of economic
and social institutions in that these discussions have an individual also
knowing how the other individuals would respond to his different possible
strategies and selecting his strategy accordingly. An example is the
familiar situation in which a seller knows how buyers would respond to
different prices asked for his product and thereby selects his asking
price. Our model thus replaces the conventional game-theoretic aésumption
that each player expects no reaction to a change in his strategy with the
assumption of perfect information regardiné player reactions.

If we wish the term, game, to include a description of the behavior
described in standard economic models, then the current "theory of games,"
given the inaccuracies in each player's reaction expectations, should be
relabelled, "a theory of interpersonal gambling," where a player can only
guess about how the other players will react to changes in his strategy.
Our model would then be included in the general theory of games as a

theory of rational institutions (i.e., rational reactions), where each
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individual determines his rational reactions to the strategies of others

and communicates these reaetions in full knowledge of the rationally-determined
responses of the other individuals. To prevent confusion with standard
definitions of perfect information, we will refer to our notion of

perfect information as "truly perfect information.”

In Section I, we specify our general game and show that a necessary
consequence of rational strategy selection under truly perfect information
is a "hierarchy" of players characterized by a recursive set of rationally-
determined reaction functions for all but one player and a player who
chooses a simple action and thereby determines the solution set of actions.
Such solutions always exist for finite games. In the case of two-person
gemes, this result implies that one player chooses & reaction function
and the other player chooses an action. The resulting solution yields a
pair of actions.

The solutions developed in Section I differ from those of conventional
game theory in that they are derived from the rational behavior of the
players given full knowledge of the player interdependence. We shall see
that the rational solutions are generally asymmetric with respect to the
numbering of the players and are never characterized by mixed or randomized
strategies.

In Section II, we show that the solution set to any finite two-person
game with truly perfect information always contains a Pareto optimum,

The importance of this optimality result is that while numerous authors have
conjectured the Pareto optimality of two-party conflicts under sufficéently
perfect information, the conjecture has never been derived as the result

of the individually rational behavior of the players within



the model. However, we also show that the conjecture is not always true,
i.e., that the solution set of a 2-person game with truly perfect information
may also contain Pareto nonoptimal points. Ko amount of perfecting of
informetion or communication will remove these inefficient solution points.
The only way, to our knowledge, of removing these inefficient solution
points is to introduce a higher order game involving competition to determine
the order of strategy selection of the two players.l/

In Section III, we contrast our theory to others. In contrast to
Von KNeuman-Morgenstern-Nash, non-cooperative, constant and variable sum
games, and to lash cooperative games, our geme always has pure strategy
solutions, even for games without saddle-points. Another contrast is that
our solution to the "prisoner's dilemma" is an efficient solution even in
the absence of two-way communication between the players. A basic feature
that distinguishes our game from the Nash cooperative game and the Friedman
”supergaﬁe,” both of which are designed to allow sufficient communication
to prevent Pareto nonoptimal solutions in 2-person games, is that we do
not assume Pareto optimality to be a characteristic of solutions or of points
on rational reaction functions. The fact that Pareto optimality may not
characterize all of the solutions to 2-person interactions no matter how
perfect the communication indicates the weskness in these other approaches.
We illustrate the non-optimality possibility in a possibly empirically

relevant game which we call the "slave master's insensitivity."
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I. THE GENERAL GAME

A, Descrigtion

Let G be a n-person, non-cooperative, finite game. A player of G

is denoted i, 1 = 1,...,n, and we shall let N represent the set of n players

of G, Each player has a action possibilities set, Ai’ consisting of a finite
number of possible_pure actions, X for all i.
An outcome of G is an n-dimensional vector of pure actions, and is

denoted
x = (xl,xz,...,xh), x, € A, for all i = 1l,eee4ne (1)
We shall denote a vector of pure actions, one from each player except i, as
x-i = (ﬁ’xa’...’xi-l’xi"l’... ’xn)l (2)
Each player, i, has a payoff functionm,
ni(x) = ﬂi(xi,x_i), 1 = 1,000,0 (3)

which describes 1i's payoff under all possible outcomes of G.

A strategy of a player is a description of vhat the player will do. It
may be an action, which simply states what pure action the player will choose.
It may be a reaction strategy, which state the various pure actions the player
will choose under the various possible actions of other players. It may be

a contingent reaction, which states the various reaction strategies a player

will adopt under the various possible reaction strategies of other players.

Or it may be a contingent strategy, a generalization of the strategies of

reaction and contingent reaction, which states what strategy a player will



adopt given the strategies of other players.

A contingent strategy may include, for example, the infinite statement:
"I will play x] 1f you say you will react with x; when I play x; if I say I
will react with x;' when you play xg' if you say you will react with xg’when

I play xg" if I say I will react with x{"' when you play x;"' if you say ...."g/
We assume all players have truly perfect information regarding the

strategies of others and "rationality", i.e., that each player selects the

strategy that maximizes his payoff given the responses of the other players

to his strategy.

B. The Necessity of Priority in Strategy Selection
If there is to be truly perfect information, there must be one player

among the set of n players that determine his strategy prior to the other
players, where the response strategies of the other players are known a priori
by the prior selector because they are the rational responses to the given
strategy of the prior selector.éf Given the strategy of the first strategy
selector, another player makes a prior strategy selection over the set of
the remaining n-2 players in full knowledge of the previous selector's strategy.
This strategy selection process continues until all n players have selected
a strategy. |

A strategy of a prior strategy selector among a set of players dascribes
his response to each of the possible strategies of the other players in the

set. Therefore, since each player has an available set of pure actions, each



of the possible strategies of a prior strategy selector always contains a
reaction strategy.

It follows that the nEE-strategy selector, who faces only prior strategy
selectors can achieve maximum payoffs by simply selecting a pure action from
Ah’ thereby triggering a chain of reactions up through the first strategy
selector in the game. This is because the nzg-strabegy selector, facing the
prior strategies of the other players, sees that the eventual set of actions,
or outcome, must be consistent with the chosen reaction strategies of each
of the n-l prior selectors. Hence, if player n responds with a pure action,
he will have a free choice over all outcomes consistent with the prior reaction
strategies, But if n responds with a contingent strategy, thus giving further
choices to the prior strategy selectors, he can only reduce his orkginal choice
out of the same set of possible outcomes without expanding the set of possible
outcomes as any eventual set of actions must be consistent with the initial n - 1
reaction functions.

Since each prior selector's strategy will be followed by & set of pure
actions by the subsequent strategy selectors, each prior selector's strategy
set is larger than the set of pure actions contained in the choice set Ai only
in that it includes player i's possible reactions to all of the possible
actions of the subsequent strategy selectors,

Let us label the n players according to their priority in strategy

selection. Then, i's strategy set, S,, is described by:

i

s, = {xil(xi+1....,xn), all x, € A, and (xi+l"°"xn) € Ay Xeoo XA 1, (50)

where xil(xi+1""’xn) is i's action contingent upon the vector of actions

from players i+l to n., Of course, A, € S

1 1° Player i's optimal strategy, i <m,



is summarized by a reaction function.
n

f.: X A,~-»A, (6)
i J=i+ld i

vhich assigns an action to i for each vector of actions from player i+l to
n, given the prior reaction functions of player 1 through i-l.

Any player i who has priority over a non-empty subset of N is called a

strategy-maker (or, maker) relative to the players in that subset., Likewise,

each player in the subset is called a strategy~taker (or, taker) relative to

i. Piayer 1, who has priority over all others, is called the primary maker.
Player n, who is not a maker relative to any other player in N but a taker
relative to all others, is called the pure taker. Player i, i # 1 or n, is
a meker relative to players i+l through n, and is taker relative to players
1 through i-l.

We thus obtain a hierarchy of makers similar to the order of priority,

where the primary maker exhibits a reaction function,
ﬁ = fl(xz’x3’.o. ’xn)’
the secondary maker exhibits,
x2 = f2(x3’ooo’xn).
the third maker exhibits,
x3 = f3(xh,ooo ’xn),
and so on up to the n-lﬂ rlayer's simple reaction function,

a1 = fn-l(xn) ¢



C. Solutions

Solution sets for all n players are easily constructed for a given set
of reaction functions. The pure taker selects an action that maximizes his
payoffs given the set of n-l reaction functions. The n—lgﬁ-player then
follows his established reaction function, which gives the two actions nece-
ssary for the n-222'player to determine his action. This process continues
until the primary meker's action is determined.

With the assumption of truly perfect information and the condition of
rationality imposed upon the takers of a given maker, the maker can solve
for his solution reaction function.

This determination can be made since each msker, i, knows: (1) the
reaction functions previously selected by his makers, (2) the reaction func-
tions that will be chosen by i's tekers given i's choice of reaction function
and the previously selected functions of i's makers and (3) player n's
rational response to these reaction functions.

Thus, a solution to G is directly obtained from a set of n-l independent

reaction functions, {f*, i # n} where £} is the solution to

(1
max ¥ [ o (£ 08, (8,08, L (£)) ennx (£) 28, 28,000088 1 1,
16Fy

n

where F is the set of all possible functions relating The

to A
J:i-i-l 'j
set of actions,x* = (xl,xz,...,x ), implied by the set of solution reaction

function is called a solution outcome, orsimply a"solution," to G.



D. Determination of Priority and the Role of Committments

Our game G, with its predetermined priority, is not symeetric in that
the solution to G will vary with the order of priority. One may think of the
priority in strategy msking in the above model as being arbitrairily deter-
mined by an umpire of the game, or by some rarndom device allocating the
positions in the hierarchy.

The priority of strategy selection can also be determined by playing
a "higher-level" game, G'. In such a game, the n players interact to
determine the order of strategy selection according to the value (payoft
differential) of selecting strategy prior to the other players. Since in
order for aﬁy player to know this value he must determine his solution
reaction function given a particular position in the hierarchy, a solution to

G' also implies a solution to G.E/

Another reason for introducing a higher order geme is to assure that a
maker can carry out his chosen strategy. That is, a player may have to
contract, in a higher-order game with outside parties to pay the outside
parties a large sum in case the player does not carry out his announced
strategy. For example, a player may adopt a strategy of imposing punishments
oﬁ other players if they do not adopt certain strategies, punishments
which are painful for the player to impose. Without a commitment to
an outside party to carry out this strategy or else suffer even greater
pain, the announced strategy might be regarded as an empty threat by the other
players. This higher order game of contracting with outside parties and
the higher order game, G', which determines the order of strategy selection
may be combined into a single, higher-order game in which players interact to
determine the order in which they make strategy committments with outside

players. (See Faith and Thompson (2),)



«10-

II. THE NATURE OF SOLUTIONS TO TWO-PERSON GAMES

In this section, we shall first show that the solution set to any
finite, two-person game with truly perfect information always contains a
Pareto optimal point. The solution set is simply the set of solution out-
comes, i.e., the set of all outcomes such that the reaction function for
the meker given the rational response of the taker yields maximal payoffs
to the maker. The recursive and finite structure of the optimization problems
of the maker and taker obviously insures that the solution set is non-empty.
To prove that the solution set must contain at least one Pareto optimal
point, suppose it is not the case. Then, for any pair of solution actions,
say the pair (81’82)’ there is a pair of non-solution actions, say(pl,pa).

such that

"1(1’1"’2) > ﬂi(sl,sz) for both 1 = 1 and £ = 2, and
(8)
ﬂi(pl'pz) > "1(81,82) for i = l or i = 2.

With no loss of generality, we let player 1 be the maker. Under the hypothesis,
if player 2 chooses action Pos then player 1 chooses an action other than Py
otherwise player 2 would, in view of (8), be at least indifferent between
(pl,pa) and (sl,sa) so that (pl,pa) would be in the solution set. In
particular, player 1's solution reaction to p2 must generate a lower payoff

to player 2 than1b(sl.52). Now if player 1 replaced his solution reaction func-
tion with a function which reacted with actian'pl to player 2's action Pp» he
would, in view of (8), be no worse off than at the solution point (81,32).

And since, under the replacement, player 2 would be no worse-off by choosing
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P, than by choosing 559 player 1's solution reaction function yields him
no greater payoff than a non-solution reaction function, vhich is a contra-
diction.

The existence of Pareto optimal points in the solution set does not
imply that Pareto nonoptimal points cannot also belong to the solution set,
In fact, Pareto nonoptimal points do belong to the solution sets to certain
games. These occur when there are Pareto nonoptimal points for which the
only Pareto superior points have only one party better-off. Then, assuming
that the taker is the party who is better-off in moving to the Pareto optimum
point, and that the Pareto optimum is in the solution set, it is clear that
the Pareto nonoptimum yielding the same payoff to the masker but a lower
payoff to the taker is also a solution as long as the choices offered by the
maker are even worse for the taker than the Pareto nonoptimum. The latter
proviso can obviously hold if the maximal payoff to the maker over the entire
set of payoffs occurs at the Pareto optimal point under discussion. A

quasi-realistic example is ppovided in Section III.
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III. CONTRAST TO TRADITIONAL THEORY OF GAMES

In this part, we shall contrast the approach and solutions to n-person
non-cooperstive games with truly perfect information developed above with the
approach of conventional game theory. In particular, we contrast our game
to the following two-person games: Zero-sum gemes, general-sum, non-coopera-

tive games, Nash's cooperative gamej and Friedman's supergame.

A, Two-person zero-sum games,

The constructive solution concept pioneered by Von Neumann and Morgen-
stern (VNM) for two-person, zero sum games is the minimax solution, where
each player selects a strategy which maximizes the minimum gain (or minimizes
the maximum loss) over all possible outcomes to‘the game, VNM's content
theorem states that the pair of minimax pure actions (in those éases where
there exists a saddle point in the payoff function) or a pair of randomized
actions (in the non-saddle point case) is also the solution to a "perfect
information" game, a game in which each individual knows the other's strategy
and accepts it as fixed in determining his own strategy.

In contrast, the solutions to zero-sum games using our assumption of
truly perfect information - both with and without saddle points - are never
characterized by mixed strategy solutions.

To illustrate this contrast, consider a two-person, zero-sum game without

a saddle point in pure actions (e.g. figure 1). From our above discussion,

there is one and only one maker, a player whose choice set must be expanded
beyond the set of simple actions to include that player's possible reactions
to the various actions of his opponent. The expanded payoff matrices for

players 1 and 2 are shown respectively in figures 2 and 3.
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It is easy to see in figure 2 that the rational reaction function for
Player 1, if maker, is to play action xi if player 2 plays x!, and to play
x; if player 2 plays x". Facing this reaction function, player 2's payoff
maximizing choice is x". It is gsimilarly easy to see in figure 3 that if
Player 2 is the masker, his rational reaction function is to play x, if player 1
Plays xi, and to play xé if player 1 plays x{. Player 1's payoff maximizing
choice is x{. Hence if player 1 is maker, the solution outcome is the pair
(x;,xg) giving a payoff of 3 to player 1 while if player 2 is the maker, the
solution occurs at the pair ( ",xé) giving a payoff of 2 to player 1. Note
that each solution pair corresponds to the pair of personal minimax actions
for the games in Figures 2 and 3, respectively.

Hence, we have two possible solution outcomes depending upon which
player is the maker. The equilibrium solution is attained once the priority
of strategy selection is determined.

If there exists a saddle point in pure actions, then the solution
outcome in both onr model and the VNM model occurs at the saddle point, where
each player plays his minimax action. To see this, first note that in any
Zero sum game, a rational reaction function for the maker is one wvhich consists
of those actions Yielding the highest payoff to him for each possible choice
of the taker. Since, in the presence of a saddle point, a player's minimax
action is his payoff maximizing action given that the other player chooses his
minimax action, the minimax pair of actions (the saddle point) will be a point

on the rational reaction functions of both pPlayers. And since each player

chooses the same action as a taker as when minimaxing, the solution outcome is
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xi N 1
x" 2 3

Figure 1. Payoff Matrix A - No Saddle Point

2
] "
1 xg x2
xi b 1
xg 2 3
] [} n 1]
x|y, x7|xj 4 3
" ] [ "
xllxz, x| x3 2 1

Figure 2. Payoff Matrix A with Player 1 as Maker

xé | xi ’ xg l xi ’
2 " 2 | '
1 x} x; B B x} | x¥
xi L 1 I 1
xg 2 3 3 2

Figure 3. Payoff Matrix A with Player 2 as Maker
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the saddle point regeardless of the identity of the maker.

Consider the two-person,zero-sum game with a saddle-point illustrated
in Figure 4. The minimax solution to the game is the pair (xi, xg). If
player 1 is the maker, his expanded payoff matrix is shown in figure 5, with
the solution occurring at (xi|xg, xg). If player 2 is the maker, his expanded
payoff matrix being shown in Figure 6, his optimal reaction function is xg
regardless of the action of player 1, so the solution actions are again
(xi,xg). These solutions are therefore the same as the minimax pair of
actions in the original game.

Solutions to two-person,zero~-sum games under the conventional definition
of perfect information are obtained by VNM by considering the majorant and
minorant of the original game., When there exist a saddle-point, the majorant/
minorant solutions are identical to our solution. The reaction function
of the second mover (the maker) is assumed by the first mover (the taker)
to consist of the individual payoff-maximizing reactions of the maker to
each possible action of the taker. In contrast, our theory does not force
such a short-sighted reaction function upon the maker., In our theory, the
second mover (the maker) initially commits himself tb the payoff-maximizing
reaction function given the known rational response of the first mover (the
taker). The two theories yield identical solutions only because the zero-sum
condition implies that the payoff-maximizing reaction function will eonsist
of the individual payoff-maximizing response of the maker to each action of
the taker and because there is a saddle point. When there does not exist a
saddle-point, the solution the majorant/minorant games are mixed strategy

solutions, contrary to the pure action solutions illustrated in Figures 2 and 3.
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Payoff Matrix B - Saddle Point

*5
xi b 3
{i]
xl 2 1
Figure L,
2 [} "
1 X5 *2
xi L 3
x{ 2 1
[} 1 " "
x1|x2, xl|x2 L 1
] ] ”
x|x}, xllx2 2 3

Figure 5. Payoff Matrix B with Player 1 as Maker
| ] ] " \j
5 lexli x2lxli
xé xg xglxg x;Ix?
1
x) L 3 L 3
"
xl 2 1 1 2
Figure 6., Payoff Matrix B with Player 2 as Maker
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K. VYariasble-gum games.

lion-cooperative.,

e gtandard approach to non-cooperative, variable-sum games has been
to identify peirs of mixed strategies which satisfy a Nash equilibrium.éf
Nasn defines an equilibrium to & 2-person bi-matrix game [ﬂl,ﬂzl as a
pair of vectors, §§ and ;g, consisting of the probabilities of playing

edcn action in &1 and Az, respectively, such that:

- - - -
# % < #* *
[mE 2 (N5

3 >
G AL ;ﬂ,x such that 0 < xf <1, 0¢« ;J <1 z ; = 1, and ;J = 1,
i 2 it - - D = ’ i b4 2

z
J

The equilibrium conditions in (9) are not for a game with truly perfect
information. Rather, they describe behavior in which each individual assumes
the strategy of the other is unaffected by his strategy -- a straight-forward
generaiization of a Cournot duopoly model. As in the model of Cournot (1),
escn piayer is behaving irrationally under truly perfect information because
the other player will, by the rule, generally alter his strategy in response
e & change in his opponent's strategy.

Let player 1 be the maker., Then 1's problem is to choose a reaction
funetion, a function determining a reaction of player 1 to each possible

action of player 2, that yields maximum payoffs to 1 given that 2 will always

<t

select his payoff-maximizing action subject to 1's reaction function. Player

. thus chooses a reaction function, x; = fl[x2]’ satisfying:
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e (2, (2,8, [x, 1)1, Zy(2,[x,1), (10)

where iz(fl[le) satisfies, for any given fl[x2] € Fl.

max Na(fl[xal; x2)
xzeA2

Notice that the equilibrium conditions in (10) differ from the Nash
equilibrium conditions (9) tn that player 1 plays contingent actions as
represented by his reaction function rather than independently choosing a

simple action.

To illustrate the difference in the two concepts of equilibrium, we
consider the "prisoners' dilemma" game, depicted in normal form below in
Figure 7. The Nash equilibrium outcome to this game is the action pair (x;,xg).
Under truly perfect information, this solution is irrational, since either
player, if maker, can assure himself a higher payoff (4 rather than 1 in
the illustration) by exhibiting a reaction function where he plays his first
action if the other player plays his second action and he plays his second action
if the other player plays his first, given the payoff-maximizing behavior of
the taker as constrained by the maker's rational reaction function. This
results in an equilibrium at (xi,xé) which is unattainable under the Nash
solution concept. With this reaction function, a player, as taker, never has
an incentive to play his second action - a result not true in the Nash model.
Hence, in spite of the absence of two-way communication, our solution to a
prisoners'dilemms game is an efficient solution.

Notice that the maker's reactions are not the payéff maximizing actions

of the maker for given actions of the taker, as they were in the zero-sum case.
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don't confess x!

! 0,10

confess xg 10,0 1,1

Figure 7. Payoff Matrix [m_,m_]
® ® 1’2

FEIN ] n
5%
2 8§ 8
1 x5 X5
don't confess xi oy 0,10
confess xg 10,0 1,1

beat up the other o

prisoner 3 =1,-2 | -1,-2

Figure 8

work

rest

w
X

master

-
el
N =

beat the slave xi 10,-10 0,~6

insult the slave x; 10,-4 1,0
leave the "
slave alone X 10,0 0,b

Figure 9 The Slawve Master's Insensitivity
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2. Cooperative games and supergames

6/

In Nash's model of cooperative games=' "cooperation" reférs to the
individual players' incentive to reach an outcome mutually superior to the
Nash non-cooperative outcome, rather than implying collusion or side payments.
In the model, each player initially commits himself to playing a "threat"
action if the player is not satisfied with the size of his payoff. These

threats are communicated to one another, and then each player independently

and secretly chooses his "demand", or minimum acceptable payoff. If the two
demands are not mutually attainable, the players are committed to playing
their threat actions. Introducimg a set of axioms imposing desirable
equilibrium characteristics, including Pareto optimality, Nash proves the
existence of an equilibrium pair of randomized actions, and derives the form
of the optimal threats. These optimal threats consist of the individual
Players' minimax actions for the game.

The so-called "supergames" of Friedman (3) are infinite sequences of
conventional non-cooperative games in which each game im the sequence has one
and only one outcome Pareto superior to that game's Nash non-cooperative
solution. To achieve a sequence of such Pareto outcomes as a solution, Fried-
man has each player selecting a reaction strategy where: one plays his Pareto
action in game t, if all other players play their Pareto actions in game t-l,

and one plays his Nash action in t and all subsequent games in the sequence,

given any other actions of his opponents in game t-l1. In the initial

game (t=1), it is assumed &ll players choose their Pareto action. Hence, each
pPleyer is discouraged from choosing an action in any geme which maximizes his
Payoff given the others' Pareto actions.

The motivation behind both models is apparently to achieve solutions
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which are Pareto optimal - solutions which are generally unattainable
under the information assumptions of conventional non-cooperative games.
It is easy to see that Nash's model of cooperation differs from our theory
in that each player in Nash's model does not know how his opponent will
react to his demand choice. Further, Nash requires several plays of the game
in order for the players to learn about his opponent's demand strategies,
revise his own strategy, and finally settle upon a pair compatible demands.
However, there is nothing in the model which permits the attainment of any ra-
tional solution other than a non-cooperative one. Because the "demand game"
is played under the conventional information assumptions, the only rational
solution occurs at the optimal threat outcome, i.e., the Nash non-cooperative
solution, which we have already contrasted to our theory.lj

In the supergame approach, each player selects a reaction function and
an action in response to the expected reaction strategy of the other players.
In a solution, a player's response of a reaction strategy to a prior (in
this case, e;gected) reaction strategy must yield actions consistent with
the prior reaction strategy, or else his reaction strategy is meaningless.
Therefore, a response of a reaction strategy rather than an action merely
implies giving additional choice to the other player(s). As pointed out in
section IB, allowing additional choice by a prior selector cannot expand the
set of possible outcomes from which the subsequent selector may choose and hence
is irrational. Therefore the supergame
approach is not generally rational. Furthermore, the forms of the reaction
functions assumed by Friedman are, in general, ireational.

To see this, consider a version of the prisoners' dilemma with the

additional alternative action of "beating up" one's fellow prisoner (figure 8).
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Ignoring for the moment the new actions, the supergame solution and the
meker/taker solution both occur at (xi,xé) for a payoff of (L,4). If we
now add the new action, the supergame solution remains at (xi,xé). However,
if player 1 is the maker, he can achieve (x;,xé) as a solution by commiting
himself to play action x;' whenever player‘z plays something other than xé.
It is no longer rational for player 1 to resort to his Nash action, x;,
if 2 deviates from some Pareto optimum. Thus, with this ability to punish,
the Pareto optimum occuring at (xi,xé) is not a rational solution.

While our model does produce Pareto optimal solutions to any prisoners’
dilemma geme and while Pareto optimal points are always contained in our
solution sets for two-person games, our model does not preclude Pareto non-
optimal solutions in all two-person games.

Figure 9 contains an example of such a game, which we call the "slave
master's insensitivity." The Nash non-cooperative solution has the slave
resting while the master insults the slave. This is both non-optimai and
empirically unrealistic. Friedman's solution concept cannot apply because
there is not a single Pareto optimum superior to the Nash outcome. Making
the master the strategy maker, our solution set contains an optimum (10,0)
as the master will beat the slave if and only if he rests in order to induce
the maximal output from the slave. But the solution set also contains
(10,~4) as the master may also insult the slave, lowering the slave's benefit
to -4 without altering either the master's payoff or the slave's optimal
taker decision. Our solution set thus contains Pareto non-optimal as well as
Pareto optimal points. The non-optimality disappears when we allow &
competitive bidding process to determine which of the two players is to be

the strategy maker (see Faith and Thompson (2)).
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FOOTNOTES

- See Faith and Thompson (2).

While a general game theory containing contingent strategies has been
produced by Howard (i), he makes the conventional perfect information
assumption and therefore winds up with a conventional set of Nash
solutions.

In case:there is more than one response strategy yielding the maximum
payoff, we assume, for the sake of determinacy, that the player give

the choice among his maximal strategies to the prior strategy selector.
We call the resulting strategy the player's "rational response".

For an example of this simultaneous solution determination in a model

of non-competitive interdependence, see Faith and Thompson (2).

See Nash (5).

See Nash (6).

Although Nash expects his players will eventually aéree upon & compatible
outcome, there remains the question of the distribution of payoffs over
the set of Pareto optimal outcomes. A rational determination of who
"backs down" in this bargaining situation is not achieved. This conflict
is the same that motivates the Nash non-cooperative equilibrium, and

that outcome i.e., the optimal threat outcome, would again appear to

be the rational solution to the conflict.
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