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The dominent economics literature presumes that more téchnological innova-
tion is a good thing, despite the fact that basic economic principles tell us
that it is a good thing only if it justifies the cost, This presumption has
been exceptipnally stréng in reqent years as estimates of technological pro-
gress by the "residual method" (e.g., Abramovitz and Solow) have impressed eco-
nomists with the large measured returns to innovation. This study provides
an estimate of the total social cost as well as the return to innovation and
thus a more objective criterion for judging the net gocial valuebof investment
in technological improvements.

Our estimation technique is built upon a basic_defect in the usual residual
approach to the estimation of the rate of technical change, The defect is based
- on the obvious empirical fact that some innovations are a product of labor and
capital rather than manna from heaven. Given this fact, the aggregate production
function admité increasing return to scale (see Thompson (1968) or Star-
rett ), which is ruled out in the conventional residual approach to the estima-
tion of the rate of technological improvement (see, for example, Solow).

The first problem for this study, addressed in Section I, is to derive a
technique for estimating the degree of returns to scale and the annual rate of

technical progress of the aggregate production function without imposing any
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artificial‘restrictionvon the form of the function. The technique which we
develop requires only one assumption in addition to Solow's, viz., the assump-
tion of a zero correlation between the current rate of technical change and
the current changes in the quantities of the. aggregate factor inputs. The
‘second problem, addressed in Sectioh II, is to derive the magnitude of aggre-
‘gaxe expenditures on innovation from the degree of returns to scale, The
resulting eséimate Qf innovation costs are then combined with the estimaté

of returns obtained from the same regrégsion equation to yield an average

rate of return to technological innovation.



. 'I. FIRST APPROXIMATION

A. Theory
The following three basic economic relations will be employed,

(1) Q= F(K'L:t)

1"t

(2) BR ZFy, B W = Fo
(3) we+w =1,

output (the numeraire), K = capital, L = labor, t = time, W = wage

where Q

rate, R = return to capital, F. = % y W, = -w-Ii, and v, = R Equations (1)
L L Q X Q e
and (3) are those used in the classic study of Professor Solow, and (2) is a
generalization of his implicit assumption that By =Bg=1. Bl_ and B}— are
v L K
the portions that the factors receive of their aggregate marginal products.!'-/
A measure of returns to scale may be derived from the first two relations
provided that the production function, in a neighborhood of K, L, is homoge-
neous with respect to the physical inputs. The production function may then be
written as
(W) B(a) = FK 4L, |
where B(t) is the degree of homogeneity and a measure of the degree of returns

to scale at K, L. IfB(t) =1 for all (K, L), there are constant returns to

scale.

1/ The existence of (1) as an aggregate of individual production function satis-
fying (2) for the case in which =By = 1 is assured if and only if the firms
possess identical production ﬁmc‘Eions (Fisher, Thompson (1970)). When firms
possess different functions, one must generally include each firm's specific
factors as separate inputs in order to generate a linear homogeneous aggregate
production function. However, since these specific factors are evaluated as
part of a firm's capital stock when market value weights are used in computing
the aggregate capital index, the only unavoidable bias introduced by having firms
with different production functions is an ordinary index number bias. We shall
assume throughout that such biases are empirically insignificant.
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Now write the identity,
FK + FiL SFK +F/L,
substitute (2) into the left side, and multiply by % to obtain
(5) (BN, +B/W )Q = R K+ FL
Combining (h) and (5), we have, as a measure of returns to sca.le at X, L,
(6) B(t) = BM + B, W,
Differentiating (1) with respect to time, dividing the resulting equation

by Q, and making the uppropria.te substitutions from (3), we obtain

(1) Q,BK(,,) +8 (w,)L o

=8 = 38
where o, B and Q = T otee If B; = Bx =8,
Q
8 E K L
where B is the degree of homogeneity or returns to scale at K, L, and at is the

2/

percentage shift in the aggregate production function.

.‘B. Estimation
The natural thing to do at th:ls point :ls to estimate BL’ BK, and o from
a group of observations on Q‘- (w )—, and (w ) Required for the use of maxi-

mum likelihood methods are the specific observations and specifications on the

2/ Note that if B and BK are different and constant, a production function

which is also homogeneous of order B for all (K,L) must be a Cobb-Douglas func-
tion. To see this, observe from equation (6) tha.t vhen B and BK and 8 are

all constant, then (recalling equation (3)) vy, " and vy are constant. Next, inte-
grate (7) to obtain (Bw,) (B )

Q= A(t)L



nature of BL’ BK’ a, and error term, In order to indicate the relative gener-
ality éf the techniques used here, we now confine ourselves, with one.excep-
tion, to'assumptions which are no more restrictive than those employed by Pro-
feséor Solow.

We shall use fhe same variasbles and observations that he uses. They are
time series of Vs k, L, and Q for the private, non-farm economy of the U.S.,
1909-19h9.§/ Intrd&ucing Solow's assumption of a Hicks neutral production
function and an add;tional assumption that there is no correlation between
changes in factor inputs and the rale of technical progréss, (wx)% and (VL)%
are not dependent upon a!.E/ 'We shall first assume that BL = BK = B, where

t
B is a constant. We are now prepared to fit (7a) with the time series rela-

i

tion,
g= O-I.S oi’-' .
(8) ) Blweeg + Vo) +a+u
where u, has a zero mean and is uncorrelated with the independent variable,

3/ 1919 and 1920 posed a problem in that the technical change index under con-
stant returns was an extreme negative number in 1919 and an extreme positive
number in 1920, We attribute this to a gestation lag, a lag in converting war-
time to peacetime capital and correspondingly use average 1919 and 1920 input
and output expansions for each of these years in order to remove this problem
in the data. Our use of multi-year time intervals below will help reduce this
bias for other years. '

1945 had a similar problem with negative technical change occurring within
the year, but 1946 did not have a significantly positive residual to offset it.
We did our study with and without 1945 and got economically equivalent results
either way. Our results reported below will all include 1945.

L4/ To see this, differentiate (1), divide the equation by F, integrate the par-
tial differential equation assuming that K and I, are independent of a, and
obtain Q = A(t)f(K,L). Next, partially differentiate this with respect to K

K _ dL . .
or L, multiply by %Kg or -%'—, and observe that I“Kdt., Flat = BKwK(lé'). BLVL(%)

F F .
Alt

: At dK dL
are not dependent upon K%E% as long as at and at are not dependent upon Alt)’
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Least square estimates of B and a from (8) are § = 1.13 (Oh = 0,07) and
@ = 1.42, The Durbin-Watson statistic is 1.97, indicating no significant time
trend or autocorrelation in the residuals.

Dropping the BL = BK assumption and estimating equation (7T), €L and §K
were significantly different than one another. We also ran the-'regressions on
(7a) and (7) using longer time intervals to reduce the impact of measurement
errors, using two, four, and five year intervals,

The average (£ . §K) over these four sets of estimates was (1.43, 0.84).
While there was a great deal of vari;tion in the four different estimates of
both B, and 8y, there vas relati§e1y'1ittle va;iaxion in the four different
estimates of the sum, Bﬁ:k + BIFLf In all four cases, this estim#te differed
by less than 0,02 f;am the corresﬁondihg estimate of returns to scale gener-
ated by the assumption that BL = BK' ‘

This pattern indicates that there is little stability in the relationship
between marginal products and factor prices for particular factors relative to
the relationship between the marginal éroduct of the overall input index and
-the overall factor cost (i.e., the degree of aggregate returns to scale). This
peculiarity is explained in Thompson (1970), where it is shown that the pre-
sence of non-pecuniary rewarés prevents us from identifying the marginal product
of separate inputs with their respective factor prices but still allows us to
identify the marginal product of the overall input index with its factor cost
under neoclassically competitive conditions. The large variations in the (BL. BK)
estimate may therefore be due to variﬁtions in the extent to which additional
inputs provide non-pecuniary rewards to owners of other inputs,

In any case, the returns to scale estimates increased gradually as the

time intervals expanded until f = 1.22 (8 = 1.27) for five year intervals, This



pattern indicates the familiar, downward least-squares bias due to measure-
ment errors present in ﬁhe annual observations on the 1nde§endent variable,
There being little a priori‘information on the constancy of the degree
of returns to scale, we computed returns to scale estimates using (Ta) within
each of the successive five-year intervals and found significantly different
estimates of the degrees of returns to scale in the various five-year inter-
vals, with avdefinite trend toward lower returns to scale in the later years.
A revised estimation technique, based 6n an economic rationalization of the

preceeding pattern of estimates, will be developed in the following section.
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II. ECONOMIC RATIONALIZATION AND SECOND APPROXIMATION

A. Theory

We assumed above that Bﬂt) was possibly different than unity without pro-
viding an economic Justificaiion. The standard competitive model with tech-
nical change which is manna from heaven will justify 8 = 1, but we have nét
specified what model Jjustifies 8 > 1.

In the Justification which follows, which implements the general outline
of Thompson (1965) or Starrett (1975), we ailow for the fact that some resources
are devoted to the production of innovations rather than the production of
current output, Q. We let IQ and It represent the respective amounts of éggre—
gate input devoted to the production of éurréht output and innovations. We
thus write a subaggregate production function:

- 9) a=1(1y, T,),
vhere T, represents the technology at time t. We cannot directly observe

t

I or It' We can only observe their sum,

Q

(10) 1 = IQ + It'

The subaggregate production function can be assumed to be linearly homogene-

ous in I_ by the usual duplication ﬁrgument vhich is the basis of the standard

Q
technological argument for constant returns to scale. Thus, by Euler's Theorenm,
_af ., '
(11) Q 15:; Iy

Differentiating (9), and then dividing by Q,

- _3f .3 ,f . d_ 3£ .29,,3f %
(12)Q——-OI +'——-.T and = P ° - —— .
EﬂQ Q - 9T, t Q Eia Q IQ 3 Q
Using (11), .
. I
_q,3f %
SEIR RS o ok



To simplify the second term in (13), we now make a strong assumption,
which we will empirically verify later in this section, regarding both the

subaggregate production function ‘and the production function for current

innovations, or

(1h) T, = g(T,_, Ios Ioys Ippo ceee)s” |
In particular, ve assume that these functions are super-Hicks-neutral in the
following Sehse:

(15) Q= f(Iq, T,) = th*(IQ), and

(16) i‘ = S(T I 1 » I » -oo) =T 8*(1 'y I » oooo)a
t T T T T T

Using equations (15) and (16), equation (13) can be written as

. I
a7) =84 g1, , s eeed) ;
A" T "y, ITt_l |

With only simple Hicks neutrality, g* would have a coefficient which
is a fnnction of Tt' In general, that is without Hicks neutrality, g* would
have a coefficient which depends on both Tt and It'
Our first approximation ihdicated that the rate of annual technical
. change is roughly constant over time. Tempbrarily adopting this assumption
without empirical justification, (13) and (17) indicate that the amount of

inputs devoted to the production of innovation, IT . can be assumed to be

constant over time. Then, using (10), Q- I so that (17) can be rewritten as
Q.51
(18) ) Bt + a , vhere
(19) B, = F .
Q

Equations (18) and (19) give us an economic interpretation of the B(t) appear-

ing in Section I. For the estimates using annual data, where B = 1,13, the
I

implied average proportion of inputs going to technical innovation, 1; =

I-1I,
S l- 2= 1l - L , is about 11 1/2 percent. However, since Bt is not

I I Bt
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constant over time while the B of Section I was assumed constant, this inter-
pretation of the E of Section I is of a highly approximate nature. Si:nce I
generally grows over time at a rate which is slover than IQ ir IT remains con~
stant, equations (18) and (19) explain why the short-period degree of returns
to scale estimates in the first approximation dec_:reased over time,

Moreover, equations (18) and (19) yield a guide as to what form of linear

regression equation to estimate using the entire time gseries. In particular,

since :
1 S Iy Ip : '
() B =rogTTo g TPt T AT e
1.\T I
and (-%'-) for r > 2 is economically insignificant for all reasonsble values of
T
?
I IT
(21) B, =1+ 5.

Using\(la), (19), and (21),

I
I(L)+ «
T(Iz) t

Since I'I‘ is constant, a linear regression‘or % - %— on -I-z is jJustified by
. I - )

the above theory. We ran a least-squares regression on the time series used

)
(22) 3

_1
i

B. Estimation

in Section I. We again found a coefficient, 0.16, almost two standard devia-

tions above unity and an insignificant Durbin Watson statistic (D.W. = 1.96).

The estimated rate of average annual technical change was 1.L43% per year (com-
pared to the 1,42% for the regression of y on x). The implied estimate of

the average degree of returns to scale, :—}—;—- y 18 1.12 (comp.ared to 1.13 for
- I - IT ’

the regression of y on x.) I is indexed to equal unity in 1909 and I =1.29.

Thus the implied eitima.te of the average proportion of all inputs devoted to

Ip
technical change, — , is 12,4% per year., That is, an annual investment
I



-11-

averaging 12.4% of fofegone output yielded an annual increment of 1,43% to
our gross national product.

To test'the assumption of super-llicks -Neutral technical change, we
estimated equation (22) with a quadratic time trend and again with a quadra-
tic function of I as extra variables. All thé coefficients on' these vari-
ables were far from statistically significant and had no effect whatsoever
on our estiﬁates‘of'returns to scale or fT' ;;

We again adjusted our annual data for observation error andjgestation
lags by using longer ﬁine intervals, averaging over consecutive sets of years
rather than accepting annual data, Again thg values of the regression coe-
fficient, as well as'the values of Rz, increased vith the length of the
intervals. Our f;ngést ihterval was again five'years. (We felt that using
longer intervals would be throwing away too much data for a small additional
reduction in observation error.) Our five year interval estimates of IT and a
were 0,24 and .127 respectively, with the standard errors .14 and .005
respectively and D,W, = 1,77, These imply an estimate of the average frac-

tion of inputs devoted to technical innovation, é;, of 18.5%. The corres-
I

ponding estimate using the first approximation and five=year intervals,

A

1 - i-, is 18%7. And the average rate of technical change was also 1.27%.
B .

C. Rate of Return

The rate of return to technical innovation is computed in the following
fashion: The cost of 1909's expenditure and innovation in the above model
was .24, or 24% of 1909;5 inputs. Assuming only a one-year lag in the
implementation of new technologies, the returﬁ'in 1910 to the investment in

1909 was ,0127 Qoo = +0127. The returns in 1911 was .0127 Qg etc.
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The return,thus 1ncreases over time when Qt grows over time so that corres-
ponding social discount rate gpplied to the original return of .01?7 must
be reduced by the growth rate of output to arrive at a correct calculaﬁion
of the social value of the investment. Alternatively, we may nmerely add
the growth rate of output to the initial rate of return to invegtment to
produce a rate of return which should be compared to the social discount
‘rate, Adopting the latter approach, our estimate of the rate of return to
innovation in 1909 is “gpEl + & = 22l + 032 = .085, From the sbove dis-
cussion, the return to a given investment in innofation generally increases
with the date of the investment because later innovation efforts generally
occur at greater levels of outputs. On the other hand, the alternative
value of the inputs devoted to the investment rises with the rate of tech-
nical progress. Thus, given that the average output for the entire period
is 1.6k times the 1909 output, and the average technology level is 1.25 of
the 1909 level, the average rate of return to investment in innovation at
the average levels of output and technology for the period is (—%%gl)(%fg%)+

. .032 = 10.1%.
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III. CONCLUSION

Our final estimate of the average percentage of inputs devoted to inno-
vation during the 1909-1949 peribd is 18.5%, and the corresponding annual
return to these investments is 1.27% of current output.

Our final estimate of the average of the average rates or.return to the
investments in innovation over the period is 10.1%. This estimate, hovever,
is overly genérous for at ieast two reasons, First, it assumes an unrealist-
ically short lag between investment in an innovation and its return. Second,
it is obtained by only partially adjusting for errors of measurgment.

Our interpretation of the results is that while it is 11kel& that there
has been a significant average rate of return to investments in ;nnovation,
extravagant claims of a great net social value to innovation are difficult

to justify, at least for the U.S., 1909-19L9,
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