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Recent discussions of the logistics of exchange have directed the
attention of economists to numerous weaknesses in the microfoundations
of economic theory, including specifically the lack of an acceptable
theory of the timing of individual exchange transactions.l The present
liferature on timing phenomené comprises at most a handful of papers, none
of which deals formally with anything more complicated than the ch&ice of
a trading frequency fo; a single commodity.2 Our purpose in this paper
is to investigate a more general ‘class of models in which individual
economic agents choose not only the frequencies but also the time phasing
of sale and purchase transactions.

The conceptual basis for our argument is provided by an inventory-
theoretic model that may be regarded formally as an extension of the
classic Baumol-Tobin theory of the transactions demand for money. Our
analysis shows, however, that the demands for trade inventories (goods
as well as money) depend upon a disconginuous function of the relative
frequency of sales and purchases. This novel result forces us to reconsider
a variety of issues, e.g., the conditions under which individual traders
will choose to hold money in positive amounts, the nature of potential gains
from paying competitive interest on money, the economics of hyper-inflation,
the effects upon individual demands for money of the availability of trade
credit and bonds, and, more generaily; the coordination of trading
activities in economies characterized by individual diversities in the

timing of transactionms.



I. THE BASIC MODEL

Our object in Part I is to characterize the stationary equilibrium
behavior of a representative trader in an idealized exchange economy where
goods can be traded in organized markets only in exchange for units of a
pure-stock money commodity.3 In keeping with familiar doctrine, we suppose
that on each purchase and sale the trader incurs a set-up cost that is
independent of the quaﬁtity traded per tramsaction . As a consequence, the
trader will choose to execute trades only at discrete points rather than
continuously in time and will hold positive stocks of both goods and money
between successive sale and purchase dates. The holding of trade inventories
is presumed to impose other costs on the trader, reflecting foregone
consumption opportunities and the use of resources to maintain storage
facilities. Thus to maximize long run real income the trader must strike
a balance between frequent transactions with low holding but high trading

costs and infrequent transactions with low trading but high holding costs.

A. Fundamental Assumptions and Ideas

Proceeding to specifics, we begin by considering an individual trader
who produces and sells units of just one stock-flow good (S) and who
purchases and consumes units of just one other stock-flow good (D). To
avoid superfluous notation, we assume that the money prices of both goods
are equal to unity, and we use generic symbols S, D and M, respectively,
to denote measurable quantities of (S), (D) and the money commodity (M).
For similar reasons (also to avoid dealing with feedbacks of trading
and holding costs upon the trader's stationary-state level of consumption)

we treat all costs as subjective (foregone leisure or consumption) or as



charges that are incurred "outside" the model. We further suppose that
the trader's rate of production of (S) is predetermined at the constant level
of y units per unit of time, and that the trader holds no precautionary
stocks of goods or money (that is to say, a purchase is made only when the
trader's stock of (D) has just been exhausted, and a sale is made only
when the trader wishes to dispose of the whole of his accumulated stock of (S) ).
Finally, as conditions for stationary equilibrium, we require that the
trader consume (D) at the constant rate y, sell (S) in constant lots of
size S at uniform time intervals S/y, and purchase (D) in lots of constant
size D at uniform time intervals D/y.

With no loss in generality we may suppose that a sale occurs at.
date 0 and that the first subsequent (or simultaneous) purchase occurs at
date m 2 0. On these assumptions the trader's holdings of (S) and (D)

at any date t 2 0 are defined by the time paths:

(1) S(t) =yt - [yt/s]s ( S(t) 20)
and

(2) 0(t) =D + [y(t-m)/D]D - y(t-m) 7(’ D(t) 2 0)

where the symbol [x] denotes the greatest positive integer not greater than
the real number x (thus the bracketed expressions in (1) and (2) denote the
numbers of sale and purchase transactions that occur between date 0 and
date t).

Since the choice of an origin to our time scale is arbitrary we may
also suppose that m equals the minimum distance between any contiguous
sale and purchase. Obviously m cannot in any circumstances be greater

than half the interval between two successive sales or two successive



purchases. In most cases, however, the maximum interval between some
purchase and some sale will be conéiderably shorter. For example, if

sales occur every day (24 hours) and purchases occur every seven hours,
then at least every seven days a purchase must occur within half an hour of
a sale. More generally, it can be shown (see Proposition 7 in the

mathematical appendix) that the upper bound to m is given by

3) m < G(S,D)/2y = m*,

where G(S,D) -- to which we shall refer subsequently as the divisor function ~-

denotes the greatest common rational divisor of S and D if S/D is rational

and G=0 otherwise.? We then define the phase variable 6 as

(0<06<1)

m/m* if S/D i& rational
0, otherwise .

On this definition, the placement of purchases relative to sales over the
entire time interval - » < t < ® {is determined unambiguously by the trader's
choice of a value for 6.

On each sale date the trader receives S units of money and on each
purchase date the trader gives up D units of money, so the time path of

money holdings is given by:

(5) M(t) = M, + [yt/s]s - [y(t-6m*)/D + 1]D, (M(t) 2 0)



where Mo denotes the trader's holdings of money balances after the first
sale but before the first purchase.
By hypothesis, marketing costs incurred by the trader are of two

types: trading costs associated with the execution of sale and purchase

transactions; holding costs associated with the possession of positive

average inventories of goods and money. To arrive at a formal model of the |
trader's decision problem, both types of cost have to be related explicitly
to the decision variables S, D and 0.
Dealing first with trading costs, we suppose that these consist of
two components, one determined by the sale and purchase frequencies y/S and
y/D, the other determined by the time sequencing of sales and purchases.

We shall refer to the first of these components as average set-up cost and

denote it by CF. By definition,

(6) Cp = ay/D + by/s, (Cp20)
where the constants a and b --- both measured in units of utility --
denote, respectively, fixed costs (foregone leisure) associated with

buying (D) and selling (S). The second component we shall call average

bunching cost and denote by CB' The existence of bunching costs is
predicated on the assumption that the effort (or other real resources)

required to execute any given sale will be greater the more closely that



sale coincides in time with a purchase transaction, and vice versa. We
defer detailed discussion of the bunching cost function until later
(Section I.C); here we merely observe that the synchronization of sales

and purchases at various dates is determined unambiguously by the values

of S, D and 04from which it follows that average bunching cost is definable

as a function of the general form
(7) CB = £(5,D,0).
Average trading cost is therefore given by
(8) CT = CF + CB = ay/D + by/S + £(S,D,0).

Dealing next with holding costs, we assume that these also consist of

two components: waiting costs associated with the activity of not consuming

average holdings of goods and money; storage costs assoclated with the

physical possession of such inventories. Denoting average holdings of
(S), (D) and (M), respectively, by S, 5} and'ﬁ, we define the first of these
as

9) Cy = o(D+8S + M),

where p represents the trader's subjective rate of time discount. The

second component, average storage cost, we define similarly as

(10) c¢g = oD + BS + yM



where the constants a, B, y, all expressed as rates per unit of time,
denote utility equivalents of real resource costs incurred in holding one
unit of (D), (S) or (M) for one unit of time. Combining (9) and (10),

we write average holding cost as

(11) cn-p(3+§+ﬁ) + aD + BS + yM.

The values of the variables S and D in (11) are defined by the time

paths (1) and (2) as simple functions of D and S, namely:
(12) s =8/2; D =D/2.

The value of M cannot be determined so directly. 1In principle; however,

M 1is determined by (5) as a function of S, D and 6, a fact that we

symbolize by writing
(13) M = F(S,D,0).

The properties of the relation (13), which we shall call the finance function,

will be established in the section that follows. Here it suffices to
note that the function exists, for then it follows from (8), (11), (12),
and the assumption of real~income maximization that the trader's decision

problem may be expressed formally as

(14) Minimize: (0 + a)(D/2) + (p + B)(S/2) + (p + Y)F(S,D,0)
{s,D>0; 126>01}

+ ay/D + by/S + £(S,D,0),



-8-

This formulation is conventi;nal in form, but it generalizes earlier
work in four significant respects. First, we allow the trader to choose
the frequency of sales as well as the frequency of purchases. The usual
procedure in the past has been to regard the frequency of sales (the
income period) as predetermined.5 Second, we impose no g priori restrictions
on the relative trading frequency, S/D. The standard approach in earlier
work with similar models has been to suppose that S/D can take on only
integer values.6 Third, we allow the trader to choose the time phasing of
purchases and sales. The procedure followed by previous writers invariablyv
has been to assume that the time paths of S(t) and D(t) start from a date
t = 0 at which a sale and purchase coincide, implying © = 0.7 The phenomenon
of time phasing has thus been ignored. Fourth and finally, we permit
the trader's choice of a value for the phase variable © partially to
determine average trading cost through its effect on bunching costs.

Earlier theoretical work completely overlooks this possibility.

None of these generalizations is radical; indeed, each 1s suggested
naturally by previous work or by the internal logic of our model. Yet in
combination these generalizations yield a model of the timing of transactions
with implications that differ fundamentally from those of any model considered
in the existing literature. The explanation 1ies in the as yet unspecified
characteristics of the functions F(S,D,0) and f(S,D,O), for it is only
the inclusion of these functions in (14) that clearly distinguishes our
formulation of the trader's decision problem from earlier treatments. Our
next task, therefore, is to establish the properties of these two functional
relationships. We shall then present an explicit solution of the decision

problem (14) and go on to explore its implications.



B. The Finance Function

We assumed earlier that the trader holds money only for transactions
purposes. From this assumption and our requirements for stationarity, it
follows that the value of M, at the origin of the money time path (5)
must be such that the trader is just able to execute all subsequent
purchases and sales without ever violating the feasibility condition
M(t) 2 0. We denote this minimally sufficient value of M6 by M and call

the corresponding time path of M(t) the required path of money balances.

Obviously the average value of the trader's holdings of money along the

required path, namely,

—_ Lim T=t o
M= (1/t)t£0M(‘r)d‘r, M, =)

is determined uniquely by the values of S, D and 8. But this functional
relationship is just the finance function F(S,D,8). To establish the exact
form of the function F(S,D,8), therefore, we héve only to determine the
value of M as an explicit function of S,D and 6.

To do this, we temporarily ignore the feasibility requirement M (t) 2> O,
and proceed provisionally on the assumpﬁion~that the trader starts just

before the origin with zero money balances. Then ' this virtual path of
money balances is defined by (5) with M° = S. The virtual path will be aé

dashed line in Figure 1(c).
illustrated by the / It will reach the horizontal axis at

some date and, unless S/D is an integer, some portion of the path will lie
below the horizontal axis. Let us denote the minimum value of M(t) along
the virtual path by -V (V 2 0). The required path of money balances can

then be constructed by raising the entire virtual path by the amount V.
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Hence the required path is given by (5) with M.o set equal to M =8 + V,

To determine -V analytically as a function of S and D, we first
observe that the minimum value of M(t) along the virtual path defined by
(5) must necessarily occur at some purchase date. Supposing that the first
purchase on or after t = 0 occurs at ;ime to = 6m*, it is easy to verify
(see the mathematical appendix, propoéition 2) that virtual holdings
of money balances follqwing the uth purchase of (D) at time tu are given
in general by

(15) M(t)) =S - D - R(uD|S),
vhere R(uD|S) is the remainder when S is divided into uD. Since the
minimum of AKtu) occurs where S - R(uD|S) is minimal, and since this
minimal value is G(S,D) (see proposition 3 in the mathematical appendix),
it follows that

v = T2 M(t) =5 -D- (s - G(S,D) )
= - D + G(S,D), N

which may be rewritten as

(16) V=D - 6(es,D).5

Immediately after the first sale, but before the first purchase,

the trader's inventories will consist of the quantity of money M = S + D - G(S,D)
together with the quantity of the consumption good 6ym*. Also, our stationarity
conditions imply that the total value of the trader's inventories must be
constant through time. It follows that

(17 ¥M+S+D=8S+D-~- G(S,D) + oym*,
from which we obtain:

(18) M =5 + D -~ G(S,D) + Oym*

as the explicit representation of the finance function F(S,D,8).
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The characteristics of the financé function (18) obviously depend in
a crucial way on those of the divisor function G(S5,D). Four properties
of the latter function are of particular significance for the present
analysis:

(P.1) G(AS,AD) = AG(S,D) for any A > 0; i.e., the function G is
homogeneous of degree one in both arguments;
(P.2) O < G(S,D) < Min(S,D);

_ {0 1f S/D is irrational,
(.3) 6(s,D) ‘{Min(s,n) if S/D or D/S is an integer,‘}

(P.4) G(S,D) has jump discontinuities everywhere that S/D is
rational; more precisely, G(S§,D) > 0 for such points, but
if any sequence {Sq,Dq} approaches such a point, and
s3/p9 # s/D for all q, then 6(s%,09) approaches zero.

The first three properties are easy to verify. The fourth is not evident,

but a simple proof is given in the mathematical appendix (proposition 4).
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As indicated by (P.3) and (P.4), the divisor function is extremely

ill-behaved; more precisely, it is an everywhere discontinuous function

of the trading ratio S/D. Accordingly, the finance function is also an
everywhere discontinuous function of S/D. This 1s indicated in Figure 2,
which illustrates how the value of the finance function varies as D is
varied with S held constant and 6 = 0.0 When D = S, we have M = 0;

i.e., perfect synchronization of sales with purchases of equal value
implies zero average holdings of money balances. Whenever S/D or D/S is

an integer, the values of M are indicated by vertical coordinates of the
points a,b,c,..., and x,y,2,..., all of which lie on the broken line defined

by'ﬁ'= IS - D|. This broken line forms the lower boundary of the finance

function. Whenever S/D is irrational, the values of ﬁ'are‘indicated by
vertical coordinates of points that lie on the extended line AB defined

by the equation'ﬁ = S 4+ D. This line forms the upper boundary of the

function F(S,D,6). In all other cases (i.e., whenever S/D is rational

but neither S/D nor D/S is an integer), the graph of the finance function

lies strictly between these lower and upper boundaries.
As Figure 2 illustrates, F attains a discontinuous local minimum

at every value of D for which S/D is rational. This means that for such
values of D, the graph of F consists of an infinity of isolated points.
The most distinctive of these isolated points are those associated with
local minima defiﬁed by values of D where S/D or D/S is an integer; i.e.,
points that lie on the lower boundary of the finance funétion. Assuming
that holding costs on money are positive, the effect of these minima will
be to discourage the trader from choosing values of S and D that do not

yield integer values for S/D or D/S.
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C.  Bunching Costs

By hypothesis, bunching costs are set-up costs that are incurred on
closely contiguous trades. Like other trading costs, therefore, bunching
costs per unit of time will depend in part upon the absolute frequency of
sale and purchase transactions. In addition, however, it is plausible to
suppose that the magnitude of bunching costs will be greater for any given
pair of trading dates, the smaller is the time interval between the given

trades relative to the interval between successive sales or purchases.

To formalize these ideas we begin by noting that each trading date
of the least frequently traded good must occur within a time interval
d/ = Min (§;5}/y of a trading date of the other good. We define any
trading date, t,, of the least frequently traded good as a bunch point. It

follows that to each bunch point there corresponds a trading date tﬁ of

the other good for which

= -f! ]
d(n) = It:n tnl <d'.

Any pair of trades that satisfies this condition we shall call bunched; any
pair of trades that does not we shall call isolated.

As a numerical indicator of the relative closeness of two trades, we

next define the measure

(19) I(e,,t,) =

4’1 - d(n)/d' > 0 for bunched trades;
1°7]

lO for isolated trades.
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Using this measure (and noting that all positive values of I occur at

bunch points), we define the average square of the I(ti,tj)'s over
the time interval t > 0 by
N
20 1*= T amia - amsen?.
0

Our basic hypothesis may then be expressed symbolically by writing

the bunching cost function C_ = £(S,D,6) as

B

(21) c, = c(y/D) 1>,

B
where Y = Max(S,D), y/Y is the frequency of bunch points per unit
of time, and c 1is a given constant representing the fixed cost
associated with a single simultaneous purchase and sale.

In the mathematical appendix (proposition 6) we show that
formula (20) may be rewritten as:

2 2 2 2

I" = (1/3)(1-g") + g"(1-8)",

where g = G(S,D)/Min(S,D). It follows that for all values of S, D

and 6 the bunching cost function may be expressed as:

22) ¢y = (ey/MIA/3) D) + g2a-0?) .

The graph of (22) for the particular case c=y=S=1, D > l,is illus-

trated in Figure 3. For any given value of 6 ,the bunching cost function--1like
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the finance function F(S,D,6)-is an everywhere discontinuous functiﬁn
of the relative trading frequency S/D. This may be seen most easily by
noting that the only possible values of g = GG ,))/Min(S,D) . are
given by the terms in the monotonically decreasing sequence

g(n) = {1/n} = {1, 1/2, 1/3, 1/4,... }. For relatively small values of g
(i.e., g 5 1/10), C_. = 1/3 regardless of the value of 6. For moderate

B

values of g (i.e., 1/10 s 8 <€ 1/2), CB declines moderately as 6 increases,
but CB is always strictly positive for all ¢ > 0. However, in the case

‘g =1 (i.e., S an exact multiple or divisor of D), CB approaches zero

as 6 approaches unity, for in this case (and only in this case) the time
phasing of sales and purchases may be so chosen that all trades are

strictly isolated.

D. Solution of the Model

Because the finance and bunching cost functions are everywhere
discontinuous, standard calculus techniques cannot be used directly to
establish the existence or properties of solutions to (14). This problem
can be effectively circumvented here, however, by working with graphical
methods. For simplicity of exposition, we begin by‘considering the special
case where bunching costs are identically zero (¢ = 0) so that the finance
function is the only source of discontinuity in (14).

Case (1): Zero Bunching Costs. Let the curves ab, cd, etc. in

Figure 4 represent iso-trading-cost (ITC) loci corresponding to alternative
- constant values of the trading cost function

Cp = ay/D + by/s

(i.e., equation (8), above, with £(S,D,0) = 0 ). These loci are continuous,
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downward sloping and convex to the origin; and "higher" loci (larger
values of S and D) correspond to lower values of total trading cost.
Let the points on or within the triangle efj represent an arbitrarily

chosen iso-holding-cost (IHC) set corresponding to some given value of

the holding cost function

cH-p(3+'s'+Ff)+ aD + BS + yM
(i.e., equation (11), above). The points at which S/D or D/S is an
integer lie on the upper boundary of the IHC set, indicated by the lines
ej and jf, the slopes of which are, respectively,(y -a)/(2p + B + v)
and (2p + a + y)/(y - B). The points at which S/D is irrational lie
on the lower boundary of the IHC set, indicated by the line ef, the
slope of which is -(2p + a + v)/(2p + B + y). All other points lie
strictly inside the triangle efj. Because the finance function is
discontinuous, the IHC set consists entirely of isolated points except
‘along its lower boundary.

Using this diagram, we can illustrate the solution to (14) in two
stages. A necessary condition for any D and S to solve‘(14) is that
total trading costs be minimal for anyvgiven level of total holding
cost. Thus in searching for a solution we may restrict attention to points
such as h in Figure 4 that lie on the highest possible ITC curve that
intersects the given IHC set. : If bunching costs are identically
zero (as we are presently assuming), the trading cost and holding cost
functions will both be homogeneous in the variables S and D; hence
the set of all points that minimize trading cost for giveﬁ levels of
holding cost will lie on a common ray through the origin. The slope of

this ray, w = S/D , is therefore equal to the relative trading frequency
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of the solution to (14); i.e., if h = (S',D'), then w' = §'/D' = §/5 =W,
where § and D denote solution values of S and D. So the first stage in the

solution of (14) is to determine & by finding a point that minimizes total
trading cost on some arbitrarily given IHC set.

Having determined @ we may treat the equation & = S/D as a constraint
and use it to rewrite (14) as

(23){ng§?2929}(pa)(D/2)+(D+B)(ﬁD/2)+(p+?){G(1,ﬁ)(6-2) + (}+ﬁ)}(D/2)

+ ay/D + by/aD.

The minimand in this second-stage problem is a polynomial inD and 6jaccordingly,
standard calculus methods can be used to solve for optimal values of D and © .
By direct inspection, the optimal value of © is just 1O = 0; i.e., in
the absence of bunching costs the trader will choose © so that for some
date t a'sale and a purchase coincide. To obtain D we differentiate (23)

with respect to D and solve as usual. This yields the formulae

s . /L 2y(a + b/W)
(24) D = Jommery) ) - ZGeHGL,w)

»

(25) S = @D,

and = ~ ~ a »
(26) M =8/2 + D/2 - G(S,D).

Regrettably, the formulae (24)-(26) do not permit us to calculate
numerical solution values for D s S and ‘ﬁ correspbnding to given values
of the parameters y,a,b,a,B,y, and p . The difficulty lies in the first
stage problem -- the determination of a solution value for w. Of course
in any particular problem we could attempt to find a numerical value

for W by trial and error, but except in contrived special cases such a
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procedure is unlikely to yield anything but frustration.

A more promising approach is to establish limits on admissible solution
values of W by imposing artful and (stringly speaking) invalid restrictions
on the finance function (18). Suppose, for example, that we follow earlier
literature and approximate the fiﬁance function by fitting straight lines
through the points satisfying integer constraints. On this assumption
the finance function (18) takes the form M =|S - D|, so that the graph
of F consists of all points on the upper boundary of the IHC set in
Figure 4; i.e., the decision problem takes the form
Min

>0;1>6>0} (PY) (D/2)  +  (p+8)(5/2)

(27)
{D, s> S
+ (p+y) (IS-D| + yom*) + a(y/D) + b(y/D),

the minimand of which is differentiable almost everywhere.
The solution to (27) can be found in two stages. First, the slope of

the ITC curves is compared with the slopes of the two branches of the

v

upper boundary of the IHC set on the ray w=l to determine whether W = 1.

From this stage we get:
S/D < 1 1f a/b < (a-y)/(20+8+);
1 S/D > 1 if a/b > (2p+at+y)/(B-y) ;

S/D = 1 otherwise .

.

In the second stage, conventional calculus techniques can be used to

derive the fqrmulae:

’ R vay/2(o-y) if S/D>1 vby/2(204+6+y) 1if S/D > 1
(28) D=1\ Tt if §/p<l  § = {/by/2(B~y) if s/D < 1
| /GH) /I (2otat®) 1€ /D=1 |/(@FD)y/2(ZeFerE) if S/D = 1.

As may be easily verified, the value of W% determined by these equations
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approximates the "true" value of % in the general solution to (23)

to the nearest integer value of ﬁv or its reciprocal. In virtually every
case this approximation will léad quickly (two trials!) to an exact
numerical solution; for the "true" solution to (23) usually will correspond
to a point on the upper boundary of some IHC set, and all such points
define integer values of w or 1/w. But the rule suggested by this

line of reasoning is not universal, as the following example demonstrates.
Suppose that y= 1, a = 5/11, b=l, p =.01, a = 8 = .2,y = 0. Pick

the THC set with holding cost equal to 1.0. Then the ITC éurve with
trading cost equal to (3.36)/11 touches two adjacent points on the upper
boundary of the given IHC set for which w=1 and w = 2; but the same
ITC curve passes to the left of a point w = 3/2 in the given IHC

set, so the optimal value of w cannot be an integer or its reciprocal.

Case (11): Positive Bunching Costs. When the bunching cost

coefficient ¢ 1is positive the trading cost function (8) takes the form
(29) Gy = ay/D + by/S + (cy/D) {(1/3) (1-g?) + g2(1-0)%).

Since (29) is an everywhere discontinuous function of w = s$/D, its

graph--as illustrated in Figure 5--is represented generally by a set

of isolated points rather than a continuous curve. If @ = 0,for example,

the upper boundary of the ITC sef is defined by points on the dashed curve

a'b' in Figure 5 that correspond to integer-values of w or l/w;10 the

lower boundary is defined by points on the solid curve ab that corresponds

to irrational values of w; an&_all other points lie within the area

abb'a' (all but a few of these points are relatively closer to the

lower boundary ab than to the upper boundary a'b'). Alternatively,

if 6 = 1, the lower boundary of the ITC set consists of "integer " points
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on the dashed line a"b" while the upper boundary is defined by the solid’
line ab. As indicated in Figure. 3, above, there exists one value of
(namely, 6 =1 -/1/3 ) for which all points 1in the ITC set lie on the
solid line ab; in this special case, therefore, the graph of (29) is

continuous even when c > 0.

The procedure used to solve for W in case (i) does not apply
to case (ii1) because the marketing costs are not homogeneous -
in 6. Nevertheless the nature of the diagram in Figure 5 makes it
clear that once again there is a strong presumption that & will
satisfy an integer constraint. For all parameter variations that leave
this integer constraint unchanged we may proceed much as in case (i)

by rewriting (14) as:

(30)  Min (p+a) (D/2) + (p+B) & D/2) + (oty){G(1,%) (9-2)
{p=0, 12020} '

+ (1+9)}(D/2) + ay/p + by/éD + cy/GD&%(l-gz) + gz(l-e)z}

where ¥ = max{1,%}. The first order conditions for a minimum are:

31 G(p+y)(D/2)2 - cyg(1-8) =2 0 (with equality if g > 0)
and
(2)  D’{a+ pF + Qory) (148) + (ohy)E(6-2))
- 25{a + b/6 + (/9 G087 + 2a-0)D)) =0,
which (in principle) may be solved simultaneously for 6 and D. As may

be seen by direct inspection, however, the solution for D will not be

of the familiar square-root variety because the elimination of 6 from

(31) and (32) leaves D defined as a quartic rather than a quadratic equation.
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ITI. IMPLICATIONS AND EXTENSIONS
In subsequent pages we discuss some implications of our basic model
and consider various extensions. Our ahalysis is in no sense exhaustive;
its purpose is less to elucidate logical properties of our basic model
than to illustrate the wide range of economic insights that may be gained

from even the simplest formal theory of the timing of transactions.

A. Comparative Statics: General Observations

It cannot be emphasized too strongly that the discontinuities in
our basic model arise not from strained assumptions about the discreteness
of time or the atomistic character of commodity and money units but
rather from the fact that trades involve stocks rather than flows so
that small changes in the relative timing of transactions can produce
large jumps in average finance requirements and in average bunching costs;
These jumps would be less obvious if our model dealt with non-stationary
processes so that between-trade time intervals were not necessarily
uniform; as a matter of logic, however, jumps analogous to those implied
by our model must occur in any ongoing economy where trades take place
at discrete points rather than continuously in time. Appearances to the
contrary notwithstanding, therefore, the comparative statics implicatioms
of our model are of more than purely academic interest.

The most important comparative statics conclusion to be drawn from

our model is negative, namely, the consequences of parameter changes upon

equilibrium values of S, D, and:E are generally ambiguous. The source of

these ambiguities lies mainly in the different effects of parameter changes

upon relative and absolute transactions frequencies. As is clear from
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earlier graphical analysis (Figufés 4 and 5), small changes in parameters
may leave the relative frequency w = §/5 unchanged because one or both
of the touching frontiers of the IHC and ITC sets consist of isolated
points. In such cases the only effect will be to change the absolute
frequencies y/ﬁ and y/§, which aré determined in the second-stage
maximization problem. It is worth remarking that the standard assumption
of regarding the absolute frequency of sales (the income period) as ‘
predetermined hides this sometimes crucial distinction by making a change
in the absolute frequency of purchases equivalent to a change in the
frequency of purchases relative to sales.

To illustrate the preceding remarks, let us consider a change in v,

the storage-cost coefficient on money holdings. If we employed the usual

approximation giving rise to the

square~root formulae (28), (above,p.18),we would infer from these that when
S > D an increase in y would lead to an increase in D. If the change in

y did not affect the relative frequency &, however, we would infer from the
"correct" formula (24) that D would decrease. To get the result implied

by the usual integer constraint, we should require the rise in y to

produce (1) a large enough increase in D (decline in w) in the first-stage
decision problem to offéet (ii) the decrease in D at the second stage. The
standard formulae (28) presuppose that the relative effect (i) always
dominates the absolute effect (ii), but this cannot always be so because

sometimes a change in y will produce no change in w.
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In simpler models when integer constraints are taken into account

the individual demand functions will have discontinuous steps in them,

but the smoothing properties of‘aggregation may be invoked to argue that
the aggregate function is smooth and behaves qualitatively like the usual
square-root formula.11 The preéént model shows that this is generally

not valid, For example, when y increases some traders will increase D and
others will decrease D; the aggfggate effect will depend crucially upon the
form of the distribution of traders between the two categories, The form
of the distribution is not so crucial in simpler models because they do

not allow for the possibility of traders moving in different directions,
Just for some not moving at all,

This is not to say that we cannot derive comparative static results
from the present approach. On the contrary, the approach allows us to iso-
late those results that are robust enough to survive this degree of gener-
ality. For example, Samuelson's well-known technique (1947, pp. 46-52) of
manipulating the inequalities associated with an extremum allow us to con-
clude that an increase in either of the trading cost coefficients a or b,
will lead to an increase in the average holding of the associated commodity,
D or E, that an increase in the storage cost coefficient, «, B, Or v,
will lead to a decrease in the average holding of 3, E, or ﬁ, and that an
increase in the rate of time preference, p, will lead to a decrease in the
total size of inventories, D+ S+ M. Note, however, that when p increases
any single inventory holding may increase.

One other familiar result that holds in the general case(provided
that @ = 0) is that the incomefelasticity of the demand for each of the in-

ventories has a value of one half, This follows from the modified
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square~root formulae (24)-(26) and the fact that, because of the homo-
geneity of trading costs and holding costs in y, a change in y will not

{

affect the value of W determined in the first stage decision problem.

B. Positive Money Holdings

Though a trader might be willing to hold positive money balances
simply to avoid bunching costs, it appears that such balances would not
be held for any other reason uﬁless money were less costly to hold than
the most frequently traded good. Otherwise the trader would synchronize
purchases perfectly with sales 'at a frequency equal to that of the most
frequently tfaded good and would hold no money at all, for there would
be no advantage to holding money rather than goods as a store of purchasing
power or consumption. This may be seen most easily from our analysis by
supposing that the solution point illustrated in Figure 4 yields a value
of w greater than unity. Then this point must lie to the left of the ray
with w = 1. But if y 2 a, the segment of the upper boundary of the
IHC set to the left of the ray with w = 1 will be horizontal or even
upward sloping, which implies that total marketing costs could be reduced
by moving the solution point to the ray with w = 1.

These considerations have some bearing on the familiar question,
Why do people choose to hold money when all other assets have a higher
net return?12 Our answer is that they won't -- at least not in a stationary
state without bunching costs. More generally, it appears that the usefulness

of money as a means of payment is limited by its costliness to store, which
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may help to explain why representative monies have tended to displace
commodity and commodity-backed monies in modern times.

The same considerations also shed light on the holding of money
balances during hyperinflations. The coefficient y in our model may be
interpreted as the sum of physical storage costs plus the expected rate
of inflation. The model then impliesfthac when inflation reaches some
critical point people will hold no momey at all exceﬁt for brief intervals
between transactions which, according to (31),

would become smaller as the expected rate of inflation increased.
This prediction of our model accords well with behavior observed during
actual hyperinflations. During even the most severe hyperinflations,
however, people appear to be extremely reluctant to forego trade in
organized markets that require them to use conventional media of exchalnge.'13
That is to say, money continues to circulate with finite velocity even when
it is clearly the most costly of all goods to store. This observation,
combined with our theoretical analysis, casts serious doubt on the
conventional assumption that bunching costs may be ignored. The evidence
suggests, on the contrary, that bunching costs are substantial at least

for "nearly simultaneous’ sale and purchase transactions}4

C. Competitive Interest on Money

It has been shown by many authors that social optimality requires

15

the payment of competitive interest on money. Optimality also requires

that the money commodity be as inexpensive as possible to produce.16
Generally speaking, it is taken for granted that the money commodity is

almost costless to store relative to the cost of storing a typical

non-money commodity of equal money value.
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We can analyze the effect of paying interest on money by interpreting
the coefficient y as the money st;rage—cost coefficient minus the rate
of return paid on money. Suppose that it is possible to find a money
commodity that is literally costless to store. Then the optimal
situation is to have y = —p, in which case the trader's decision problem

(cf. (30), above) may be written as:

Min

(D, $20; 12620} (ohp) (D/2) + (B+p)(S/2) + a(y/D) + b(y/S)

(33)

+ c(y/D){(1/3) 1-g%) + g2(1-0)21,

If ¢ > 0, the minimand in this expression is continuous only in 6,
so we proceed by first differentiating partially with respect to this

variable. This yields the requirement
(34) 6 =1,

In this case the IHC sets are straight lines of slope -(a+p)/(B+p) and
the lower boundary of the ITC set consists of all intersections of the

integer rays with the loci defined by
(35) ay/D + b(y/S) = constant.
Thus when c is relatively large the optimal solution will lie along an

integer ray, although this will not hold for small values of c. When ¢ = 0

the same IHC sets will exist and the ITC sets will consist entirely of
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curves described by (35). In this case standard calculus techniques

can be used to derive the optimal quantities:
—% SR
(36) D = /ay/2(atp) , S = /by/2(B+p) .

This solution is the one that would be obtained if the trader ignored the
interaction of trading frequencies and minimized total holding and trading
costs of each non-money good separately. Thus the gain from the payment of
competitive interest on money (when ¢ = 0) derives from the freedom such a
policy gives the trader to choose trading frequencies without regard to

cash constraints.

For reasons indicated earlier, it is hard to say what the qualitative
effects of optimal money policy might be on specific variables. In
particular, our example in section II.A shows that a reduction in vy
will have an ambiguous effect on D even if we kﬁowlg priori that S > D.
However, two conclusions hold under quite geﬁeral circumstances. The first
is that a reduction in y will increase M (cf. p. 23 above). The second
result is that total trading cost must fall. This follows from (32)
together with the fact that a fall in y necessarily reduces total marketing
cost (CH + CF + CB)' For from (32) we 1ﬁfer that CH =Cp+ CB;' so we

conclude that total trading costs (CF + CB) must decrease.
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D. Money Substitutes

Our analysis up to this point has been conducted on the assumption
that the trader's financial inventories consist only of cash. We now
relax this assumption by extending our model to include two types of
money substitutes, one an earning asset (B) called "bonds" that can be
used in place of money as a temporary store of value, the other a loan

instrument (L) called "trade credit" that can be used instead of cash as

an immediate means of payment. kéur object 1s to discover if either of
these generalizations significantly alters any of our earlier conclusions.

(1) Temporary Bond Holdings. Suppose that the trader is able to

buy and sell (but not to issue as debt) units of an asset (B) that yields
a non-pecuniary income of 1 units per unit of time. Suppose further
that i 1s no greater than p, the subjective rate of time discount, so
that the tfader has no incentive to hold bonds rather than money except
as an alternative store of value. On these assumptions, the trader's
total and average holdings of financial assets (money and bonds) will be
given, respectively, by
(37) A(t) = [1 + yt/S]S - [y(t- m*)/D]D - G(S,D),

and
(38) A = F(5,D,8) =§ + D - G(S,D) + yém*

(cf. equations (5) ,(16) and (18) ). Then for reasons given earlier,
the trader will always choose values of S and D for which the relative
frequency S/D. is lz'at:l.ona,l.l7 In general, therefore, there will be
a time interval of length T (namely, the least common multiple of

S/y and D/y )and a sequence of dates {t',t"+T,t"+2T,...,t'"+ T,...} at
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which A(t) = 0. Since inventory holdings will be exactly the same at

each of these dates, the trader's optimal pattern of portfolio management
over any given half-open time interval [tWjT,t +(j+1)T) will be independent
of j. In the discussion that follows, therefore, we lose no generality
by . confining attention to the trader's decision

problem over the single basic interval [t',t'+T).

Temporarily ignoring bunching costs on contiguous trades of goods
and bonds, and assuming that a set-up cost of k 1is incurred on every
bond transaction,'we'may suppose that the trader's decision problem over the
basic interval ;t ot Iz)to choose non-negative values of S, D and 0, a
non-negative integer n representing the total number of bond transactioms,
a sequence of transaction dates {Tl, 12,...,Tn} within the interval,

and associated quantities {BI’BZ""’Bn} so as to:

4

Min (a+p) (D/2)+(B+p) (S/2) + (p+y)F(5,D,0)- (i+y)B
+ k'n + a(y/D) + b(Y/S) + f(S,D,G),

Subject to:

B(t) = EB 20
i<t t e [t',t'+T)
(39)3 M(t) = A(t) - B(t) 20
— T |
B = (1/T)[ B(t)dt
0
n= n/T
T = SD/yG(S,D) = A(D/y,S/y)

.

where B represents the trader's average bond holdings and n 1is the

frequency of bond tramsactions per unit of time.
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This problem will have a solution with ﬁ';})only if 6 > 0 or
S#D; for if 6 =0 and S = D, then B < F(5,D,§) = 0. Even if S =D,
however, B may be positive provided that 6 > 0, for then B < F(5,D,8) = ydm¥*.
More generally, the existence of a solution with B positive depends
sensitively on the absolute magnitude of S and D(since these indifectly
determine the absolute value of B) and on the set-up cost of bond
transactions, k. It is worth remarking, more particularly, that the
1iklihood of solutions with bond holdings positive does not depend in any
way on sales occurring more frequently than purchases; this follows
directly from the symmetry of the finance function in the variables S and D.18

Assuming that (39) has a solution with E'positive, we infer from the
structure of the decision problem that bonds will be purchased only on
dates when (S) is sold and will be sold only on dates when (D) is purchased.
Moreover, bond sales will occur only when the trader's money balances
otherwise would be too small to finance a scheduled purchase of goods. Thus
if bunching costs are incurred on each bond transaction (and to suppose
otherwise would be incongruous in a model where we assume that such costs
are incurred on simultaneous goods transactions), the trader will have
an incentive to delay scheduled bond purchases and to advance scheduled
bond sales up to the point where the marginal reduction in bond bunching
cost is just offset by the marginal loss of interest income associated with
shortened bond-holding periods. We shall not attempt to formalize these
observations here; suffice it to say that explicit recognition of bunched
bond transactions in the statement of (39) would often convert what would

otherwise be a solution of (39) with B > 0 into a solution with B = 0.
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Obviously the solution to (39) often will be relatively insensitive to
small changes in parameters because of the discontinuities in the functions
F(s,D,08) and £(S,D,08). As in earlier discussions, therefore, we cannot
expect to obtain unambiguous comparative statics results on the basis of
a priori considerations. A case in point is the effect of a change in
the bond interest rate, i, on average holdings of money balances, M.

One would expect the sign of this partial derivative to be negative,l9 but
that need not be so. If i dincreases, this might have no effect either
on the frequency w or the number of bond transactions during the basic
interval, n. But, by using Samuelson's technique of manipulating
inequalities it is easlily seen that B must increase. If we assume that

6 = 0 before and after the change, thenlﬁ,lﬁ,'g and M must all increase

in proportion.

If the introduction of bond holdings does not make earlier comparative
statics results less ambiguous, neither does it force us to revise earlier
conclusions that were unambiguous. For example, it can be shown (albeit with
some difficulty) that the income elasticity of all inventory demands is equal

to one half unlesé bunching costs on goods are positive (cf. II.A, p. 23).
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Moreover a necessary condition for positive money holdings in the absence of
bunching costs on goods is, again, that the storage-cost coefficient on

money balances be less than the corresponding coefficient on the ﬁost
frequently traded of the two non-financial commodities. For example, if
S>Dand M > 0, then there must be some purchase date at which money

for the purchase was available for some interval of time before the

purchase date, in which case the trader clearly could have reduced storage costs
by making the purchase at the beginning of that interval rather than the end.
Finally, it can be shown that payment of competitive interest on money

that is costless to store would still eliminate the discontinuity in

the IHC sets. No bonds would ever be held in this situation, for to

do so would be to incur needless trading costs; so the behavior of the

trgder would be precisely as described in the analysis of the preceding section.
Thus we conclude that the addition of earning assets to our model serves

little purpose other thaq to provide assurance that the complications

to which such a procedure leads are essentially gratuitous.

(i1) Trade Credit. The introduction of trade credit into our

model provides rather more interesting resulﬁs. Suppose that the trader
has access to trade credit or bank overdraft facilities that permit him

to defer cash payment for goods by having the non-negotiable option at
each purchase date of incurring a debt (to the seller of goods in one case,
to a banker in the other) up to a predetermihed limit, L. Suppose that
interest is charged on used credit at the rate s. Let C denote the

average amount of unused credit and let L - C represent the average amount



of used credit. The finance function F(S,D,9) will in this case
give the sum of M+L-C. As long as s £ p 1t will be optimal for
the trader to arrange for as much as possible of his financing to be

done by credit. If L satisfies
(40) L > D+S - 26(S,D) + ybm*,

then holdings of money may be avoided altogetheryfor the trader can run so
large an average debt without exceeding the credit limit (40)
that all sales of (S) are accompanied by a running down of debt rather
than an accumulation of money balances.

On these assumptions the trader's total holding cost will be given
in general by

(4D p(D+S+M+C)+ oD+ 8S + YM+ s[L-C] .

The term pC 1is included in waiting costs because not to use possible
credit lines involves the trader in the same abstention cost as for
other commodities. In the case where(40) holds, of course, we have

M= 0. If in addition we have s =p, the holding cost function (41)
reduces to

(42) (p+ a)D + (p+ B)S + sL,
which is, except for the irrelevant constant term sL, identical to
the function derived earlier for the case where competitive interest is
paid on money (Section II.C, p.25). :In other words, competitive trade
credit or bank overdraft arrangements provide two alternative routes
to monetary optimality equivalent in effect to paying competitive interest
on money. This result is interesting because it helps to rationalize--at
least on an individual level--the presence in all advanced economies of

a wide and (apparently) still expanding array of specialized credit facilities.
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E. The Coordination of Individual Trading Activities

Though much of our analysis of individual trading behavior appears
to have significant import also for market behavior, we shall limit
our discussion of such matters here to a few general observations.
To go beyond this would be 111 advised, for the existing literature does
not contain a satisfactory theoretical account of the overall working
of an economy in which the resource costs of trading aétivity depend

20 In

in an essential way on the frequency of exchénge transactions.
the absence of such a theory there is reason to believe that a too hasty
generalization of results derived from individual experiments will deal

either superficially or not at all with what appears to be a fundamental
externality.21

This externality arises from the fact that, in an economy with
set-up costs of trading, individuals will trade only at isolated points
in time; hence the set of transaction dates that are feasible for one
trader cannot in general be specified independently of choices made
by other traders. As Perlman(1971, p. 235) has put it, there exists in
such an economy not only a problem of double coincidence of wants but
also a problem of double coincidence of timing.

The timing-externality problem cannot be avoided by supposing (3 la
Debreu-Arrow) that all trﬁdes are the result of prearranged contractual
obligations that specify exactly the dates at which trades are to be
executed, for this procedure begs the question of how traders coordinate
the timing of contract negotiations. The Neo-Walrasian "auctioneer" is not

an answer to but rather an evasion of this question. The only plausible

and logically satisfactory solﬁtion is to posit the existence of specialist
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traders who, unlike the primary traders of the present paper, agree to
do business continuously at dates chosen by the primary traders with whom
they deal.z.2

Such specialist traders-—shopkeepers, wholesalers, brokers, agenté,
marketing managers of manufacturing concerns--play a central role in
every developed economy. Their usefulness arises from their willingness in
normal circumstances to quote buying or selling prices (or both) at which
they are ready to trade in large quantities at dates that suit their customers.
By so doing they not only solve the double coincidence of timing problem
but also allow primary traders to plan and execute trades in accordance with
budget constraints that do not require contingent allowance for possible
non-price rationing?3

To perform effectively, of course, each specialist trader has to
hold substantial inventories of all commodities in which he deals. The
magnitude of these holdings depends partly on the timing and magnitude
of sales and purchases by primary traders, parfly on each specialist's
own demands for inventories; but specialists' demands for inventories
depend on past and prospective trading volume which, in turn, depend (with lags)
on buying and selling prices posted by specialists.24 Thus any deterministic
study of inventory behavior that focusses on primary traders—-or for that
matter, on specialist traders--is at best a partial equilibrium analysis.
Precisely how the activities of primary traders are interrelated with the
price-adjustment and inventory-management activities of specialist traders,
however, is much too large an issue to be considered here. Though we claim
that the specialist-trader approach provides, in principle, a solution
to the timing-externality problem, therefore, we leave the practical

justification of this claim to another occasion.
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MATHEMATICAL APPENDIX
This appendix contains the proofs of nine propositions referred to
in the text. We owe special thanks to Georges Momette, Joel Fried,

R. A. Jones and John Riley for helpful comments and suggestions. at various

stages In its preparation.

Notation:

(N.1) I = the set of non-negative integers, {0,1,2,...]; R = the set
of real numbers; R* = the set of rational numbers.
(N.2) [x] denotes the largest integer no greater than the real number x.
the greatest common divisor of S and D iff S/D ¢ R*

(N.3) G(s,D) =
0, iff S/D is irrational.

(N.4) R(nxly), n e l, x,y € R, denotes the remainder when y is divided
into nx (i.e., R(nx Iy) = nx - ky, where n,k ¢ I).

(N.5) J(t) = yt - [yt/s]s (t 20), the time path of stocks of (S).

(N.6) P(t) =ym - yt + [y(t-m)/D + 1]D (t Z0), the time path of
stocks of (D).

(N.7) M(t) =S - [y(t=m)/D + 1]D + [yt/S]S, the virtual time path of
stocks of (M).

(N.8) d(n) = Itn - tr:l =Min (S,D)/2y : the time interval between a
sale at tn‘ and a purchase at tr: if 8§ 2 D; the time interval between

a purchase at tn and a sale at t; if S <D.
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Proposition 1: Given any values of D and S such that S/D ¢ R¥*, the
function R(nD/S) "is periodic in n, repeating itself
~at_intervals of length T = S/G(D.S). Within any such

interval ghé function assumes the value m G(S.D)
J.’

exactly onge‘ for each m ¢ {0,1.....'1‘-1}

Proof: The periodicity of R(nD/S) follows from the fact that
TD(?%‘-%—)-) is divisible by S. Therefore R((n#T)D/S) =
R((nD+TD)/S) = R(nD/S). That R(nDA) = mG(S,D) for some
meJ follows from the division algorithm of basic algehra.
The rest of the proposition will be proved if we can show
that: R(nD/S) # R(n’D/S) when n,n’c {1,...,T} and n # n’.
To show this, suppose the contrary. Then for some meJ and
k,k'e I; mG(S,D) = nD -kS = nD-k’s. Suppose, with no
loss in generality, that n > n’. Then 0 < (na-n’)D =
(k-k')S < TD. But this contradicts the fact that, by

construction, TD is the least common multiple of S and D. Q.E.D.

Proposition 2: Let t = m+nD/y (neI) denote the date of the (n+1)St
purchase. Then M(t ) =S -D -R(nD/S).

Proof: From (N.4) and (N.7) we have
M(t) =8 -D-nD+ [(aD + ym) /S 18
Because ym é-;- G(S,D), it follows that [(nD + ym)/S] = [nD/S].
Therefore:
M(tn) =S -D - (nD - [nD/S]S) =S - D - R(nD/S).
Q.E.D.

Proposition 3: G(S,D) =Inf (5 - R(nD/S)).
——e pnel

Proof: If S/DeR¥* the proof follows immediately from proposition 1.
Suppose that S/D ¢ R*. Then there exist two sequences of
positive integers {n%}, {k%} such that 0 > nID-k%s > 0
(cf. Niven and Zuckerman, pp. 134-139).

Therefore R(ndD/S) > S, and R(nD/S) < S for all neI.
Q.E.D.
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Proposition 4: Suppose S/D is rational. Then for any sequence {Dq,Sq}

such that (a) DqYSq # D/S for all q; (b) p? >0 and

s9 > 0 for all q; and (¢) 1im (03,59 = D,S), then
q> '

lim ¢(04,5%) = o.

q-ﬂ

Proof: Because D/S is rational, there exist positive integers m and
n such that mD = nS. Therefore, from (c),
1im md? = mD = nS = lim ns? . (d)
q> q>
Take any q. If p9/s9 is rational then, from (a) and (b),
me/G(Dq,Sq) and nSq/G(Dq,Sq) are distinct integers, and
(01,59 > 0. Therefore I(me/G(Dqssq))- (nSq/G(Dq,Sq))I Z1; 1i.e.,

lmp? - ns?| zc(,s) zo. (e)
Obviously the inequality (e) will also be satisfied if
p9/s9 is irrational. Taking limits in (e) and noting that,
from (d), lim |mD? -ns%| = 0, we get 1lim G(0%,5%) = 0.

i > Q.E.D.

v

D, d(n) = (/y){D-|D-p(t)|}. 1£5 =D,
amis-|s-J«Hlh

Proposition 5: If S
d(n)

Proof: For definiteness suppose D =8 so that t represents a
sale date and Q(tr:) =D E(Q(tn). Then if (t:n -tr:) Z0, we
have .S(tn) 2D, and: _ _

W) =yt -t) =0 -0 ) =D - @t) - D).
I.e.,
d(n) = (/9 {Dp- [p-&¢e ).
Alternatively, if (t_- tr:) <0, we have f(t ) < D;
hence '
d(m) = (t -t )

/()
(1/y){D- (0 -B(t )]
/- p-He) |} .

It

A comparable proof establishes the same formula for the

<D.
case S D Q.E.D.
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12 =1 a-gh + g’a-0)’

Suppose that S ® D (the proof is analogous for § > D).
*
(1) Suppose that (S/D) € R . At any bunch point t, =n D/y + m

(n € I) we have J(tn) =yt - [ytn/S]S = R(ytn/S) = R((nD + ym)/S)
= R(nD/S) + ym, (The last equality follows from the fact that
ym < G(S,D).) Therefore, from Proposition 5 and (19) in the

text, *
It ,t") = (1-d(n)/d’) = |1 _ R(nD/S) _ yOm .
n’ n = —
S S
%
Therefore, from Proposition 1, the definition of m , and (20) in

the text,
-1
12 =L 5 (1-2ng-9g)2
T o

1

where T = Using standard formulae for sums of integers

- —S__
~ G(s,D)°
and sums of squares of integers we get:

-1 , T-1
(1-93) + 4(g /T) £ n" - 4g (1-8g) = n
0 0

I2

(1-8g)2 + 4(g%/T) (T-1)T(2T-1)/6 - 4g>(1-8g)T(T-1)/2.

By simple algebraic reduction, using the fact that T = l/g,
this expression can be shown to equal -(l-g ) + g (1 6 .

(2) Suppose that (S/D) ¢ R . Then we have g=6=0 and we must
show that 12 = 1/3, As in the rational case, we have:

12 = lim & 2(1 —(——Z/S)

e N o 5
We note (without proof) that the limiting distribution, as N-« of
R(nD/S)/S, n€{0,...,N}, is a uniform distribution over the interval
[0,2), so that the above expresssion is just the variance of

this uniform distribution, which equals 1/3. Q.E.D.
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m = min d(n) & n = G(S,D)/2y.

Proof:

{rE1]}
From (N.5), (N.6), Proposition 1 and Proposition 5, it follows
that there is some bunch point (the,kth, say), at which a
purchase precedes a sale by an interval of G(D,S)/y. As m
increases the leﬁgth of this interval decreases at the same
rate. As long as m & G(D,S)/2y the minimal d(n) is equal to
m and occurs at the first bunch point, But when m is increased
beyond G(D,S)/2y, the value of d(k-1) becomes less than
G(D,S)/2y. Thus the minimal d(n) can never exceed
G(D,S)/2y.
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FOOTNOTES

* The authors are, respectively, Professor of Economics at the University
of California, Los Angeles, and Aésistant Professor of Economics at the
University of Western Ontario. We are indebted to Joel 8. Fried, J.M. Ostroy,
Mack Ott and R.A. Jones for suggestions and critical comments on earlier
versions of the paper. We have also benefited from reading the results of
investigations on. a closely related problem as reported in a privately

circulated memorandumlfrom D.W. Bushaw (see footnote 3, below).

1. See especially Hirshleifer (1973), Ostroy and Starr (1974), Fischer (1974)
and Clower (1975). Explicit concern with the timing problem goes back at
least to Fleming (1964), but is first emphasized in the context of

inventory-theoretic models by Perlman (1971).

2. See Baumol (1952), Tobin (1956), Clower (1970), Johmson (1970),

Perlman (1971), Feige and Parkin (1971), Fried (1973), Barro and Santomero
(1976), Grossman and Policano (1975), Policano (1976). Some of these papers
deal nominally with trading frequencies for more than one commodity, but

in each such case trading frequencies of all goods are assumed to satisfy
integer constraints so that each frequency is an exact multiple or divisor

of every other.

3. A non-stationary version of the problem analyzed here was studied by
D.W. Bushaw and five other mathematicians during a summer institute in applied
mathematics at Washington State University im 1972. The difficulty of the

problem is reflected in the paucity of unambiguous results obtained by this
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group (which included some leading specialists in dynamical polysystems).
One of us has made some progress on a simpler problem involving only two

goods (see Howitt, 1977).

4. The divisor function is defined more precisely in the mathematical
appendix. For a discussion of some elementary properties of the function,

see Niven and Zuckerman (1972), pp. 4-6.

5. See Baumol (1952), Perlman (1971), Feige and Parkin (1971). Barro and

Santomero (1976) deal with the determination of the payments period.

6. Cf. Grossman and Policano (1975).
7. See any of the references cited in footnote 2.

8. This formula was first established by Georges Monette of the University

of Western Ontario for the special case where D and S are integers. Monette's
proof is set out in full in an earlier version of the present paper (Howitt
and Clower, 1974). Though it bears little fesemblance to the proof given

here, it played a crucial role in all of our early work.

9. Graphs corresponding to positive values of 6 are simply vertical

displacements of that illustrated in Figure 2.
10. These points correspond to the line with g=1 in Figure 3.

11. See Barro (1976).
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12, For historical accounts of Ehis question, see Gilbert (1953) and

Patinkin (1965).
13. See Cagan (1956).

14. The failure of previous models to take into account bunching costs
may also explain their failure to account for the absolute magnitude of
the typical household's money holdings, which these models all tend to

underestimate. Cf. Barro and Fischer (1975).
15. See Samuelson (1968), Friedman (1969), Feige and Parkin (1971).

16. See Gramm (1974).

17. The only exception would be the highly special case of zero bunching
costs and payment of competitive interest on holdings of money balances

(cf. above, p. 26).

18. Thus the result obtained by Grossman and Policano (1975, p. 1106 and
footnote 9) follows not from any aSymmétry between purchases and sales in
this respect, but because only the longest of their transaction intervals,
which happens to be a purchase interval, is long enough to support positive

temporary bond holdings.

19. Cf. Grossman and Policano (1975, p. 1110).
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20. For further elaboration, see Heller (1972).

21. Cf. Hahn (1973), pp. 229-34, and p. 241; also Perlman (1973) and

Russell (1974).

22. This type of market arrangement is described in more detail by

Howitt (1974), Clower (1975), and Clower and Leijonhufvud (1975).

23. This logical difficulty inispecifying the standard budget constraint
is discussed by Clower (1965); the existence of specialist traders permits
primary traders to make "notional" plans "effective" except in abnormal
situations where stocks of inventories held by specialists are temporarily

exhausted or grossly in surplus.

24. TFor a more extensive account of these matters, see Clower (1975), pp. 14-18.
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