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1. Introduction

Since the seminal analysis by a group of French economists (see for
example Boiteux(l1Y9} Massé {/‘:4[:), there has been a continuing stream of
papers on the optimal pricing of a commodity when demand fluctuates in a
periodic fashion. Topics analysed in this "peak load pricing" literature
range from the Steiner-Hirshleifer exchange(ﬁSﬁﬂS@ over whether marginal
cost pricing is discriminatory, to the examination by Wellisz (19¢3) and
Bailey and White (197{)of the impact of "fair return" regulation, and Panzer's
discussion(ﬁrﬁaof optimal pricing with input substitution.1

There is also an extensive engineering-economic literature on the ofti-
mal release of storable commodities, with emphasis on water. An early paper
by Koopmans{HSﬁ examines optimal water storage with variable inflow, given
the objective of satisfying some ekogenously determined demand. Many of
the major contributions to this literature are mentioned in Gablinger (1971),
Roefs (1915}, Becker and Yeh (1974}, and Sobel (1975).

Unfortunately there has been little formal development of the links

between these two areas of study. When optimal water storage is examined,
a benefit or "value" criterion is usually assumed without any discussion of
whether associated pricing policies for water on power have feedback effects
on such a criterion. The relation between prices and welfare is, of course,
central to the peak load literature, although until recently, the latter has
focused almost exclusively on the pricing of a non-storable commodity.

An exception to this is an interesting paper by Jackson ({77§)which com-

bines the pricing and storage issues in a simple two period model in which

1A more complete list of references and discussion of recent developments
are summarized in Bailey and Lindberg (1975).



. unused electric power generating capacity in off-peak periods can
be used to store energy in a pumped storage plant, which then generates
during the peak period. He shows first that the simple rule that peak
users shou}d pay all marginal capacity costs is no longer optimal, and
then develops a static model of evaluating plant expansion programs.

However the simplicity of Jackson's model precludes an examination of the
optimal timing of price changes and water release rates over a complete
cycle. The interrelationship between pricing and storage has also been
considered by Nguyen(197é)in a multi-period, linear cost, production-inven-
tory model. Nguyen finds that introduction of storage reduces peak price and
increases off-peak price, and reduces the optimal numbgr of producing
technologies used.

Although Nguyen mentions water storage and Jackson clearly uses it for
periodic energy storage, neither author is concerned with optimal storage
and pricing of water as a naturally occuring renewable resource. We shall
consider this case of peak (seasonal) pricing in this paper. In particular,
we consider the case where the periodic inflows are exogeneous inputs.
This sets our work apart from Nguyen's study and the well developed
literature in deterministic and stochastic inventory analysis [Scarf, Arrow
and Karlin, 1950], for all of these assume the input to storage is "instant-

1y" manufactured at some known cost. In these storage models, input to

stofage is a decision variable rather than an eXoggneous "natural' input.
In addition, we depart from the standard assumption of '"n' discrete

demand periods and consider a continuous (price-sensitive) demand approach

which yields naturally articulated demand periods. In this regard we

follow Joskow's (IQ75?suggestion that some thought should be given to



definition of relevant demand periods. The season-specific2 prices produced
by this analysis are consistant with the result obtained by Jackson()?Z} nd
by Wenders(747é)in their treatment of a discrete demand curve, namely that
some capacity charges are borne by off-peak users as well as peak users. The
model studied is still relatively simple, but the insights gained are funda-
mentalvand relevant to the important policy decisions continually being made

in water storage and allocation.

2. A Model of Water Supply Pricing with Storage

To focus on essentials we begin with a single community with rights to
a natwial surface water supply with periodically fluctuating flcw rate.
Presumably the community wishes to invest in storage facilities so as to
allocate the flow over the periodto meet demand in some optimal manner.
However,‘as we suggest in the introduction, a fundamentally optimal allocation
of social resources (concrete and steel, as well as water) must allow the
opportunity cost of storage and treatment to feed back on demand via the
price mechanism. Hence the community water planners are faced with the
problem of developing an optimal investment-operating-pricipg policy.

Most peak load pricing models assume two (or at least a finite number
of) pricing periods. While this is primarily to keep things simple, it is
also obvious that although flows and demands are continuous, a continuous

adjustment of prices over the cycle would be operationally impractical.

ZWe are concerned with seasonal pricing and over-season storage in large
expensive reservoirs. Water demand also varies with time of day, but

these variations are accomodated by small water storage facilities (usually
water towers) whose capacities are governed by fire fighting flow requirements
that dominate regular peak season daily peak flow demands. See Hanke (1975).



Nevertheless, rather than subdivide the period of analysis into a finite
nunber of subperiods it is not only analytically convenient, but practical
as well to go to the limit and consider the problem in continuous time.
It is practical because this continuous approach actually yields a pricing
policy that may be naturally articulated in a very few discrete sub-periods.
To begin the analysis, we let X(t) be the cumulativeAreservoir inflow
of water over the interval [o, t], where t is less than or equal to T, the
length of the cycle (e.g., T=1 year).3 We define the instantaneous inflow

rate, I(t), at time t as the time rate of change of X(t). In integral form,
X(e) = [ “1(n)dr.
o

Suppose a dam of capacity Vc is to be constructed and with it water
treatment facilities (for purification) of capacity Qc' Writing the
instantaneous flow of water to the community at time t as Q(t) and the
instantaneous stock of waterhbehind the dam as V(t) the following feasibility

\

conditions must be satisfied.

Q- 20 - o)
Vo - V() 20 2)
V(t) >0 (3)
I(t) -Q(t) -Vv'(t) > 0 4)

The first two conditions are capacity constraints and the last is the
requirement that the net rate of increase in stored water cannot exceed
the difference between inflow and consumption. If the inequality is

strict, excess water is being spilled over the dam.

SPresumably the appropriate cycle-period would be a year with spring run off
and summer low flows. However, the results are general, for any period or
cycle of flow.




For simplicity evaporation is ignored. However, as a first cut at taking the
latter into account we could assume evaporation is equal to some seasonal
rate of evaporation, g(t) per acre of surféce area. Since surface area, S,
is a function of reservoir volume, we have S(V(t)), and evaporation is

B(t)S(V(t)). We could then rewrite the flow constraint as:

I(t) - g(r)S(V(r)) - Q(t) - V'(t) > O. (5)

The gross benefit G(Q(t),t) of a flow Q(t) at time t is measured as the

area under the inverse demand curve p & D-I(Q(t),t). That 1is

s, ) = [ A8p ey, vydem. )
(¢} .

Then total gross benefit over the cycle is given by:4

T
J sam.oat, )

To complete the model, a description of cosfs is necessary. Greater
storage capacity requires a bigger dam and hence larger initial capital
investment and associated interest charges as well as greater maintenance
costs. In addition, a larger storage capacity increases the opportunity
costs associated with other uses of the flooded land.5 These storage
capacity costs are assumed to be incurred at a rate which is constant over

time, A(Vc). Finally it is assumed that the cost of operating the

4Implicit in such a formulation is an assumption that the demand for water

at one moment is unaffected by the price of water at all other times. While
this is an approximation to reality it should be recalled that the time
periods here are seasons, not hours or days. Hence, for the most part,

the demand in one season will be independent of price in other seasons,
because most consumers cannot or will not inventory water during one season
inorder to use it in an adjoining season.

SWe do not consider recreational use of the lake. However, since the value

of such use is often highly dependent on lake level (high water -~ low water
differential) this consideration would make an interesting extension,
especially if there were a lake level-dependent demand curve for recreation
involved.

-5.



purification plant at the rate Q(t) is kQ(t) with interest and maintenance

charges accumulating at the rate B(Qc)--f.

3. Optimal Storage and Pricing

The net social gain from a release policy Q(t) satisfying constraints
(1) - (4) is the area under the demand curve less costs integrated over

the cycle, that is:

s= [Te),nae - [TAM) + BQ) + K®)]dt  (8)
.0 o o’ .

To solve for the optimal policy we form a Lagrangian expression which,

for this continuous model, is an integral over the cycle.

LQY) = [ HIQ®, V), A, U, V(D) 0 Qs Volde, ()
where | |
H = 6E),1) - ACY) - BQQ - Q() + A(t) aw-aw-vie) +
B(E) (Q QL)) + V(E) (V-V(R)) + B(L)YV, (10)

where A(t), ﬂ(t), v(t) and 6(t) are time-dependent lagrangian mulfipliers.

The two time dependent variables Q(T) and V(t) must satisfy the first order

Euler conditions and the end conditions Q(0) = Q(T), V(0) = V(T). Further-

more the two '"capacity" variables must satisfy first order integral conditions.
For any Qc’ Vc.we can in principle calculate the optimal profiles.

Thus we can write:
: i o,
S =5(Q_,V,) _of H(Q,V,)dt. | (11)

At the optimum we must also have:



38 _ (T ®H

.é.Q_c = X 5, dt = 0. v (12)

Then from (10) we have:

. T
-g_% = fTuctyar - T-8' Q) = o. (13)
cC O
At the optimum we also have:

38 T M
s> = Sdt =0, v (14)
M % Ve -

and from (10):

2
ov
[

Jhwat - Tarw) =0, | (15)
o

Finally the complementary slackness conditions require that each Lagrange
multiplier (which must be non-negative) is zero if its corresponding constraint
is slack. -If the instantaneogs demand curve D-I(Q(t),t) is finite and

downward sloping for all non-negative Q, the benefit function G(Q(T),t) is
concave. Hence for any given (Qc,Vc) the Euler conditions are also sufficient.
In addition, given the linearity of the constraints, it can be shown that
benefits are a concave function of (Qc,Vc). Then if A(Vc) and B(Qc) are con-
vex the first order conditions define a unique global maximum.

Since H is not a function of Q' (t) we have from the Euler conditionms:

% & () - o e

so from (10) we have:

oG

55 - k- A - u(t) = o. (17)



Also

¥
| { -
Q-ln-

KL |
t (aV'(t)) ? (18)
so from (10) we have:
. _}}"(t) = v(t) - 6(t) (19)

The major results may now be derived from these equations. From eqn.
(13), we find the continuous time equivalent of the capacity condition in
the standard peak load problem. "ﬁ(t)" is fhe shadow value of increasing
water treatment hydraulic capacity at time t, so the integral is the total

value of additional capacity over the cycle. At the optimum this shadow

value is equated with marginal capacity costs. Similarly (15) is the require-

ment that the shadow value of additional storage capacity over the cycle
must equal the marginal cost of storage. We now return to the Euler condi-

tions. First we note from (6) thatAQE-is the ordinate of the demand curve

aQ
when the supply delivered (flow) of water is Q(t). In other words, %%-is
the equilibrating price level, p*(t). Then from (17) we have the following

pricing rule:
P*(t) = k + A(t) + u(t). T (20

Since the Lagrange multipliers (shadow prices) are non-negative, eqn.
(20) indicates that the optimal price of water never drops below treatment
operating costs, k. Furthermore, from eqn. (13) there must be at least one
interval over which ﬁ(t) is positive when treatment capacity is fully
utilized. Then over this interval the optimal price is strictly greater

than k.




These results also tell something about A(t), the shadow cost of
reservoir spilling. When surplus water sfills over the dam, eqn. (4) is
slack, and A(t) = 0. Since the reservoir is full, it cammot be empty, so
0(t) = 0. Furthermore, from (15) there must be at least ene interval over
which v(t) > 0 (that is, an interval over which the lake is full). Then
from eqn. (19), A'(t) > 0, so A(t) is increasing. When the reservoir is
neither full nor empty, O6(t) = v(t) = O,'andr'k'(t) = 0, so A(t) is constant.
Finally, given the cyclical nature of the problem, if A(t) increases,'it
must also decrease. For this to occur, X'(t) must somewhere be negative,
requiring 8(t) > v(t). But this condition holds only when the reservoir
is empty. Hence we have A(t) decreasing when the reservoir is empty.

To be able to describe the actual welfare makimizing profiles of
stored water and prices requires comp1ete’quantitative specification’of the benefit,
cost and water supply functions. However the qualititative behavior of
V*(t) and p*(t) can be deduced from rather general considerations. For
example, suppose that the rate of inflow I(t) and water demand profile with
price equal to marginal operating cost k, are approﬁimately 180° out of
phase. Two such profiles are depicted as dotted curves in figure la. At the
beginning of the cycle ("winter') the rate of inflow is greatest and demand
is smallest. At the midpoint ("summer') the inflow rate is at a minimum
and unadjusted demand is at a peak.

Initially we assume purification capacity costs are negligible. Then

the optimal price is, from (20):
p*(t) = k + A(t).

During periods when the lake is neither full nor empty the shadow prices

v(t) and 0(t) are both zero so from (19), A(t) and hence p*(t) are constant.
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Moreover, we know that there is a period while the lake is full in which

A(t) rises and similarly a period when the lake is empty in which A(t) is falls.
Then the profile of k+A(t) must be as depicted by the dotted curve in figure 1b.
As drawn A(t) is everywhere strictly positive. Note from figure la that for
part of the cycle, demand with price equal to the marginal cost of operating
the purification plant is less than the inflow. Hence in the absence of
storage capacity the minimum price would be k. But for the case depicted, the
minimum "off-peak" price is always above the marginal operating cost of

purification because the addition of storage makes water ''scarce" throughout

Whether or not this is optimal depends upon the size of the fluctuations
in supply and demand and on the marginal cost of storage capacity. When the
latter is close to zero, as much storage capacity-as necessary can be built.
Then unless dgmand aggregated over the cycle with water priced at k, is less
than total supply, it is necessary to charge a higher constant price p*(t) =
A* + k. At the other extreme, with high marginal costs of storage, it is
optimal to introduce only a small storage capacity. As a result there is
spillage over the dam during the interval in which inflow exceeds consumption.
Certainly during spillage, A(t) is zero. Hence for such cases there is an
interval in which price falls to the marginal cost of purification.

We now describe the cycle in more detail, noting that there are two cases
that must be cohsidered. In the first ("scarce") case, the addition of stor-
age makes water "scarce" throughout the year, as noted above. In the second
case, water is sufficiently abundant (relative to demand) that reservoir
spillage occurs in the spring pribr to the high demand period. Reservoir
capacity is required to carry water‘over from one seéson to another, but does’
not cause an overall scarcity. We discuss the scarce case first. We begin with

the two intervals [tl’tZ]»[tS’t6] over which A(t) and hence p*(t) are changing

-10-



and the lake is respectively full and empty. Since V'(t) = 0 and assuming

A(t) is positive in these intervals, we have from (4) that inflow and consumption
rates are equal, as depicted by the solid cdrve in figure la. The lake fills
dﬁring the winter [O,tl] during which time the price p* is set at the minimum
level. It then rises to a new plateau while the lake remains full. Since

A%t) = 0 when the lake is neither full nor empty, price p*(t) = k + Amin

is held at this plateau as the lake empties [tz,ts] and then falls again when

the low water mark is reached. The picture is completed with the introduction
of purification capacity costs. We raise p*(t) just enough so that the inte-
gral of this price difference over time is equal to marginal purification

capacity costs. Formally from (13) we require:

TB' Q) = f Tu(e)de = [ pr(r) - k - At
O

This effectively cuts the top off the peak. The optimal price profile with
purification capacity costs is then the solid curve in Figure 1b.

In the second case, we have A(t) = 0 during part of the period [tl,tz],
because the reservoir is spilling. Then neglecting. treatment capacity again,
p*(t) = k ovei this interval. Since A'(t) = 0 before the reservoir is full,
A(t) = 0 during [O,tl] and hence during [t6,T]. However, since some storage
capacity is built, A'(Vc) > 0, so v(t) must be somewhere positive by eqn. (15).
Since 0(t) cannot be positive when v(t) is positive, we have A'(t) = v(t) > O.
Hence A(t) inéreases during [tl,tz] after the reservoir ceases to spill. Then
p*(t) increases until the reservoir begins to empty, at which point v(t) = u(t) =
0, and ‘A'(t) = 0, so p*(t) is constant at k + Amax during [fz,tS]. The
rest of the cycle is the same as the scarce case, except that p*(t) = k during
[0,t1] and [t6, T]. In this second case off-peak users clearly do not pay

capacity costs.

-11-



The conclusion that the optimal price of water should fall when the
water level has reached its lowest point ceems at first surprising. However
it should be noted that the lake reaches the minimum level during an interval
in which the water supply is rapidly increasing. In fact, it is the higher
price level prior to this moment which slows the rate of consumption and hence
the rate at which the lake empties until well after the mid-summer trough.

Essentially what has been achieved is a reduction in the fluctuations
of the supply by storing water between the supply peak and‘fhe following
trough. Since storage is costly it is not optimal to eliminate fluctuations
in water supply entirely. Instead the dam is just large enough so that the
benefits that would resuvlt from an increased storage canability are ekactly
offset by the cost of a higher dam. Then. to.avoid shortages, the price of
water must be varied over the cycle in orﬁer to balance supply and demand.

To see just how large the price différential should be we note that the
only intervai in which v(t) eiceeds zero (and the lake is full) preceeds
the interval in which 6(t) ¢Xceeds zero. Then integrating (19) and using

(15) we have:

T
Ao = Ain = of V(E)dE = TAAT(V) -

The right hand side is of course the marginal cost of storage capacity. Then in
the absence of purification capacity cosf; price differential is just équél to the
marginal cost of storing winter water for summer consumption. A further price
adjustment takgs place durihg the period of peak demand, reflecting non-zero
marginal costshqf pufification capacity.

It is instructive to compare the optimal pricing policy with prices
in the absence of storage. Fo¥ simplicity the purification capacity con-
straint is ignored. Over the intervals [O,tl], [t6,T] inflow exceeds

demand so without storage the price is set at k, that is, to just cover

-12-



operating costs. In the interval [tl,t6] the price is adjusted upwards to
restrict the rate of consumption to the inflow rate. From figure la this
implies that without storage, consumption is lower and price is higher over
the interval [tZ’tS]' Therefore storage achieves a reduction in price fluc-
tuations - over the cycle. Not only is the price at the peak lowered but

in general the minimum price is raised.

From the above results it is clear that the simple rule that off peak
users pay marginal operating costs while peak users incur in addition all
marginal capacity costs, is not appropriate'forlthis very important case of
water supply (where storage is involved). While it is true that the summer
price increase reflects the marginal cost of storage capacity, the winter
users pay more than operating costs whenever the introduction of storage
has the effect of making the constraint on the aggregate supply of water
binding. It should not be inferred however that the marginal cost pricing
foundation upon which the simple '"peakers pay" rule was derived, is in any
way weakened. In the model described above, all users in periods for which
some constraint on capacity is binding (purification, storage or aggregate
water supply) pay a share of the marginal cost of this capacity constraint.

Finally we note that there is a natural three step approximation to the
optimal price profile p*(t). This is depicted in figure 1d. Consumers
pay a minimum price k + Amin during the winter months, then the price is
raised by 61 during the summer months in which the lake is emptying. The
price differential is set just high enough to cover the marginal cost of
storage capacity. In addition there is a further price. hike of 62 around
mid-summer which reduces peék demand. This is set just high enough to cover

the marginal cost of purification capacity.

-13-
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This natural approach to pricing is important, because it offers a
solution to the problem of defining the number and duration of peak and off-
peék seasons. In this regard, note that unlike the case of electric power,
the cost of time-specific meters need not be included in the peak load
pricing analysis, since present meters are generally read on a much shorter

interval than the seasons considered herein.

4. Summary

This paper attempts to begin to bring fogether the parallel literatures
on peak load (water) pricing and reservoir planning and operation. In parti-
cular, seasonal demands are assumed to be affected by the cost (water price)
of meeting them. We consider the investment-operating-pricing problen in a
static context using continuéusly varying price-sensitive demand. This
épproach to demand automaticaily yields a small set of periods during which
price increases and then decreases:‘ A peak load pricing policy. We have
shown that introduction of storage lowers the prices that woula be charged
in the peak season and increases off peak season price;. In particular, we
show that storage facilitates reallocation of natural supply in such a way
that price in all seasons may exceed marginal operating costs, a deviation

from the standard "peakers pay capacity costs" rule.

-14-
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