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I. INTRODUCTION

Granger has proposed a definition of causality between two time series
in which the time series X is said to cause the time series Y relative to
the universe U if predictions of Y based on U are bétter than predictions
of Y based on U-X. Granger provides an explicit definition for two station-

ary time series with zero means. This causal model is

m m
(1) Xt - jglajxt-j + jEOijt—j + Et
and
m m
(2) Yt = j§0cjxt-j + jgldet—j + n,

where €, and.nt are two uncorrelated white noise series. The Granger defi-

nition of causality implies that Xt is causing Yt if some.cj is not zero.
Similarly, Yt is causing Xt if some bj is not zero. If both some cj and

bj are not zero there is a feedback relation between X and Y. Sims has

suggested an alternative statement of Granger Causality (p. 545):

...Y can be expressed as a distributed lag function of
current and past X with a residual which is not correlated
with any values of X, past or future, if, and only if, Y does
not cause X in Granger's sense.

We can always estimate a regression of Y on current and
past X. But only in the special case where causality runs
from X to Y can we expect that no future values of X would
enter the regression if we allowed them. Hence, we have a
practical statistical test for unidirectional causality:
Regress Y on past and future values of X, taking account by
generalized least squares or prefiltering of the serial
correlation.... Then if causality runs from X to Y only,
future values of X in the regression should have coefficients
insignificantly different from zero as a group.

Sims applies this test for causality to quarterly United States money

and income data from 1947 to 1968 and concludes that (p. 547):



These results allow firmm rejection of the hypothesis
that money is purely passive, responding to GNP without
influencing it. They are consistent with the hypothesis
that GNP is purely passive, responding to M according to a
stable distributed lag but not influencing M.

Sims also remarks that (p. 543):

...the method is not easily fooled. Simple linear
structures with reversed causality like the onme put forth
by Tobin cannot be constructed to give apparent money-to-
GNP causality.

This paper illustrates that the Sims test can be easily fooled by sim-
ple lead systems with reversed causality in which turning points of the
caused series lead those of the causal series. When the Sims test is applied
to simulated data for a simple lead system, the pattern of coefficients
obtained depends on the turning points of the two series' and not on the
direction of causality. As a result, the Sims test incorrectly selects the
leading series as the causal series. The simulation results are of parti-
cular interest because of similarities between the lead sjstem data and

money, price, and income data to which the Sims test has previously been

applied.



II. SOME SIMULATION RESULTS

Consider the following system in which X causes Y in Granger's sense
(3) Y =Y +u,

where u, is a stochastic error with mean zero and variance auz and ?t is
some function of current and past X. We will assume that it is generated
by the differential equation

(4) %+3Y-b%%+cx,

where a, b, and ¢ are constants. This particular equation is assumed because
it can be made to either lead or lag a cyclical Xt by a proper choice of the
coefficients b and c. To obtain a specific solution we assume that Xt is
given by sin(nt), so that Yt becomes

(5) Yt - Ce—at + ofte-a(t—e)[bn cosne + ¢ sinnelde + U,

where C is determined from the initial conditions at time zero. Evaluating

the integral of equation (5) gives

(6) Y = Re 2% + y sin (nt + ¢) + u.,
where
) g=c-P-9)
a +n
® ;= Leabn - e ? + (bn? + ca)?)t/?
2 2

a +n
and
(9 ¢ = tan (2

bn~ + ca



If b equals zero we have a simple lag system in which the turning points of
?t lag those of Xt by the phase angle ¢ = tan-l(-n/a). If ¢ equals zero we
have a simple lead system in which the turning points of it lead those of
Xt by the phase angle ¢ = tan—l(aln).

Although equation (6) illustrates the leadllag-structure of the model
it does not reveal the distributed lag relationship between Y and X. To
specify this relationship we assume that dX/dt is constant over each inter-
val 1 to i+l and is equal to Xi+1 - xi. The differential equation can then
be solved for each interval and the result summed over all intervals to
obtain Y as a distributed lag of current and past X. For the lead system

this solution is given byl

t a t a & %4

(10) Y = b(l-e—f)x - b(l-e D2 tz1  _a(t-1-1) ra.
t

We can also compute Xt as a distributed lag on past X from the formulaz

1 2 3
The simple lead/lag system is thus a Granger type causal model in which X
causes Y and in which there is no influence running from Y to X. Even
though X causes Y, the turning points of Y for the lead system precede those
of X. The femainder of this section will demonstrate that if this system
is corrupted by observation errors the Sims test will select the leading
series as the causal series and incorrectly indicate causality from Y to X.
To check the Sims test of causality, simulated data were generated for
forty-five "months" using the two sets of coefficients listed in Table 1.
The coefficients were selected so that §t has the same amplitude in both

cases (twice the amplitude of X) and either leads or lags Xt by the same

phase angle (approximately three months) . The error terms u _ were selected



from a table of normal errors with mean zero and variance 0.04. 1t was also
assumed that xt was observed with some error so that the "data" are actually
Xt + vt where vt has mean zero and variance 0.01. Observation errors on Yt

are, of course, incorporated in the error u,

To test for causality running from X to Y we run the regression

a2 X = ;§6°1Yt—1

which includes four future, the current, and six past values of Y. In addi-
tion, the regression includes a constant, a linear trend, and a correction
for first order serial correlatioh.3 1f the coefficients of the four future
values of Y are significantly different from zero as a group, we infer cau-
sality from X to Y (actually we reject the hypothesis that there is no influ-
ence running from X to Y). To test for causality running from Y to X we run

the regression

-4
(13) Yo = 1E6%4 %1
and infer causality from Y to X if the coefficients of the future values of
X are significantly different from zero as a group.

For case 1, where Y leads X by approximately three months, the regression
results are presented in Table‘Za The regression of Xt‘on Yt has no coeffi-
cients of future values of Yt which are significantly greater than zero. The
F-test gives no indication of causality running from X to Y. The regression
of Yt on Xt has the coefficients of Xt+3 and Xt+4 significantly different
from zero. The F-test would lead us to reject the hypothesis of no influence
running from Y to X. On the basis of these tests Sims would infer causality

from Y to X when in fact causality runs from X to Y.4 The test has merely

picked the leading series as the causal series. The regression results for



case 2, in which X leads Y by approximately three months, are presented in
Table 3. The regreséion of xt on Yt has the coefficient of Yt three months
in the future significantly different from zero. The F-test indicates cau-
sality from X to Y. The F-test for the regression of Yt on Xt indicates no
causality from Y to X. Again the leading series is ;icked as the causal
series. In this case the test results are consistent with the causal struc-
ture of the model. The validity of the F-tests depends on the agsumption
that the regression residuals are a white noise process. This assumption
was tested by computing the cumulative periodogram of the residuals. Im all
instances the test falls below the maximum value given by Durbin. The diffi-
culty is that the large number of regression parameters creates a wide inde-
terminate range which includes all the test results.

By merely changing coefficients of our simple model we are able to con-
clude either that Y causes X or that X causes Y. In both cases the direction
of causalityAdepends on which series leads the other. With case 1, where
Y leads X, merely sliding the graph of Y forward by approximately three
months causes its turning points to "match up" with those of X. This indi-
cates why the coefficients of xt+3 and X':_M are the most significant in
explaining Y. Conversely, sliding X backward by three months causes it to
match up with Y and past value; of Y accurately predict X. For case 2 where
X leads Y the opposite is true. Sliding X forward by three months causes it
to match up with Y and the coefficient of Yt+3 is the most significant in
explaining X. Conversely, sliding Y backward by three months has it match
up with X and past X (particularly Xt_3) are the most significant in explain-
ing Y. The pattern of coefficlents obtained in the regressions thus depends

on which is the leading series and not on the direction of causality.



Since Y can be computed as a distributed lag on current and past X for
both the lead and lag systems, we would not expect the Sims test to incorrectly
indicate causality from Y to X. The incorrect results obtained with the lead
system are apparently due to the data errors added to Xt.. With data errors the

model becomes

(14) Y = Ia X, + Iagv, +u.

The coefficients oy which minimize the variance of the combined error Zuivi + ut

will not be equal to the coefficients which minimize the variance of the error
of equation (10) which does not include data errors. To evaluate the effect

of data errors we can increase u, relative to Ve and observe what happens to

the test for causality.5 The results of this investigation are presented in
Figure 1 which gives F-test values for the lead system regressions as a func-

tion of ouzldvz. The regression of Yt on Xt ceases to erroneously indicate

2 2

causality from Y to X for ratios of cuzlov > 10. However, as ouzlov

increases the pattern of coefficients for the regression of Y on X does not
change much. The coefficient on xt+4 remains approximately twice as large

as any of the other coefficients. Sims would incorrectly take this as evi-
dence of influéncevrunning from Y to X (p. 545):

In applying the F-testé for causal direction suggested in

the previous section, one should bear in mind that the absolute

size of the coefficients is important regardless of the F

value.... If the estimated coefficients on future values are

as large or larger than those on past values, bidirectional cau-

sality may be very important in practice, despite insignificant

F's.
Not shown on the graph is the fact that the regression of Xt on Yt begins to
indicate causality from X to Y at values of ouzlavz > 300.

It does not seem unreasonable to expect data errors of the size needed

to fool the Sims test to be present in most time series. The simulation



results are, however, not limited to the case of data errors in Xt. If the

Xt were stochastic and observed without error but Yt depended on smoothed or
permanent values of Xt we would still obtain the same type of simulation
results. That is, if Xt = gin (nt) + Ve and is observed without error but

?t is a function of the permanent Xt given by sin (n;) the simulation is
unchanged. It is also not clear what would happen if the system were strongly
non-linear and the distributed lag on past values did not accurately repre-
sent the dependence of one variable on the other. In this instance the test

might also tend to select the leading series as the causal one.



III. SOME ECONOMIC APPLICATIONS

The simple lead/lag model used in the previous section has several economic
spplications. For instance, in Cagan's model of hyperinflation equation (6)
describes the dependence of the rate of inflation on a cyclical rate of money

issue, To illustrate this fact we consider the Cagan model given by
(15) 1n(M/P) = € - aE,

where M is the money stock, P is the price level, and E is the expected rate of
inflation generated from the adaptive rule

(16) 3= 8(k-p),

vwhere I" is the rate of inflation. The model can be solved for l.’ as a function

of the rate of monetary growth M by differentiating equation (15)

. ° dE
(17) P=M+(!-a-€,

and substituting into equation (16) to obtain

(18) g—f— = k(M-E),

vhere k = B/(1-08). We can solve differential equation (18) for E, as a function
of M and substitute into equation (17) to obtain P as a function of M. If we

assume that M = sin(nt), the solition for P becomes

(19) P = Re Xt 4 Yy sin(nt+¢),
where o 1
(20) y < LB + (anaen®)"]
2 2
k +n
and
(21) ¢ = vt )
= tan 2 .2 2

akn” + k +n
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Note that ¢ > 0 so the Cagan model is a simple lead system in which the turning
points of P lead those of M.

The results of Table 2 can thus be vieved as a simulation of Cagan's model
of hyperinflation in which P(Y) leads the causal variable M(X). The Sims test
thus incorrectly indicates causality from P to M for ‘i:he sﬁuated hyperinflation
data. This point is of considerable interest when we compare the similarities
of the P and M data for the Austrian hyperinflation with the X and ¥ data for
the lead system graphed in Figure 2., The cycles of P are roughly twice the
amplitude of the M cycles and P leads M by approximately one month. Based on
the simulation results, we would expect a regression of P on M to have a large
coefficient on ﬁt+1 and thus indicate causality from P to M. This is exactly
what happens when Sargent and Wallace apply the Sim's test to the hyperinflation
data. They concluded that there is a strong indication of causality running
from infletion to money issue rather than vise versa. However, it appears
that the\Sims test has merely picked the leading series as the causal series.
The Sargent and Wallace regression results are perfectly consistent with a
model of hyperinflation in which causality runs from M to P but in which P
leads M. ) |

The solution of the lead/lag system is also identicai to the solution of
& macroeconomic model discussed “by Jemeg Tobin. Tobin constructed an ultra-
Keynesian model in which income was determined by the investment multiplier
and in which money passively responded to the needs of trade. By altering
coefficients of the model, money can be made to either lead or lag the income
response to cyclical investment. The simulations of Tables 2 and 3 can be
viewed as two separate simulations of the Tobin model. In case 1 money (Y)

leads income (X) and in case 2 income leads money. One could infer causality
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in either direction depending on which case was selected. Case 1 represents
the sequence of turning points for the United States money and income data
used by Sims in his test for causality. His conclusion that money causes
income may merely reflect the fact that the leading series was picked as

the causal series. Again the leading series may not be the causal series.
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SUMMARY

Several simulations have illustrated that the Sims test for causality
can be easily fooled by a simple linear model in which turning points of
the dependent variable lead those of the causal variable. The Sims test
selected the leading series as the causal series. Tﬁis choice was not con-
sistent with the causal structure of the leadxsystem.’ The simulation was
not some bizarre case but closely duplicated aspects of Cagan's model of

hyperinflation.

Data errors in the causal series were what fooled the test. However
the results would also apply to instances where the dependent variable was
a function of smoothed or permanent values of the causal variable. If the
test can be so easily fooled by simple linear models it seems unlikely to

work for more complex non-linear structures.
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FOOTNOTES

1We have assumed that t is large enough so that the initial condition

a

term Ce t has decayed to zero and can be ignored. The only error involved

in the distributed lag approximation is the difference between the actual

dX/dt and Xi+1 - xi over each interval i to i+l. This error is negligible

compared to u,. An equation similar to equation (10) could also be derived

for the lag system.

ZWe expand Xt in a Taylor series about xt_l so that

2
dX d’X
X=X 3+ e ¥ O t_'z)c—llm KRR

t d

We then approximate the derivatives as (dxldt)t-l = xt_l - xt-2’ (dledtz)t_1

Xt—l - th_z + xt—3’ «sss to obtain equation (11).

3The regression parameters are those used by Sargent and Wallace to
test for causality between money and prices during hyperinflation. The
model parameters (primarily the fact that Y is twice as large as X) were
also selected to replicate some aspects of the hyperinflation data. In any
case, the simuiation results are not sensitive to the number of past and

future values used in the regressions.

4Ten separate simnlations were performed using different error terms
for each simulation. The Sims test indicated causality from Y to X in all
but one simulation with an average F statistic of 5.49. The results presented
in Table 2 are for the first simulation and are typical of the remaining
cases. The incorrect results are not due to the fact that Sims has altered

Grangers test for causality. If we regress X on past X and Y then we again



-15-

infer causality from Y to X. Since Y leads X, the past values of Y (par-
ticularly Yt-é) are the most significant in explaining X. According to

Granger, this implies causality from Y to X.

i

SThe error terms A eliminates the high degree of multicollinearity
between the values of Xt and makes it possible to estimate all of the

coefficients of xt in the regression of Y on X. As a result, v, can't be
teducedltoward zero to investigate the effect of data errors and we must

increase u relative to v. The results obtained are not very sensitive to

the assumed value of uvz.
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Table 1

Parameters For Data Generation

Parameter Case 1 . Case 2
Simple Lead System Simple Lag System
¢>0 <0
n 0.25 . 0.25
a 0.25 0.25
b 2.828 0.0
c 0.0 0.707
Y 2,0 2,0
] 0.785 -0.785
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Table 2

Simple Lead System

Value of i (l—pL)Xi = (l-pL)Xuth_i (1-pL)Yt = (l-pL)ZaiXt_i
Future Values No Future Values | Puture Values No Future'Valués
~Y -0.030 0.721
-3 0.252 0.492
-2 -0.149 0.0k49
-1 ~0.009 0.428
0 0.011 0.010 0.395 0.682
1 0.127 0.201 -0.211 0.816
2 -0.050 -0,030 0.024 0.250
3 0.129 0.114 0.295 0.253
i 0.2k1 0.1k46 -0.237 -0.333
5 0.0k1 0.05k -0.359 -1.019
6 0.099 0.07h4 0.064 -0,6L9
Largest S.E. 0.228 0.178 0.270
Smallest S.E. 0.171 0.133 0.21k
SSR 0.315 0.347 0.4k45 0.836
Y ' 20,206 -0.215 0.221 0.455
D.W. 2,028 2.010 2,142 2,166
F Test . 0.533 4,613

NOTE: The F-test is for all future coefficients equal to zero and is
distributed as (4, 21). The 95% significance level is 2.84. All
coefficient standard errors were approximately the same so only
the largest and smallest are listed to indicate the range of values.
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Table 3

Simple Lag SystemA

Value of i (1-pL)X, = (1-pL)Ia,Y, . (1-pL)Y, = (1-pL)Ea, X, .
Future Values '~ No Future Values | Future Values = No Future Values
-" 0.187 0.390
-3 0.378 -0.095
=2 -0.094 -0,299
-1 ~0.106 0.268
0 0.038 0.238 ‘ 0.3k 0.303
1 0.15k 0.320 -0.015 0.251
2 -0.207 -0,107 0.387 0.245
3 0.111 0.014 0.645 0.653
4 0.188 -0.062 , 0.299 0.450
5 -0,076 ~0.219 0.302 0.198
6 -0.079 -0.106 0.467 0.242
Largest S.E. 0.219 0.190 0.276 0.210
Smallest S.E. 0.150 0.156 0.217 0.161
SSR 0.297 0.497 0.461 0.539
p -0,270 -0,013 0.160 0.152
D.V. . 1.989 2.022 1.918 1.946
F Test 3.535 | 0.888

NOTE: The F-test is for all future coefficlents equal to zero and is
distributed as (4, 21). The 95% significance level is 2.8k, A1l
coefficient standard errors were approximately the same so only
the largest and smallest are listed to indicate the range of values,
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Figure 1

F-Test for Lead System
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Figure 2

Lead System and Austrian Data
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