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I. Introduction

Data differencing has become common practice in many econometric studies.
For instance, differencing plays an important -role in time series analysis as
exemplified by the work of Box and Jenkins. If we are concerned with a system
in which some input Xt produces the output Yt’ the time series approach is to
determine the cross correlation function between the input and output. That
is, we regard Xt and Yt as being generated by a bivariate stationary stochas-
tic process, and our goal is to identify the correlation function of this pro-
cess. The identification involves.considerable prefiltering of the data
because most time series are dominated by some type of trend such as exponen-
tial growth and are clearly nonstationary. It is customary to assume that
stationarity éan be induced by differencing the data a suitable number of
times.l For example, if the series are dominated by a linear trend then the
first differences AXt = Xt - xt-l and AYt = Yt - Yt-l will approximate sta-
tionary processes.

Granger and Newbold have recently demonstrated that differencing the
data to obtain a stationary series is desirable for standard regression
models. They show that two independent random walks Xt and Yt will in most
instances falsely indicate some regression réiationship between X and Y.
These regressions are usually typified by low values of the Durbin-Watson
statistic and relatively high values of R2. If the random walks are differ-
enced to obtain stationary processes no regression relationship is found to
exist. Granger and Néwbold thus argue that regressions with a low Qalue of
the Durbin-Watson statistic may well be spurious no matter how high the
value of R2. To guard against spurious regressions, they recommend working

with stationary series. Since many economic time series have high serial



correlation between adjaéent values, the stationarity can usually be induced
by taking first differences of the data.

This paper illustrates that indu?ing stationarity by differencing the
data may not be desirable because differencing tends to amplify the influ-
ence of observational errors.2 Such errors may be'small relative to levels
or systematic (trend) changes in the time series but may not be small rela-
tive to thg differenced series. Observation errors may, thus, seriously
bias empirical results obtained from the differenced data. Since the Cochrane-
Orcutt correction for serial correlation involves some degree of data differ-

encing, it also amplifies the biases due to data errors.



I1. Theoretical Modei

In this section we compare theoretical regression results for levels

and first differences of the linear model
10 Y=B8X+u

where Y is a T vector of observations Yt’ X is a T vector of the independent
variable Xt, and u is a T vector of errors ut.' The error term is assumed

to be
(2) U =Py Y1 t e
2
where €, is a white noise process with mean zero and variance - The

series Xt is generated from

(3) Xt = at + A

where a is equal to a constant and
(4) Ve =Py Veu1 T e
where N, is distributed independently of €, and is white noise with mean

2
zero and variance on. We further assume .that Xt is measured with some error

so that the observations it become
A~ = + .

(5) Xt Xt L

The error term W is

(6) LA I T + Yo

where Ye is distributed independently of €, and n, and is white noise with

2
mean zero and variance oy. Any observation errors on Yt are, of course,

incorporated in the error term u .



The model is inténdéd to be illustrative of a large number of economic
time series which are composed of trend and movements about that trend.
The structure of the model insures th;t,first.differences will induce sta-
tionarity in both series. 'In addition, if the values of p are close to
unity these differenced series will approximate a éhite noise process. An
investigator who wishes to estimate the model of equation (1) may not have
a clear idea of the process which generates X or‘ifs observation errors.
Should he use least squares on data levels or on data differences? ‘In
the remainder of this séction we illustrate that differencing the data
before estimation will significantly amplify the bias due to observation
errors.

Least squares applied to data levels gives the following estimate of 8

‘l J
) pe=p-L2¥, XU,
X'X '

>
[~

>4
b

We are interested in the behavior of b for large samples so we consider

(8) Plim(b) = B - Plim(l—i'i)‘l{eplim(—l—ﬁ'w) - Plin(=%'w)}.
2 2 : 2
T T T
1f we substitute equation (5) for X and consider the case where p < 1 we

obtain for each term3

sPlim(-];-z-i'w) =0,
T

Plim(lii'u) = 0,

T
and .
Pum(%i'i) 1o
T
so that

(9 Plim(b) = 8. _ /



With all p = 1 it is étiil the case that Plim(b) = beta.4 For the regres-—
sion based on levels, the fagt that liﬁ'i grows at the rate T insures that
in the limit Var (X)/Var (w) -+ « so :ﬁat observational errors will have
little influence on the estimate of b. We shall see later that this result
also holds for small samples. .

Taking first differences leaves each series with a non-zero mean. To
avoid including a constant in the regression we assume that the regression
equations apply to variations about the mean. If we use the notation A for
first differences, the least squarés estimate of 8 becomes
_ BaR'aw | AK'Mu

AX'AR  AX'AX

(10) b=28

To obtain large sample results we examine
1,2,,3,\-1 1.2, 1,2,
(11) Plim(b) = B - Plim(7AX'AX) {BPLim(AX &) - Plim(7AX Au) }.

Using equation (5) to eliminate AX we obtain for the individual terms

2
1 = ZOY
' =
BPlim(TAX Aw) B 1+pw,
1.4,
PlimCTAX Au) = 0,
1 e a1 Zoi- 202 1
' = Y .
and Plim(TAX AX) 1+pv + l+°w

Therefore, Plim(b) becomes

2
Bo,, (1+pw)

(12) Plim(b) = 2 2
én(1+ow) + GY(Hpv)

The observation errors on Xt can be small relative to the trend changes in

Xt and still produce a serious bias in b. What is important is their size



relative to the stochastic variatiqns in Xt. If the observation errors are
of the same order of magnitude as the stochastic variations the estimate of
B can be biased to half the actua% vaiue of B, An even more serious prob-
lem occurs if Yt depends on smoothed values of Xt (equivalent to n, = ().
In that case, differencing would destroy the relationship between X and Y

and a regression of AY on AX would give a value of zero for b.



III. Simulation Results

In the previous section we derived theoretical results for the asymptotic
effect of observation errors. This se;tion considers small sample results
obtained from two Monte Carlo studies, In the studies, theoretical X and Y
data were generated from equations (5) and (1) respéctively with the error
term selected from tables of normal random deviates. The least squares
estimate b of B was then computed for data levels and data differences. 1In
egch case the data were defined as the difference from the mean so no constant
term was necessary. For each study.the parameters were o = 1.0, 8 = 1.0,
o = 0.5, of‘ = 0.5, and 03 = 0.25.

The first Monte Carlo study assumed that each error term was a random .
walk so that all values of P are unity. The sample size was varied from
five to fifty observations and seventy-five separate simulations were per-
formed for each sample size. Table 1 summarizes the results for each sample
size. It lists the average value and the standard deviation of b cgmputed
from the seveﬁty—five coefficients obtained for each sample size. The
asymptotic result of b equal to 1.0 for levels and b equal to 2/3 for dif-
ferences is seen to hold for very small samples.5 The standard deviation of b
declines as the sample size increases. Table 2 summarizes the regression
results for a sample size of 35 observations. For data levels, the average
standard error obtained from the regressions seriously understates the true
standard deviation computed from the seventy-five estimates of 8. This
result is not surprisidg in view of the average Durbin-Watson statistic
obtained for these regressions. The regression on differences gives an aver-
age standard error equal to the true standard deviation and an average Durbin-

Watson statistic of 2.099. Unfortunately the estimate of B is seriously
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biased. The regressidn on differences is equivalent to using the Cochrane-
Orcutt technique to correct the regression on levels for first order serial
correlation. It has become standard practice in econometric studies to
report results after correcting for serial correlation. That such a stand-
ard technique could bias the regression results is disturbing and calls for
further study.

The second Monte Carlo study examines small sample results for differ-
ent values of p (for simplicity we assume that pu = pv = pw). For each
value of p, seventy-five separate éimulations were performed for sample
sizes of 15 and 35 observations. Each simulation involved regressions on
data levels, data differences, and data transformed by the Cochrane-Orcutt
procedure. The Cochrane-Orcutt results are summarized in Figure 1. The
bias in the estimate of B decreases as p decreases and decreases as the
sample size increases. As T becomes large the bias goes to zero except
when p is equal to unity. This occurs because the regression on levels is
dominated by the behavior of the term-ggitz in l—i'i. This term is appro-

2 1 -1 T r’

ximately o T/3 and drives (—EX'X) to zero for large T. If the Cochrane-
T

Orcutt transformation is applied to data levels, the corresponding term is

approximately az(l-p)zT/3. As long as p is less than unity this term will

drive (liﬁ'ﬁ)-l to zero for large T and eliminate the bias in the estimate
T

of B. For small samples, however, multiplying the term azT/3 by (l—p)2
greatly diminishes its impact if p is close to unity and we get some bias in

the estimate of B.

Table 3 summarizes regression results on levels, differences, and trans-
formed data for p = 0.8 and T = 35. The regression on levels gives an

unbiased estimate of 8 but understates the true standard deviation of b.



The regression on differeﬁces gives a biase& estimate of B, but the average
standard error is approximately equal to the true standard deviation com-
puted from the seventy-five estimates,of 8. . The Cochrane-Orcutt regression
produces a mixed bag consisting of a biased estimate (but not as biased as
the regression with difference) which understates éhe true standard devia-

tion (but not as much as the regression with levels). The mixed result

occurs because X still contains the nonstationary trend a(l-p)t.
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IV. Conclusions

Our purpose has been to {l1lustrate that data differencing may be more
hazardous to healthy econometrics than'one would expect judging from its
widespread use. Differencing tends to amplify the biases due to observation
errors. These biases can be large even 1f the data érrors are small compared
to the trend variations of the input variable. What is important is the
observation error relative to the stochastic variation which remains after
the trend is removed by differencing. When the output depends on smoothed
values of the input, differencing méy completely destroy the relationship
between the variables. Correcting data levels for serial correlation of the
residual is a form of data differencing in which some nonstationarity remains.
As a result, it inherits some of the undesirable aspects of the regression
on levels (understates the true variance) and the regression on differences
(biased coefficients).

Our results, however, should not be taken as a recommendation to ignore
the problem of spurious regressions. With most time series dominated by |
trend it is, unfortunately, all too easy to obtain high values of R2 by
estimating one variable as a distributed lag on another. Data differencing
combined with estimation procedures which take explicit account of observation
errors would alleviate the problem of spurious regressions. This implies that
we need to be as concerned with modeling the error structure of our data as we
.are with modeling the error structure of our equations. Unfortunately, data
differencing will not help if the output depends on smoothed values of the
input. It is my own feeling that this situation describes the underlying
structure of most economic models. If that is the case, it indicates the

need for a more careful specification of the dynamic properties (the transfer
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function) of economic models. Such a specification would impose theoretical

constraints on the lag structure between the input and output and make it

’

harder to obtain high values of R? from spurious regressions.
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Footnotes

i

1 dentification of the cross correlation function is greatly simpli-
fied if the stationary input is white noise. In time series analysis, the
stationary input is filtered a second time by representing it as an auto-

regressive moving average process with a white noise residual.

2This point has been made by others such as Zellner and Palm. Our

purpose is to develop the idea in the context of a simple theoretical
model and provide explicit analytical results. We also want to illustrate

the impact of data errors on the Cochrane-Orcutt correction for serial

correlation.

3The term i'w/T2 consists of ath/Tz, va/T2 and szlTZ. The last two

become cov(v,w)/T and var(w)/T for large T and are clearly zero in the
1limit. The first term is a.(wT + wT—l(T-l)/T + wT_Z(T—Z)/T + ¢+¢)/T and is
zero in the 1im1£ because of the assumption that E(w) = 0. The term i'u/T2
is equal to zero by a similar argument. The behavior of i'i/Tz is dominated

by the term a22t2/T2. The summation is approximately T3/3 so that ﬁ'ﬁ/Tz

)—1

N

grows at a rate proportional to T. In the limit, therefore, (i'i/T

goes to zero.

4With p equal to unity we need to be concerned with terms of the form
' k
EwZ/TZ. Each w, is equal to w_+ Z y_ so that
k [o] j:l j
. T 1 T k '
L or?a. & {w2 +2w Ly + (jle )2}.

T2 k=] k T2 k=1 © 0j=1j j
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The first term is wle ana goes to zero for large T. The second term is

2w (Yl + YZ(T -1)/T + 13(T-2)/T + -°-)/T and goes to zero because of the
assumption that E(y) = 0. The third term is (Yl + YZ(T -1) /T + 73(T-2)/T + o) /T
plus various cross products which are zero in the limit because of the

assumption that cov(yi,yj) = 0. The third term is less than Ly /T which in

the limit becomes 03. Since X' X/T2 grows at the rate T driving (X X/T )

to zero, we still obtain E(b) = B.

5The small sample results for data differences are independent of a
since differencing removes any influence of the trend. As equation (12)
indicates, the bias merely depgnds on the relative size of v and w. The
results for data levels depend'on the trend dominating the effect of obser-
vation errors. For large samples the trend will dominate if a > 0. How-
ever, if a is small relative to w we would expect some bias in the small
sample estimates of B. for the results of Table 1, the changes in X due
to trend are twice the one sigma changes due to observation errors. 1f
we reduce a to 1/2 so these changes are equal, we obtain b = 1.006 and
oy = 0.394 for T = 20. For a equal to 1/4 we obtain b = 0.833 and
ob = (0,520, The unbiaséd small sample results for data levels, thus,
reduire that changes in X due to observation errors not swamp the trend

changes.
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Table

1.

Simulations on Sample Size (All p = 1)

Sample Size

10

15

20

25

35

50

Levels

ol

1.005
0.990
0.982
1.021
1.029
1.016

1.002

- 75
Note: The average b is b = jZlbj/75

o (7g (b
b j=1

3

_5)2/75)1/2.

0.541
0.313
0.220
0.215
0.237
0.158

0.121

and the standard deviation is

Differences
b oy
.0.578 0.577
0.687 0.355
0.663 0.241
0.713 0.234
0.677 0.213
0.633 0.163
0.662 0.139
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Table 2

Simulation Results (All p = 1)
Sample Size = 35

b Average S.E. b 0 Average R Average D-W

Levels 1.016 0.022 0.158 0.982 0.588

Differences 0.633 0.163 0.163_ 0.317 2.099



Levels
Differences

C.0. Procedure
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Table 3

Simulation Results (All p = 0.8)
Sample Size = 35

b Average S.E. b o, Average RZ
0.995 0.019 0.055 0.987
0.628 0.163 0.166 0.313
0.917 0.066 0.108 0.824

Average D-W

0.783
2.232

2.022
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Figure 1

Cochrane-Orcutt Simulation -

1.0 -~ e —T=35
T=15

0.5 L
1.0 ' 0.5



