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I. Introduction

In all scientific endeévor there is a clear distinction between theo-
retical structures and the particular events‘(observationé) which theories
attempt to explain. In its purest form a theory islrepresented by a fully
axiomatized system. Givén the axioms, all implications of the theory can
be explored by logical or mathematical transformatibns. Few theories are
ever fully axiomatized; instead, the theory is represented by a model which
is usually stated in mathematical form. The implications of the theory are
then examined by mathematical manipulations of the model. Scientific
theories are sepgrated from logical structures by the fact that scientific
theories are capable of being falsified. That is, the theories generate
some statements which can be tested against obsefvable phenomena. An
important aspect of testing theories is the development of rules of corre-
spondence which connect the theoretical statements and the observation
statements. In many cases the rules of correspondence involve a mathemgti—
cal structure that is as complex as the theoretical model.l

To be more explicit and to develop concepts to be used later, we adopt
some terminology coﬁmonly employed in systems theory. The top half of
Figure 1 illustrates a typical dynamic system composed of a difference
equation whigh specifies the outpué Yt as a function of the input Xt. The
system is dynamic because,lagged values of Yt influence the current output.
For a given input, the system equation could be solved to yield the theore-
tical output as a function of time. The theoretical model could then be
evaluated by comparing the theoretical output with observations. In many
cases, Yt is not directly observed and some observation system (rules of

correspondence) is required to transform Yt into the theoretical observables



Zt' The observation sy#tem is represented schematicglly in the lower half
of Figure 1. The theory would then Se evaluated by comparing Zt with the
actual observations 2t' This comparison would entail a nonlinear itera-
tive adjustment of certain constants of the model in order to obtain the
Zt which best fits the it; The Zt will not equal the it for a number of
reasons. The model solution might represent the meﬁn value of the output
of a stochastic system, the model might be an incorrect description of
the actual dynamic proéess, or it might be corrupted by observation errors
which are caused by errors in the data collection process or an inexact
correspondence between the data collected and the equivalent theoretical
variables.

 The distinction between theoretical models,rtheoretical‘observations,
and actual observations which are to be explained by the model is often
ignored in applied economics. This may be due to the fact that most
economic models are formulated so that the output Yt is directly observed.
There is, therefore, no need for an observation system which transforms
the theoretical output into theoretical observations. This still ieaves
an important distinction between the theoretical output Yt and the obser-
vations of that output §t' This distinction is also ignored especially
in difference equation models where past values of the observations are
substituted for past values of the theoretical output. This paper illus-
trates that the common practice of ignbring the difference between Yt and
Qt has rendered most estimates of dynamic difference equation models

virtually meaningless.



II. Dynamic Economic Mbdelé

Dynamic economic models are usually represented by a stochastic differ-
ence equation. We will examine a iinear second order system which has been
widely used in partial adjuéiment models such as the multiplier accelerator

models of income determiﬁation. The theoretical model is

Y - aYt-l - bYt-Z + cXt +u, (1

where Yt is the output, Xt is the inpuf, and u, is an error term wﬁich is
assumed to be independently distributed with mean zero and variance oi.
We will assume fhat the system output is directly observable so that Yt
represents the theoretical déta and it the actual data.

The dynamic propertiés of difference equation models can be described
by considering the output response to a step inﬁut. That is, we assume
the input jumps to the valué X* at time zero and we examine how the output
‘converges to the neﬁ equilibrium where the mean value of Yt is given by
cX*/(1-a+b). The second order system of equation (1) will converge (for

b < 1) through the damped oécillation

' t cX*
Yt r [k cos(6t - €)] + T—atb + Vs (2)

‘where r = JF, 0 = cos—l(aIZr) and € and k are determined from the initial
conditions. The errof W, represents the'propagation of u through the
dynamic system and has mean zero and the autocorrelated structure

LI N + aw, 4 - bwt_z. Suppose that we have data §t describing the
response of an unknown system to a step input. How would we determine if
the model of equation (1) describes the dynamics of that system? For an

initial set of parameters a, b and c and initial conditions k and €, we

could solve the damped oscillation of equation (2) for the mean value of



Yt (denoted by'ft) and compute the residuals e = Qt - ?;. The model

t
parameters and initial conditions could then be adjusted to minimize Xei.
Since‘Y£ is nonlinear in the parameters and initial conditions, thisvadjust-
ment would involve some iterative scheme. The model would then be judged
on the basis of h;w accufately the theoretical data series ?; reproduces

the actual data series §t' Alternatively, we could start with the initial

conditions Yo and Yl and generate'§£ récufsively from

+ cX, , . (3)

to obtain an expression which is equal to the damped oscillation of equation

(2). The system output would then be given by

Y = aY

t g-1 ~ DY

t-2'+ cXt + v . )]

t

The parameters a, b an& ¢ and the initial conditions Yb and'ﬁi could then

be iteratively adjusted to obtain the ?; which best fits the data it'
This approach has, in general, not been followed in the estimation

and evaluation of dynamic economic models. Instead of using equation (4)

to generate the theoretical output, past data values are substituted for

past theoretical values in equation (1) to obtain the linear model

— -~

Y =aY _, -bY _,+eX, (5)
for which the system output beconies2

Y =aY ;- bY, , + X, +u. (6)
Equation (3) is nonlinear in the model parameters because ?;_1 and §£-2 are

generated recursively and thus implicitly depend on the model parameters.

Equation (5) is linear because the data it—l and §t-2 are independent of the



model parameters. With equation (3), two degrees of freedom are lost by
estimating the initial conditions~§b and ii. with equation (5), two
degrees of freedom are lost because the first two data points §0 andAil
are needed to start the equation. The attraction of equation (5) is
that all the tools of linear estimation theory can be used to determinme
the model parameters. However, this simplification'was obtained by the
questionable step of ignoring the difference between theory and observa-
tion. The remainder of this section illustrates that the practice of
inserting data values for past theoretical values has rendered the
estimation of dynamic ecpnomic models virtually meaningless.

The precediﬁg paragraph contains a rather sweeping indictment of a
good deal of applied econometrics which needs to be justified. To set the
stage for this justification we will first examine a case where equation
(1) describes the response of an actual system to a\step input. We also
agsume that the output is observed without error so that ﬁt - Yt' Start-
ing from an initial equilibrium in which the mean value of Y equalled
twenty, equation (1) was recursively solved fifteen different times, with
u a normal random variable with zero mean and unit variance, to obtain
the output.response for the step input X* = 10.0. Each simulation gener-
ated thirty five months of data for the parameters a = 1.5, b = 0.75 and
¢ = 1.0. The simulations represent a model in which Yt converges.to the
new mean value of forty through a damped oscillatién which has a period
of 12 months and whose amplitude declines by approximately 80Z during each
period.

The simulated data were then fit using the linear model of equation

(5) which makes no distinction between theory and data and using the



nonlinear model of equétion (3) in which the theoretical mean value of Yt
is generated recursively. With equation (5) the regression residuals

§t - Yt are equal to u, and are a white noise process. Ordinary least
squares (OLSQ) will, therefore, provide consistent and efficient estimates
of the model parameters.- With equation (3) the regression residuals are

equal to wt and have the autocorrelated structure wt = ut + awt_l - bvt_2

The OLSQ iterative scheme used to minimize 2w: will, therefore, generate
consistent but inefficient estimates of the model parameters. As a result,
the parameters were also estimated using an iterative generalized least
squares (GLS) scheme to minimize thé'summed square of the transformed resi-
duals e = v, - av, 1 + bwt_2 where e, equals the white noise process u, .
Estimation results for the fifteen simulations are summarized in Table 1
and illustrate that all three estimgtibn techniques accurately recover the
model parameters. The standard déviations for the nonlinear OLSQ and GLS
estimates indicate that these estimates are more robust to the particular
realization of u, . The nonlinearHOLSQ estimation produces residuals which
are strongly autocorrelated because they are equal to L The residuals
for the other estimation procedures havé the properties of u, . This differ-.
ent residual pattern is illustrated in Figure 2 which graphs the data Qt
for the first simulation and the values of ?t given by equations (3) and (5).
On the basis of the Monte Caflo results reported in Table 1 the
reader might wonder what all the fuss is about. The linear model accur-
ately recovers the model parameters, and, as illustrated in Figure 2,
accurately reproduces the system output. Clearly the advantages of working

with a linear estimation model greatly outweigh the slight edge in robust-

ness obtained with the nonlinear model. However, lets proceed by considering



the "data" graphed in Figure 3. We assume that these data represent the
response of a hypothetical system to the step input X* = 16.0. The data
were constructed with considerable malice aforethought because they obvi-
ously could not have been generated by a model which converges to a new
equilibrium through the ﬁamped oscillation of equation (2). If we attempt
to fit the data with the dynamic system described by equation (1), we
should get ;vclear indication that the theoretical model does not des-
cribe the dynamic process illustrated in Figure 2.

Equation (5) was estimated using the data of Figure 2, and the results
are presented in the first row of Table 2. The estimation results are
startling. The second order system couldn't possibly produce this data
yet the estimate gives a high value of R2 and indicates that the theoreti-
cal model is very good. The coefficients are "reasonable" and indicate a
stable model, the standard errors in brackets are small, and there is‘no
evidence of serial correlation of_the residuals.4 An investigatof fitting
the data with equation (5) would have no indication that the model Qas
incapable of describing the actual dynamic process. The inadequacies of
the model are clearly established by the nonlinear estimates of equation
(3) presented in last two rows of Table 2. Tﬁe very low R2 clearly indi-
cates that the theoretical data generated by the model cannot reproduce
the actual data. Althoﬁgh confidence intervals for the nonlinear estimates
of each parameter were not derived, a few significance tests were per-
formed. In the first test, b was set equal to zero and the remaining
parameters and one initial condition were estimated. The sum square of
residuals increased by only ten/petcent and the appropriate F-~test indi-

cated that b was not significantly different from zero. The damped



oscillation of the second order system does not.do aysignificantly better
job of reproducing the data'than'thé damped exponential of the first ofder
system. In fact, the entire model is not significantly better than the
assumption that ?t i{s a constant for the entire data interval. The low
standard errors and the ﬁigh R2 reported in the first row of Table 2 are
thus entirely spurious.

The diéparity between the two estimation techniques is further
illustrated in Figure 4 which compares the actual data with the theoreti-
cal data generated from equation (5) and from equation (3) using the
OLSQ parameters. The theoretical data generated by equation (3) does
not reproduce the variations in Qt because this data cannot be repli-
cated by a damped oscillation. 1f this is the case, why does equation
(5) do such a good job? Equation. (5) works because the substitution of
§t-1 and §t-2 for lagged theoretical values prevents the model from devi-
ating signif;cantly from the actual data. Consider instances in Figure 4
where'? computed from equation (5) departs significantly from the path
of Y (points eight and eleven for example) In period t+1 this discre-
pancy in the model is removed when Y is substituted for the lagged theo-
retical value‘?£. In this way the model is continuously corrected back to
the data series even if the dynamic specification of the model is completely
incorrect. It wouid appear to be more difficult to comstruct a model which
doesn't seem acceptable wheﬁ estimated using the equivalent of equation
(5) than to construct a model which does seem acceptable.5

In most applications the input Xt.will vary with time and the output

will represent the cumulative response of the system to the past Xt. A

time varying Xt does not present any logical problems for the nonlinear



estimation discussed dbove. It does become more difficult to write down
the analytical solution which is the analog of equation (2), but no addi-
tional complications are introduced if we recursively generate the model
solution from equation (3). The explicit analyticai soluéion would, how-
ever, emphasize severallimportant points. It is common place to include

a constant term in regression equations such as (3) and (5). This implies
that the s}stem will have an equilibrium output equal to the constant times
¢/ (1-a+b) even if there is zero input. In many cases it would be difficult
to provide a theoretical argument for includ;ng such a constant. The con-
stant might improve the residuals and be statistically significant, but
its inclusion would be as ad-hoc as adding a time trend to the regression.
Such ad-hoc procedures m#ke it more difficult tb evaluate how accurately a
model describes the dynamics of an actual process since they improve the
fit and mask the inability of the model to reproduce the data. The ana-
lytical solution would also illustrate that the output ¥t can be written
as a distributed lag on thg input Xt' Essentially each period's input
represents an impulse which is propagated forward as a damped oscillation.
The output at any ﬁime is the cumulative effect of all the past inputs.
The pattern of lagvcoefficients would be completely determined by the
dynamic specification of the model. If models are presented as arbitrary
distributed lags, the implication is that the investigator is unable to or
has not attempted to specify the dynamic structure of the model. The
estimation of arbitrary distributed lag models is usually complicated by
multicollinearity of the lagged data values. A number of procedures,

such as the Almon techﬁique, have been developed to deal with multicolli-

nearity by constraining the lag coefficients. If half as much energy
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were expended in specifying the dynamic model and its equivalent lag
structure, our understanding of economic processes might proceed at a
more rapid pace. Finally, one often encounters difference equations
which contain both lagged Yt and lagged Xt. If this is not to be taken
as confﬁsion on the part-of the model builder —- a mixture of a difference
eqdation and its solution —- there should be a clear explanation of why
the system fesponse depends not only on tﬁe input but also on its‘time”
derivatives.

The reader may :hink that the‘problems encountered with equation (5)
result from special/;haracteristics of the hypothetical data series of
Figure 3 and would never occur when estimating actual time series data.
To dispell this idea we want to consider a simplé model for net exports

of the United States. We assume that changes in real net exports (Yt)

depend on the desired level Y: according to the partial adjustment rule

. (D

Y -~-Y t

™ R - +
g~ Yo =g =Y y) tu
We further assume that desired real net exports equal BXt where Xt is the
deviation of real GNP from its trend. Equation (7) can then be written as

the first order difference equation

Y = aY

¢ -1 + bXt +u (8)

t
The dynamic model of equation (8) could be solved for the mean value of Yt

by substituting past data values for past theoretical values to obtain an

equation analogous to equation-(S)

Y =aY , +bX, (9

or by recursively generating the theoretical output to obtain an equation
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analogous to equation (3)

Y, = a¥_; + bX,. - (10)
The model parameters could then be estimated by minimizing the sum square
of residuals it -'ig. Equation (9) would yield a linear regression with

white noise residuals u, while equation (10) would yield a nonlinear OLSQ

estimation with residuals w_ = u, + aw

¢ Estimation results fpr United

t-1°
States quarterly data for the period 1964-I1 to 1974~-IV are presented in
Table 3. The linear estimation rgsults indicate that the model of equa-
tion (8) accurately describes the dynamic process determining the level of
net exports. The nonlinear results, however, indicate that this conclu-
sion is illusory. This point is further emphasized by Figure 5 which
contains a graph of the net export data and the theoretical output gener-
ated by equations (9) and (10). The graph of equation (10) clearly

indicates the poor performance of the dynamic model. Equation (9) obscures
the inadequacies of the model because the substitution of ft-l for past
ﬁheoretical values forces the output to track the data series. An investi-
gator using the standard estimation techniques would never realize how

badly the model actﬁally performs. One could, I suppose, argue that the
model was correct and tﬁat differences between equations (9) and (10)

merely represent the propagation of the unpredictable stochastic disturbance.
This argument is particulérly'distasteful because it allows the #cceptance

of almost any difference equation and inhibits the development of more

accurate dynamic models.
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III. Observation Errors

In the previous section we analyzed a case where Yt differed from it
because the dynamic model was incapable of describing the actual systém
response to a step input. In this section we consider cases where the
model of equation (1) déscribes the actual dynamic process but where the
process 1s observed with some error. We will initially assume that the

input is observed without error but that the output data are given by

Yt = Yt + v, (11)

where \A is independently distributed with zero mean and unnit variance.

The data from the first simulation were corrupted by the errors v, and
estimated using equations-(3) and (5) to gemerate the theoretical data

?;. The estimation results are summarized in Table 4. If past data

values are used to generate'§£ from equation (5), the observation e;rors
will produce autocorrelated residuals. Consequently, least squares applied
to equation (5) will yield biased estimates of the model parameters. The
simulation results summarized in the first row of Table 4 confirm this
fact. The direction of the biases is determined by the way in which tﬁe
data error Ve is propagated through equation (5). The data error creates

a residual component eg with the autocorrelated structure e: -V, +.aet__1 -

be:_ In the estimation, the values of a and b would be biased downward

2"
in an attempt to reduce the variance of this autocorrelated error. How-
ever, as a and b are biased downward an additional residual component is
created which represents the incorrect propagation of the stochastic dis~
turbance u, through the model. The values of a and b are selected which

minimize the combined variance of these two residual components. Since
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the equilibrium mean vhlue of Yt derived from the mpdel is given by
cX*/(1-a+b), ¢ will be biased in order to maintain this multiplier close
to a value of four. For the fifteen simulations the average value of
c/(1-a+b) was 4.07.

Of course the careful econometrician would recognize that the
estimates of equation (5) were blased even if he had no knowledge of the
data errors. Although the Durbin-Watson statistic falls in the indeter-
minate range, the Durbin test for serial correlation in the presence of a
lagged dependent variable clearly indicates a correlated error structure.
The standard remedy would be to replace the lagged dependent variables
with instrumental variables or to tramnsform thé data in order to eliminate
the autocorrelated error term. Of course instrumental variables methods
would be completely ineffeétive because the specification of Xt precludes
using its lagged values as instruments. Transformations of the data
entail an iterative process to determine the autocorrelated structure
which minimizes the sum square of residuals. These computations are
not less burdensome than those required for the nonlinear estimates of
equation (3).

Results for the nonlinear estimates of equation (3) are presented in
the second and third rows of Table 4. Comparing these results with those
of Table 1 illustrates that the nonlinear OLSQ estimation results are very
robust to observation errors. This is because the model parameters imply
a particular dynamic path for the mean value of Yt; i.e., they specify
the period of the oscillation, how rapidly it damps to zero, and the
final equilibrium value of Y. As a result we would not expect random

variations in §t to have a significant impact on the parameter values
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which best represent the underlying dynamic process. The nonlinear GLS
results are not as robust to thé'observation errors. The data transforma-
tion required for the GLS estimates appears to amplify the effect of these
errors.

In most cases the iﬁput variable Xt will not be measured without
'error, but we will observe some it which differs from the true input. In
that case the OLSQ estimates obtained from equation (3) might be sensitive
to the input errors. We therefore want to investigate the»case where the

output observations are given by equation (11) and where
3 = X%
Xt 'X + Vs (12)

where v, has zero mean and unit variance. To the investigator it will
appear that the system is driven by a random input while the input is
actually constant but corrupted by observation errors. The input and
output of the first Monte Carlo study were corrupted by v, and v, respec-
tively and the model parameters were estimated using equation (3) to
generate the theoretical data. Estimation results for the nonlinear OLSQ
estimates are summarized in Table 5. Comparing these results with the
second row of Table 1 shows that the estimation process is not signifi-

. cantly affected by the errors in.Xt. In any dynamic model there is some
systematic output response for the nonstochastic portion of the input.

In this case, the parameters and the input determine the damped oscillation
and final equilibrium value which best fits the data. Corrupting the input
and output by random errors does not significantly alter the coefficients

which provide the best representation of the underlying dynamic process.



-15-

IV. Summary and Conclusion

In the philosophy of science there is a clgar distinction between
theory and observation. A theory is usually represented by a mathematical
model, and implications of the theory are explored through mathematical
manipulations of the modél. In particular, the model can be used to
generate a set of theoretical observations which cah be compared with
actual observations in order to evaluate the theory.

In dynamic economic models represented by difference equations, the
distinction between theory and observation is usually ignored. Past data
values are substituted for past theoretical values in order to generate
the theoretical output path implied by the model. This substitution
creates an equation which is linear in tﬂe modelrparameters and greatly
simplifies the estimation process. However, the substitution of data
for theoretical values makes it difficult to evaluate any model. It pre-
vents the theoretical solution from deviating from the data even if the
dynamic model is incapable of describing the actual process. The high
values of Rz and low standard errors for the model coefficients obtained
in the estimation of dynamic models may;,as a result, be entirely spurious.

If a clear distinction between theory and observation is maintained,
then dynamic economic models are nonlinear in the model parameters. The
estimation of the model becomes more difficult but there are several advan-
tages which go with the added difficulty. It is possible to evaluate the
models on the basis of how well the theoretical data series reproduces the
actual data series. The problem of spuriously high values of Rz is
eliminated. The nonlinear OLSQ estimation process is also robust to obser-

vation errors in contrast to the linear estimation results.
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FOOTNOTES

1A comprehensive discussion of theories, models and rules of corre~
spondence can be found in most books on the philosophy of science such as
Nagel. Application of these concepts to the theory of dynamic systems

is discussed by McGarty.

2This relationship is only true if the output is observed without
error so that §t = Yt' 1f there are observation errors, the error term
of equation (6) will be u, plus the contribution of the observation errors.

This point is discussed in Section III.

3The nonlinear least squares algorithm of ﬂarquardt was used for the
OLSQ and GLS estimates of equation (3). For the OLSQ estimates the initial
conditions'56 and<§i were estimated but are not reported in Table 1. For
the GLS estimates thé residual transformation e, = w, - av, 4 + bwt_2 tends
to make the model solution insensitive to the initial conditions thus mak-
ing it difficult to estimate ?6 and ?i. Consequently‘?b and‘?i were set

equal to ?0 and ?l and were not estimated. The GLS Durbin-Watson statis-
tic is computed from the transformed residuals but the value of R2 measures

how accurately ?; reproduces the data series it'

ASince there are lagged dependent variables the Durbin-Watson statis-
tic will be biased towards two and is not a'good test for serial correlation.
Durbin's test for serial correlation in the presence of lagged dependent

variables gives no indication of serial correlation.

5Since the residuals show no evidence of serial correlation the esti-

mate of equation (5) should at least be consistent. If the parameters of
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equation (3) are restricted to those obtained from the linear estimate
there is only an insignificant increase ‘in the sum square of residuals.
However obtaining consistent estimates of the parameters of a completely
erroneous model is no great accomplishment especially if the estimation

technique conceals the iﬁadequacies of the model.

6A discussion of how data differehcing amplifiés the effect of

observation errors is contained in Jacobs.
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Table 1

Simulation Results for Dynamic Model

Estimation Model 2 5 P R o
Equation (5) 1.488 | 0.742 | 1.020 | 0.978 | 2.056
(Linear Model) (0.067) | (0.053) | (0.114)
Equation (3) OLSQ | 1.497 | 0.741 | 0.982 | 0.860 | 0.381
(Nonlinear Model) |(0.028)|(0.021){(0.099)
Equation (3) GLS 1.501 | 0.751 | 1.005 | 0.876 | 2.038
(Nonlinear Model) (0.026){(0.018){(0.079)

NOTE:

fifteen simulations; i.e., a = Ia,/15.

The parameters are mean values obtained from the

The values
in brackets are standard deviations computed as

[(fa, - 2/157%.
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Table 2

Results for Data of Figure 3

Estimation Method a b c R2 D-w
Equation (5) 1.530 | 0.799 | 1.124 | 0.911 | 2.029
(Linear Model) (0.103) {(0.101) | (0.242)

Equation (3) OLSQ 1.381 0.825 1.862 0.201 0.267
(Nonlinear Model)

Equation (3) GLS | 1.543 | 0.813 | 1.117 ~0.088 | 2.045

(Nonlinear Model)
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Table 3

Results for Model of Real Net Exporés

Estimation Method a b R D-w
1.040 | 0.036 | 0.882 1.997

Linear Model (0.050) | (0.014)

Nonlinear Model OLSQ 1.026 | 0.048 | 0.193 | 0.149
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Table 4

Simulation Results for Output Data Ertors

Estimation Method a 5 Py R Dow
Equation (5) 1.243 | 0.533 | 1.193 | 0.901 { 2.655
(Linear ‘Model) (0.123) {(0.103) { (0.146)

Equation (3) OLSQ | 1.497 | 0.740 | 0.983 | 0.844 | 0.698
(Nonlinear Model) (0.027)]1(0.021) {(0.104) .
Equation (3) GLS 1.470 | 0.718 | 1.016 | 0.845 { 3.033
(Nonlinear Model) |(0.029)](0.016)|(0.079)
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Table 5

Simulation Results for Output and Input
Data Errors from Nonlinear OLSQ Estimates of Equation (3)

a b c R D-w

1.508 0.748 0.966 0.800 0.499
(0.036) (0.025) (0.115)
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