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Preview

SEARCH is designed to search sensibly and exhaustively over the set
of linear regressions that may be computed from a given data set. It is
intended to replace both the expensive haphazard ad hoc searches and also
the theoretically questionable and non-exhaustive computer assisted searches
such as stepwise fegression and principal component regression.

The statistical philosophy underlying SEARCH has a Bayesian flavor,

but researchers are not expected to be able to specify completely their

prior distribution.

A user's guide and object or source decks are available on request,

Reader's Guide

A reader can get a fairly clear idea of the performance of SEARCH by

reading only Sections I and VII of this document.
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I. Introduction

This program pools prior information about a linear regression
parameter vector g with the information generated by the observations of
a normal linear regression process

Y=x8+u, (1)
vhere Y is a (T x 1) vector of observations, X is a (T x k) design matrix,
B is a (k x 1) vector of parameters and u is a (T x 1) vector of errors
normally distributed with mean O and variance 025.

Prior informafion may be, but is not neceésarily describable in
terms of a completely specified prior probability distribution. Three
options are provided.

OPTION 1 The program will allow the prior distribution to be the Student
function

q+v*)/2 (2)

£,(Bl0%10,v%) o (% + (8-5%)'WH(Bp)1""
where q is the rahk of the kxk positive semi-definite matrix g* and if
=k

E(B)

Var(B)

¥ Ve > ]

-~

g*'l vk /(v#_2) vk > 2
For this option, summary measures of the posterior distribution are provided
by the progran. ‘As of September, 1976, OPTION 1 is available only for the
Normal special case V% = o, andbonly if 32 is an adequate estimate of 02.
OPTION 2 The prior is known to be uniform on the ellipsoids

(B-b*) 'N*(B-b*) = c _ (3)
where g* is a kxk symmetric positive semi-definite matrix. In this case,

posterior modes necessarily lie on the locus of tangencies between the



-

prior ellipsoids and the likelihood ellipsoids. This locus is called

the contract curve and the program provides a numerical description of it.

OPTION 3 The vector Bg is known to have mean r but no covariance matrix
is available. Equivalently, the prior is known to be uniform on the
ellipsoids

(B8~2)'V* " (Rg-x) = ¢ S
where B(QXk) and E(qxl) are given, but Y*_l is any (qxq) symmetric positive
semi-definite matrix. In this case the posterior modes lie in a region
which could be described as the union of contract curves generated by all
Y*;L. The hull of this region is the set of constrained least-squares
points formed by imposing the constraints §§§ = Gr where G is any (rxq)
matrix. This hull of estimates is described numerically by the program
in terms of the vectors at which (a) B, is maximized (v) B, is
minimized (e¢) P'8 is maximized (a) Y'8 is minimized. In addition,
for each of the coefficients Bi’ the matrix GR is restricted to have
zeroes in the ith row -- the constraints do not involve Bi -- and G is
otherwise chosen to maximize Bi and to minimize Bi' The program provides
this pair of extreme estimates also.

All three options are automatically available. The input must be
sufficient to specify the Student prior used for OPTION 1. (As of September,
1976,v* = ©,) This prior is then broken down to form the inputs necessary
for OPTION 2 and OPTION 3. The quadratic form (3) needed for OPTION 2
is taken from the Student distribution (2). TFor OPTION 3 this same quad-

ratic form is rewritten in terms of (k) with Y"l a qxq invertible matrix.



II. Definitions

The data evidence is fully described by the sufficient statistics

T, the number of oﬁservations

k, the number of coefficient parameters

b, a (kx1) solﬁtion to the normal equations X'Xb = X'Y.
32, an estimate of’oz; 52 = (!—§E)'(!—§E)/(T-k*), vhere k* is the

rank of g'g and 52

14if X* > T,

X* = rank (3'0)

H, the precision matrix H = 5-25'3.

The Student prior (2) is fully described by the parameters

E*, the kx1 prior location

‘g‘, the kxk prior precision matrix

V*_  the prior degrees of freedom, set to infinity in the September,
1976 version.

g, the rank of N®*

The likelihood function can be written as
-T/2

L(B,0%51.K) @ (022 exp(~[(¥-x) " (Y-1) +

(B-b)'X"X(B-b)1/20°) (5)

2
For a given 0~, the likelihood function is constant on the ellipsoids

(B-2)'X'X(B-b) = ¢

The concentrated likelihood function makes use of the maximum likelihood

‘estimate of 0°

5°(8) = (Y-XB)'(Y-XB)/T

to form



) T

1®(8;1,X) = L(B,5°(B)3L,X)
a [(z_gg)-(z_gg)]-T/2 |
= [(g-gg)'(g.gg) + (5'3)'§'§(§‘E)]—T/2 )

The conditional likelihood function makes use of the unbiased estimate

of 02, 02 = 82, to form

LC(Q;Z,E) = L(B,s";
a expl-(8-b)'E(B-b)/2] (1)
vhere H = s-2§'§. An alternative is to use the maximum likelihood estimate
62(9), but §2~is thought more accurately to reflect the variance of the sample

information.

The contract curve is the locus of tangencies between the likelihood

ellipsoids and the prior ellipsoids

o**(p) = (pN*+H) ™ (pN*b#+Hb) , 0.5_0 <= (8)



ITI. Input Options

IIIa. Data Input Options

The data may be input directly; alternatively the program will read
the data moments or the output of a regression package:
OPTION 1  Input: T, k, k%, !, X
OPTION 2 Imput: T, k, k*, X'X, X'Y, X'X
OPTION 3 Imput: T, k, k¥, 82, s2(X'X)™, b

The third option is not recommended for problems with high dimensionality
(x), since it "doubles" the errors in inverting X'X.

IITb. Prior Input Options

The prior is described in terms of the following parameters

Vvt = prior "degrees of freedom" [set to =]

b* = (kx1) prior location vector

N* = (kxk) prior precision matrix, éymmetric positive semi-definite
q = rank of N* (dimensionality of prior information)

R = (gxk) matrix of constraints implicit in prior

r = (gxl1) location of RB

v* = (axq) symmetric positive definite matrix, the covariance of RB.

Three input options are avallable:
OPTION 1 INPUT: N*, b*, q.

Froh this input, the program will compute 5, {,Y and for its own use
N*p%,

(a) If q

K, B=L, r=p% ¥n= (7.

(b) If q < k, it is desired to find a gxq invertible matrix V* and a qxk

matrix R such that N* = R'V*"'R, The program first finds a kk



diag {xl,xz,...,xq, 0,...,0}.

is chosen to be the first q

invertible matrix C such that g'g‘g = Q

Then making use of §' = g"l Ac‘l = g!v*‘lg,

-1 ,=1
1 ’Az 9o

OPTION 2 INPUT R, r, V*, q

L3

rows of C—l, V® = diag {A .,k;l} and r = Rb*.

From this input the routine computes N*

b*_which is any solution to N#p#* = R'V*_lr. The particular solution b* is

~ o

R'y* IR, N*b* = RV 1r ang

fpund implicitly by minimizing the data quadratic form (E*-E)'g'g(g*-g)
subject to the constraint g*g“ = E'Y“-lf' Equivalentiy_this value of b*
is the limit of-y‘*(p) as p goes to infinity.
dPTION 3 INPUT q

This is the default option which sets Y = E

and then calls option 2.



IV. Numerical Description of the Contract Curve

Posterior modes necessarily lie on a curve that is the locus of
tangencies between the likelihood ellipsoids (B-b)'H(B-b) and the prior
ellipsoids (Q—E*)'g*(g-g“):

b**(p) = (H+pl*) ™ (Hb+oN*p*), 0 < p < = .
This contract curve is described by the computer program in terms of a
set of points on the curve, and also in terms of a set of k+l - (k-q) ~ (k-k")
"ideal" poinfs. The ideal points do not lie on the curve but their convex
hull does completely contain the curve. Furthermore, each ideal point is
a weighted average of constrained estimates.

IVa Rotation Invariant Average Regressions (Ideal Points)

The ideal points discussed in Leamer and Chamberlain (1976) are
formed by writing the contract curve (8) as a ratio of polynomials in p:

#(p) = J P J
b (p) = I, v, 0" 8,/ Iy vy 0%, W, 20, (9)

p=k - (k-q) - (k-k*). In words, the curve is a weightéd average of the
p*l "ideal” points, a5 J=0,...,p. Each ideal pcint is a weighted average
of constrained least squares points. If )E'g is invertible, and if {I* is

a diagonal matrix with rapk k, then there are k+1 ideal points. The jth
ideal point is a weighted average of the (g) regressions formed by omitting

J variables from the regression. The ideal points are invariant to rotations
of the parameter space. (See Leamer and Chamberlain (1976)).

The ideal points are computed in the following way. An invertible

matrix C is found such that C'N*C = A = diag {51'52""'5k} and C'HC = A

~ o

= diag {Al,kz,...,kk}. The contract curve E**(p) is written

£#*(p) .

(e Hogrmme + ¢rHEICT 1 ower + 1)

C c**(p)
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vhere c**(p) = (pA + )2 (pc'H"* + C'Hb)
= (pbd + Q)'l(pg“ + 2)

The program collects powers of p by forming the polynomials

Or 1y = sk 0o J
PO(p) = Mo (06, + 1) = E_ af o
Pl(p) = B°p)/(8; + X)) = Ty ay o

An element of g’*(p) can be written as

e (0) = (F°(0)1 (P (o) Loz, +

N

]

(7°(0) 17 1(p)
-where

' kK i 3
J=0

]

ni(p) = P (o) ozt + z,) = I
k o

* Ll Yy

(rj/qj)pJ.

This allows us finally to write

" - - = o J k o J
b**(p) = C c**(p) Zggl q; p° 8y /Ly 9P
vhere

ay = Cr,
and

| ry = {rﬁlqg}. A
IVb Points on the Contract Curve
The contract curve is traced in both directions, from the prior point
to the data point, in steps of equal likelihood relative to the metric of
the ending point. Ten points are presented for each trace, and various
statistics describing the points are computed. The process of computing these
points will be discussed with reference to the trace in the data metric from

the prior point to the data point.



The relative (conditional) likelihood of the prior point to the data

point is
L°(b*;Y,X) = exp[-(b*-b)'H(b*-b)/2]
vhere H = X'X 3-2. We wish to find 10 points on the contract curve "equally
spaced" in terms_of L in the interval [LC(E*), 1]. The ith point on the
curve E*’,is selected to have likelihood LC(EI*) = LC(E*) + j*.l*[l-Lc(E*)].
Thus bf* satisfies the equation
i

- At the same time E;* must lie on the contract curve (9)5

J
i

Substituting this expression into the preceding equation we obtain the

2, = -2logL(L¥%) = (g;*-y)‘g(g;*—g).
- J
[E'*(pi)—g]_ = ij pi(EJ—E)/ZwJ p

polynomial in p it

A A ' g o) -
RN A Iy Iy wywy, Py (8,-0)'H(ay, b). (10)

+

The (only positive?) root of this polynomial, N

implies the ith point on the

contract curve

' +
e = A
bt b**(p, )

Statistics describing the points on the contract curve.
For each éoint g on each trace of the contract curve, a number of
quantitieé are reported. These quantities indicate the distance from § to
E’ and from g to b. A quadratic form measuring distance between x and y is
Qx,y,4) = (x-y) 'Alx-y).

The reported quantities are:

a) The Data Likelihood (relative to likelihood at b):
a, = exp[-Q(8,b,H)/2].

b) The Frior Density (relative to the density at b*):

d2 =‘exP['Q(§:E”:¥*)/2]-



c)

d)

e)

g)

h)

-10-

The Data Distance (relative to the distance from b to b*):

d3 = Q(E,E,g)/Q(E*,E,g).
This measure lies between zero and one. If it is close to zero it
indicates that B is much closer to b than is b* (in the data metric).
The Prior Distance (relative to the distance from b to E*):

d) = Q(B,b*,N%)/q(b,b*,N%).
(See comment for d3.)
The Euclidean Distance to the Data Point (relative to the Euclidean
distance from b to b*):

a5 = QAB,b,1)/Q(b,%,1).
The Euclidean measures are intended to reflect visual impressions of
closeness.
The Fuclidean Distance to the Prior Point (relative to the Euclidean
distance from b to E*):

dg = Q(B,b*,1)/q(b,b*,1)

RHO, the solution to equation (10) for this point on the contract curve.
If it were known that 02 = 32, and if the prior were normal with mean
E“ and known precision matrix g*, then the posterior mean would occur at
p = 1. Thus Rho is a description of the posterior distribution. If Rho

exceeds one, the prior needs to be more precise or the data need to be
less precise, in order for the given point to be the posterior location.
SIGMALl, the standard deviation factor corresponding to the point g.

The given point is a posterior mode, if the

prior covariance were known to be (SIGMA1)2§*-1. SIGMAl and

RHO are related as follows

(516MA1)? = (Y-XB)'(Y-XB)/(Ts®(RHO))



1)

J)
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FDATA, the F statistic for testing thé coefficient véctor B.
F = Q(B,b,H)/k*
CHIPRIOR, the prior chi-square
B, b",N*)
A priori this quantity has a chi-square distribution with q degrees of

freedom.
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V. Bounds Over Constrained Least Squares Points

The prior has implicit in it a set of q uncertain constraints, Bg =r.
The bounds described in this section make‘use of priors’in which some of these
constraints (or linear combinations thereof) are known exactly, but other-
wise the prior is diffuse. These estimates bound the posterior location given
that the prior mean of §§ is r but the covariance matrix of §§ is free. The
posterior location given Var(gg) = V*, is

p*e(y*) = (8 + R'(Y)R) i + rY (v Tr).

For the linear combination of coefficients ?'Q’ the program solves for the
extreme values of E**, the solutions to me* ?'E**(Y*) and m%g Yok (VE).,
This can also be described in terms of constrained regressions. Let é(g,z)
be the least-squares estimate of g given Bg = r. The program computes the
constrained estimates E vhich are solutions to

max ¢'B(MR,Mr) and min Y'B(MR,MI‘)

M -~ o~ A e ~ e e
]

-~ -~

These bounds for ?'g possibly make use of prior information about Y'8.

~ o~

In some cases, it may be interesting to compute & bound that does not make
use of constraints involving Q'g. Such a bound can be computed as above
with R and r replaced by ng and M, vwhere Mw;= I- Y(Q'w)_l?'. The matrix

RMW has rank q or g-l. Its rows are constructed to be orthogonal to v,

~

but otherwise the rows of ggw span the same space as the rows of R. Notice

~ ! ~

that constraints of the form ) B = Mer cannot constrain Y'B. Suppose

there were a(lxq) M such that MRMw B = Y'B; then MRMw = §'; postmultiply by

Yy to obtain O = MRM, ¢ = Y'Y, a contradiction.

~ oy
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These bounds require the vectors ? to be input except when y is a
coordinate vector, in which case the bounds are activated by a special

command.

A two dimensional example is illustrated in Figure 2 on pnééiéh. An ellipse
.of constrained estimates is generated by rotating a line through the origin
'and finding the tangency between the line and a likelihood ellipse. The
coefficient Bl is maximized at the point A. The constraint that implies
this estimate is the ray through A and the origin. The poiht H
represents an extreme value of some linear combination of the coefficients.
The point H is computed either without constraint or subject to being on

the ray through H. The point K is computed subject to Bl = 0 and 82 = 0,
or it is computed givenﬂ;méﬁitable constraint ray out of the origin.
The mathematics that implies the extreme estimates will now be discussed.
The constrained least-squares estimator subject to R = r with V = 02(§'§)-l
end b = (X'X)7X'Y 18
B =1 - VR'(RVR") " (Rb-1) (11)

A g ~ny  n

with variance

A oy

v(§|Rg=r) = V - V R'(RVR") "RV (12)
A notational convenience is to define
A = RVR' ' (13)

~ dadad

The following theorem is used to find the bounds.

Theorem 1 Least-squares subject to the constraint MRB = Mr satisfiles

the ellipsoid equality

(88-£) 4”2 (RE-£) = (Rb=r)' A™L(Rb-r)/ | (14).
where f = (§§+£)/2. Conversely, for any Y = Rf on the ellipsoid, there is
a constrained estimate E such that Y= B§° The estimate is computed

subject to the constraint MRf = Mr, with
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- e
Proof. The constrained estimate is
BOR.Mr) = b - ¥ R )™ (e,
then 47'R(B-£) = A7/ - a1 uae ) moote) - 27 r/2
1

= (a7 - 2g'(g5§')'1§] (Rb-r)/2,

ana (58-0)'27(8B-£) = (xB-r)a™ A A7 (xB-0)

~n

(Ro-r) (a7 -t (')
+ ! (MAM) ™M (Rb-r) /1

-1(

(Rb-r)' A

~ny

Rb-r)/b

The converse of the theorem makes use of M = (g‘g—x)' é—l to determine
the constrained estimate

BOR,Mr) = b - V R'A

[(ro-y) '™ A &7 (Ro-y)]

[(Ro-y) B' A" (Rb-r)].

But the ellipsoid (14), (y-f)' é‘l(z-g) = (Rb-r) é“l(gg-g)/h, can be revritten
as
W 4l - ——
(Rp-y)* A7 (Re-y) = (Rb-y)' A™(Rb-r),

and thus § = b - V R' A—l(Rb-X), which is the constrained estimate subject

to B = Y.

Theorem 2 The extreme values of y'S on the ellipsoid (B-£)!* A_l(B—f) = ¢

occur at the points B =f +A Y Jg??'é&.

Proof. Setting the derivatives of the Lagrangian to zero yields 0 = 7y + A—l(B-f)A,

~

where A is the Lagrange multiplier. Thus (B-f) = -A wk_l;

¢ = (B-£)' ATHB-E) = A y'A y, wnd X = A Yo,
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Theorem 3 Given constraints of the form MRB = Mr, where R and r are
given but g is free to vary, the extreme values of ?'@ (where @ is a

constrained least-squares point) occur at the points

Brp-vn At @oizam o0 Y bl (15)
where ¢ = (Rb-r)' Q—l (Rb-r)/4

¢' VR AT RV

-~ ~

m
Proof. Select a value of Y(=RB) on the ellipsoid

(y=£)' A7H(Y-£) = (Bb-r)' AT (Rb-r)/b = ¢ (16)
where f = (Rb+r)/2. Least squares subject to RB = Y is

~n e

=b-VR' A 1 (Rb-y).

~ o e ~n

T

The linear combination W B W'b - Y'WR'A l(Rb—'y) where Y is constrained

~ o~ N A ~ N

by (16). Thus the extreme values of ¢ 3 occur when Y = f + AY* Ve /YR Ay

where Y% = At RY ¥Y. Thus Y= (Ro+r)/2 + R V§ ve/m, and

~ N~ oA o o ~ i

(Rb-y) = (Rb—r)/2 + R(X'X) ™y /o7,

In order to compute the variance of the constrained least squares
estimator (15) it is necessary to find the matrix ¥ such that the constraint
QBE = Mr implies the given estimate. Unfortunately the matrix @ is not
unique as has already been suggested in the discussion of points B and C
in Figure 1. (Suppose for example that the extreme vector is just the
least-squares vector E. Then obviously g equal to the-zero matrix is
suitable. But any g such that QBE = @{ will also do.) In most cases, the
rank of the matrix MR must be between 1 and q-1 where g is rank of R.

If B=b, then M may have rank zero. If R8 = r, then M may have rank q,
in vhich case it might as well be §=1q. The following theorem describes

the matrix M with rank one necessary to produce 8.

~



~16-

Theorem 4 The estimate (15) is least squares subject to the constraint

MRB = Mr, where

VY ST S

M = (Rb-y)' 5‘1, and
Y = (Retr)/2 £ RV yle/m.

The variance of ieast-sqnares subject to this restriction is

VB) = ¥ - ¥R AT (R ()t ATR Y/ (Rt AT (Re-y)
it (Rb-y) # 0.
Proof: This follows directly from (11) and (12) using the constraints

indicated:

Rb-y)((Re-y)' A™M RV RY ARy

(Rb-r)' A~ (Rb-r)/b + Y'Y R' A" RV Y c/m

(+) (Ro-r)* A7R ¥ WeTm

(Ror)' A7 (R-x)/2 & (R-x)' 47 R Y YT

(Rb-r)* é'l(gg-z).

~a

Thus B=b-VR' AL (Ro-Y)

~ ~ ~r

]
to

-
<

R' A} [(Rb-r)/2 + RV y/c/m]

~

The following theorem implies a matrix M with rank -1 necessary to

produce g.
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Theorem 5 The estimate (15) is least-squares subject to the restriction
thati(gé-z) is proportional to (Y-r), (Bﬁ'f) = (Y-r)0 vhere O is a scalar
parameter. The sampling variance of E given this restriction is

VB =y - v R AT A - (VO (pn) AT R Y

where

v(3)

[(Y—r)' (Y-r)]
Proof. Given QO the estimator is
BO) = b - ¥ R' A7 (Ro-r~(y-1)0).
The least squares estimate of O can be found by minimizing the quadratic

form

(Rb-r-(Y—r)O) e RVR' A (Rb—r-(Y—r)O)

~n A

Setting the derivative of this with respect to O to zero yields
= (y-r)" A (Bb-r)/(y-r)" A™H(y-1).
But because Y. lies on the ellipsoid (16), ©=1. Thus §=Db - VR é—l(gy-!),

which is least squares given Bg =

-~

The variance of 8 given O is given by Equation (11). Since @ given
O is a linear function of O, we must add to this variance the matrix

A (x—r) V(@ J(y-r)' A R V vhere V(O) (x-g)"g_l R Var(b) R' 5‘1(1-;)/

¥ B
((y-r)' A (yr))? = [(y-1)! ~-l(z-§)]

Standard Deviations

The program reports for each constrained regression the maximum and

the minimum standard errors consistent with the given constrained regression.

, s o
(A fixed estimate of ¢~, s“, is used in all cases).
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Case 1 £ = b. The maximal variances make use of M = 0, Var(E) = V.
The minimal is given by theorem (5).

Case 2 RR = r. The minimal variance is given by formula (12) and the
maximal by Theorem L,

Case 3 Otherwise, the maximal variances are given by theorem (L) and the
minimal by theorem (5).

The reader may verify that Var(y'B) is unique.
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VI. Extensions

The following additional material is in the planning and/or programming
stage.
Posterior Modes. The location of modes along the contract curve given the

2, f(c'e) s

Student prior (2) and a diffuse prior for O
Measures of Dispersion. Exact or approximate posterior confidence intervals.

Local Sensitivity Analysis. The derivatives of features of the posterior

distribution with respect to parametersvof the prior distribution.
Simplification Analysis. Given the posterior distributions, simplify the
model for forecasting and/or control.

Proxy Variable Analysis. Estimates and measures of dispersion when variables

are measured with error, and when some prior information is available.

Contract Curves with other Prior Metrics
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VII. Examples
(a) Two-dimensional example.

, 2 1] 9] 5
INPUTS X'X = X'Y = % =3
1 2 6]
T =12
B d} 0]
N® = b* =
0 1] 0

OUTPUTS (illustrated in Figure 1)

1. Rotation Invariant Average Regressions
(J = Number of Constraints)

ESS - J 1 2

2 2 .0 .0
34.9 1 2.25 1.5
30 - 0 k.0 1.0

Discussion. The first ideal point 1s the prior location (0,0), the third

is the data_locﬁtion (X'X)—lx'Y = (4,1) and the second is a special weighted
average of least équares with the first variable omitted (0,3) and least-
squares with the second variable omitted (L4.5,0). The triangle formed by
these three points contains the contract curve. Note that only the first
and last ideal points are actually on the curve.

2. Points on the Contract Curve

The points on the contract curve in steps of equal data likelihood are

reported in Table 1. A description of the information provided may be found

in Section IVb of this write-up.
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Ideal Point

“//Likelihood Contour

Figure 1 Contract Curve and Ideal Points
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3. Bounds

The bounds over constrained least squares points are illustrated in
Flgure 2. The ellipse of constrained least squares points is the locus of
tangencies between rays out of the origin and likelihood ellipses. This
ellipse is described in terms of the points labelled A through K. These
points and their associated standard errors are reported in Table 2.
Discussion. ’Point A is chosen to maximize Bl, B to minimize Bl, C to maximize
32 and D to minimize 62. Point E maximizes Bl + 82; point F minimizes
Bl + 62. Point G maximizes Bl given constraints that do not involve Bl
(i.e., only B, =.0), and point H similarly minimizes Bl. Points I and G
maximize and minimize 82 given constraints that do not involve 82. Point
J and K indicate the extreme values of 38l + 282. For these last two points,
two different standard errors are reported, since they éan each be generated

with two different constraints.
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Figure 2 BSet of Constrained Regressions
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Table 2

Points on the Feasible Ellipsoid

Point ' Standard errors’
A L.65 -.82 , 1.32 .24
B -.65 1.82 b9 1.39
c .68 : 3.15 .23 1.09
D 3.32 -2.15 : 1.39 .90
E 3.32 1.82 .90 b9
F .68 -.82 1.1 : 1.33
G k.5 , 0 1.22 0
H k.0 1.0 1.h1 1.b1
I 0 3.0 0 1.22
J Lo 1.0 1.k1(1.01) 1.41(.27)
K 0 0 .93(0) 1.39(0)

lThese are standard errors of the coefficients given the constraint(s) necessary
to produce the estimate. When two figures are given two constraints will

produce the same estimate.
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(b) Doubtful Variables

It is very common to have a model with a few explanatory variables
which are known to belong in the equation, and a longer list of "doubtful"
explanatory variables. The first set of variables is likely to be the
focus of the analysis, and the second set is used to "control" for other
influences. If the list of doubtful variables is long, estimation with all
the doubtful variables included in the equation will produce large stand-
ard errors on the coefficients of the "focus" variables. In this situation,
it is typical to try different subsets of the doubtful variables, and it is
hoped that the coefficients of the focus variables will not change much
as the list of doubtful variables is changed. But this search is both
haphazard and non-exhaustive. Furthermore, if the coefficients of the
focus variables change very much, this ad hoc search does not suggest how
to average the many computed estimates into a single number.

SEARCH is ideally suited to deal with this problem. The interesting
bounds that the program can report are the extreme estimates of the focus
coefficients with ideally chosen doubtful varisbles included in the equa-
tion. There is no way of "fiddling" with the doubtful variables to get
an estimate outside the reported range. The points on the contract curve
reported by the pfogram are mixtures of the 2% regressibns that could be
computed using subsets of the q doubtful variables. Thus the program both
searches exhaustively the set of possible regressions and also suggests

weighted averages of the regressions, the latter being important when the

bounds are wide.

The following example has eight "doubtful" regional dummy variables.

The dependent variableis the wage rate and the focus variables are education
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of the wage earner, his age and the square of his age. A dummy variable
for a region is necessary if the labor market in the given region is "separated"
from the markets in other regions. To say that the dummy variables are doubt-
ful is to say that in the absence of evidence to the contrary, we should
view the labor iarket as a national ﬁsrket.

The estimated model with all the dummy variables included is (standard

errors in parentheses)

W= .0l Dl + .098 n2 + ,051 D3 - .019D,
(.34) (.32) (.46) (.34)

+ .00k 1)5 - .178 Dg + .086 DT + .060 Dg
(.46) (.43) (.50) (.39)

+ .05 EDUC + .137T AGE - .0015 (AGE)Z + 5.737

(.030) (.047) (.0006) (.96)

vhere D1 = Mid-Atlantic

D,

D3 = W. No. Central

= E, No. Central

Dy, = S. Atlantic
DS = E. So. Central
D6 = W. So. Central
D7 = Mountain
Dg = Pacific
(New England omitted)

The bounds for the coefficients of the three focus variables are
reported in the table below. The numbers in p#rentheses are the standard
errors of these coefficients if the model that implied the estimate could
be taken as given,(Remember that these bounds include regressions subject to

constraints such as 81 = 82, which says the Mid-Atlantic and E., No, Central

regions can be aggregated. They also include constraints of the form Bi = 0.)



«28-

EDUC AGE AGE)?
L0577 (.01TT) .139 (.029) -.00147 (.00035)
.Ohké6 (.0178) .131 (.029) -.00155 (.00035)

Each of these coefficients is quite insensitive to the choice of regional
dummy variables. |
Choice of points within these (narrow) bounds requires a more completely
specified prior. Suppose that the coefficients of the doubtful vaiidblea
S 1 62 1s likely to be small.
This prior "metric" implies the contract curve incompletely reported in Table 3. On

are thought to be small in the sense that I

‘this contract curve the extremes of all coefficients occur at the end
points. One end point is least squares with all the dummies included; the
other is least squares with all the dummies excluded. The extremes for the

focus variables are:

EDUC | AGE (AGE)®
.0521 .1332 | -.001489
.0502 .1336 ~.001535

These bounds are almost points and it hardly seems necessary to select a
particular point on the contract curve. But notice from Table 3 that the
equation with the dummies omitted has a low likelihood ratio (equivalently
a large F) and the data have a distinct preference for an estimate close
to the unconstrained least squares points.

To conclude, for this particular problem, the ambiguity in the specification
does not translate into substantial ambiguity in the focus coefficients. The
specification error implies for example an interval of estimates for the
education ecoefficient from .O446 to .05TT7. But the sampling standard error
of this coefficient in the unconstrained model is .03, which is large compared
to the specification range .057T - .Okk6 = .0131. To put it briefly, the

sampling error is more important than the specification error.



Table 3 Points on Contract Curve

Likelihood ratio
1k
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EDUC
.0521
.0517
<051k
.0511
.0507

.0502

AGE
1.33
1.34
1.34
1.35
1.35
1.37

(AGE)?
.00148
.00150
.00150
.00151
.00152

.00153



(c) Distributed Lags

Forty-seven quarterly observations, adjusted for auto-correlation .96,
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were used to estimate the following distributed lag process (std. errors

in parentheses):

Mt =

A3 Y,
(.43)
-.k2 P,
(.54)

+

1
(

(

.96 Yt_l
49)
.51)

+

(

(

91 Y
.49)

.33 B,

42)

t-2

2

+

55 X,
(.51)
T2 P, _
(.53)

-3

3

+

32 Y, )
(.51)
23 P, ), - A5

(.52)

vhere M is the logarithm of the quarterly flow of imports divided by a price

index of imports, Y, is the logarithm of GNP divided by the GNP price

t

deflator, Pt is the logarithm of import prices divided by the GNP deflator.

This equation would be regarded as unlikely because of the peculiar

changes in sign of each of the sets of the distributed lag coefficients.

The priors now to be constructed are intended to smooth these coefficients.

Four different priors are considered.

Prior 1

"Ridge" Regression, N* = I, b* = 0.
A spherical prior on the (slope) coefficients located at the origin

is the first prior.

This unlikely prior does imply some interesting bounds

to be discussed below.

Smal)l Differences

Prior 2

-

1l
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r=f0 0 0 0 0 0 0 0
Vel
This prior reflects the fact that the first five coefficients are
likely to be similar, 81-8 B, = 83 =B, = 65, and the next five coefficients
are likely to be similar, B, = B, = Bg = By = B. o (This is one of Shiller's

(1973) proposals.)

~ Prior 3
3 -1 0 ©0 ©O0 o0 0 o0 0 0 0]
0 1 -1 0 o0 o0 o0 0 ©O0 o0 O
R=(0 O0 1 -1 0 0 0 0 O 0 O
L-o 06 o0 1 -1 0 0 0 0 o0 ©°

rr=[0 0 0 0]

v-1

This prior will smooth only the income coefficient pattern.

Prior U
M o o o o0 1 -1 0 ©0 O O]
0 0 0 0 0 0 1 -1 ©O0 O0 O
R=1l9 0o 0 0 0 06 0 1 -1 0 O
o 0 0 0 0 0 O O 1 -1 0O
rr=[0 0 0 0]
V= I

This prior will smooth only the price coefficients.

Discussion of Ideal Points

The "ideal" points for each of the priors are given in Table 4. For
each prior the first ideal point is constrained least squares given all the

constraints implicit in the prior. The last ideal point is constrained
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least squares given none of the constraints, that is, it is just the
unconstrained least squares estimate. The intermediate points are weighted
averages of constrained least squares points. The next to last point is

a veighted average of all regressions that involve one constraint. The
next point uses constraints two at a time...

Any point on the contract curve is a weighted average of these ideal
points. The traces of the contract curve risk missing important features
of highly variable curves, but the ideal points cannot. Unfortunately,
as wvill be seen below, the ideal points may be rather far from the curve.
Discussion of Points on the Contract Curve

Points on the contract curve are reported in Tables 5.1-5.4., These
priors are intended to smooth the pattern of coefficients. In Table 5.1
the first point at vhich the signs of the income elasticities are equal
has relative likelihood .9962 and is indicated by an arrow. A point with
somevhat lower relative likelihood but with a smoother pattern of coefficients
is also indicated by an arrow. (The third and fourth ideal points are actually
not too different from these points.)

Points with comparable relative likelihood are "arrowed" for each of
the next two priors reported in Table 5.2 and Table 5.3. Recall that prior
1l asgerts that the coefficients are small but says nothing about the
smoothness of the lag pattern, wvhereas the other priors indicate nothing
about the size of the coefficients but instead are intended to smooth the
coefficients. It is then surprising that the first prior seems to smooth
the pattern of coefficients almost as well as the other priors. In Table
k.2 1t is not possidle to pick a point with higher relative likelihood

that does not have a sign change in the income coefficients. The third
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Table 4

Bg

B

By

B

Ideal Points (Rotation Invariant Average Regressions)

1 2 3 5 T 9 10 11

o 0 0 0 0 0 0 0 o o -.0k

i .22 .08 .07 .05 | -.06 =-.00 -.03 .06 -.03 | -.08

25 .39 .09 .08 .05 12 =02 -.06 =12 -.05 | -.10

31 .56 .06 .08 .0k | -.21 -.03 -.07 -.19 =-.07 | -.12

3% .2 .00 .07 .03 | =31 -.08 -.0T -.25 -.0T | -.13

Prior 1) 3 89 -.07 .0T .01 | -1 -.05 -.06 -.30 =-.06 | -.13
.37 1.06 -.17 .09 =-.02 | -.50 +.08 =-.03 -.35 -.04 | -.14

.35 1.2% -.29 .2 =05 | -.57 -1 .00 -0 -.01 | -.15

32 142 -3 .29 -.10 | -.61 -.18 .08 -6 .04 | -.15

25 1.65 -.62 .32 .17 | -.58 -.30 AT =55 .11 | -.15

A3 1.96 -.91 .56 =.33 | -2 <.53 .33 =72 .23 | -.15

28 .28 .28 .28 .28 | -.31 -.31 =31 -.31 .31 | -.15

.50 R 27 Ak 0T -.28 -.25 -.26 -.29 -.30 | -.15

61 .59 .23 .55 =-.02 | -1 .24 -9 -.23 -19 | -.16

65 .72 .16 -.00 -.05 -55 -.22 =12 =21 =12 | -.16

Prior 2| ¢ 86 .06 -.0b -.0b | -.68 -.18 -.06 -.22 -.0T | -.16
.60 1.03 -.06 -.04 -,03 | -.77 -.14 -.02 -.27 -.03 | -.16

.50 1.23 -.212 .01 -.0 | -.80 -.12 .01 -.3%4 .01 | -.16

.36 1.50 -.45 .15 -0 | -4 -.18 .09 -k .06 | -.16

A3 1.96 -.91 .56 -.33 | -2 .53 .33 -T2 .23 [ -5

29 .29 .29 .29 .29 | =93 .33 -.19 -.Th -.38 | -.16

.69 .59 27 .04  -,09 -1.05 15 -.02  -.52 .02 -.16

Prior 31 43 79 .11 -.05 -.06 | -1.04 .08 .03 -.u4 .08 | -.16
.53 1.2 -5 -.06 -.02 | -.88 -.07 .07 -5 .10 | -.16

A3 1.96 -.91 .56 -.33 | -.42 .52 .33 -.T2 .23 | -.15

.05 1.86 -.76 .33 -.08 | -.24 -.2b .24 _.24 -2k | -.15

12 1.85 -5 .31 -1 | -.38 =29 =17 -.19 -3 | -.15

Prior k| 17 183 -76 .32 .1k -.52 =30 -.03 -.24 -.09 |-.15
.18 1.8 -.78 .38 -2 -.51 =.30 A0 =43 .0k -.15

13 1.96 -.91 .56 -.33 -.k2 -53 .33 -12 .23 |-.15
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prior, which smooths only the income coefficients does do relatively better
in that sense. Notice that prior I does not smooth the income coefficients,
as is to be expected.

Perusal of the contract curves suggests that the response to the income
stimilus is more rapid than the response to the price stimulus, and probably
 "gmoother" as well. (Smoothness refers to the shape of the distribution

of coefficients).
"Discussion of bounds
The bounds for the coefficients are reported in Table 6. The type I
bounds (potentially) involve constraints on the bounded coefficient; type II
bounds force the prior to be diffuse on the coefficient in question.
Consider the bounds for Bl. The first bound [1.42, -1.29], indicates
the potential set of estimates for Bl given any homogeneous constraints on the
first ten coefficients. The second bownd, [1.3, -.19], makes use of
constraints on coefficients other than Bl. The type I prior 2 bound [1.15,
-.T4] uses linear combinations of the two sets of constraints Bl =B, = 83 =By = 85,
86 = 87 = 88 = 89 = BlO' The type II bound [.98, -.16] cannot use constraints |
involving Bl. The prior 3 bounds [1.0k, -.62] and [.82, .12] use linear
combinations of the constraints Bl = 82 = 83 = Bh = 85' The prior 4 bounds
use the constraints 86 = ... = 810.

The prior one bounds for Bl are quite wide. But they also potentially
involve highly unlikely restrictions. The prior 2 bounds make use of a more
reasonable family of models and they are somewhat narrower. The family of
models is still unreasonably large since it includes constraints of the form
Bl - 52 = 86 - 87 (a linear combination of two constraints). Ideally we could

compute bounds that make use of constraints of the form MRS = Mr where R

~
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2, ,4
SELECTED POINTS ON THE INFGRMATION CONTRACT CURVE [
CONTRACT CURVE IN STEPS QF EQUAL DATA LIKEL[HQOD
DAT LIK PRI LIK DAT DIST PRI DIST EUC DIST EUC DIST RHO SIGMAL FDATA CHIPF
TC DATA TO PRIOR
o.omqw\ 1.0000  1.,0000 B0 1. 000CE 00 0.0 0.0 T.7636E-03 0.0
00,9885 09971 0.9484 0.0306 981T7T7E-01 3.0855E-02 2,12230-C1 3.0790E 00 1.6042E-03 5.289:
0.9898 0.9874 0.8939 G.€126E-01 6.4515€-02 9.2255D-C2 4.S370E 00 1.4251E-03 2.314¢
g X - L3
09924 0.9388 “Qe?736 001424 G.C984E-01 1.4349E-01 3.26520—-02 7.1588E 00 1.0674E-03 1.,147¢
0.9921 0.9452 0.7850 0.1347 S.1516E-01 1.3566E-01 3.53930-02 6.9170E 00 1.0992E-03 1.025¢
* 09949 0.8311 0.6348 0.2438 B8.3525E-01 2.4521E-01 1.3724D-02 1.0291E 01 7.1874E-04 3.362!

=
09975 0.5969 0.4460 026073 6.SS56TE-01 4.,0866E-01 4.6905D-03 1.6153E 01 3.5481E-04 9.383:
0.9988 0.3853 . 03065 Co5537 5¢5029E~01 S5¢5479E-01 1.,98360-03 2.3610E 01 1.67S6E-04 1,734
1.0000 0.0446 0.0 1.0000 0.0 - 1.0000E OO0 0.0 0.0 54656
THE CALCULATED POINTS FOLLCw:
0.0000 0.0000 C.0000 =0.0000 ~0.0000 ~0.,0000 0.0000 -0,0000 _ -C.0000 .
0.0375. 0.0552 0.0196 0.0170 . 0s0119 ~0e0136 =-0.0021 <=0+0028 -0,0155 -0.,0077 -0.0:
0.0779 0.1171 0.0375 0.0329 C.0227 -0.0310 -0.,0048 -0+,0165 ~0.034C -0.0162 -040
. 6 - 6§36 -0,0083 -0.0262 -0,0563 -0.0256 =060
0.1672 02697 0.0622 0.,0551 0.0380 —0.0636 <-0+0127 =0+0367 =0.0836 ~0.035 =0,
0.1588 0+2541 0.0610 0.0572 0.0371 -0.0776 -0.0118 ~0.0348 ~C.0783 -0.0338 ~040
> 0.20619 0.4786 0.0519 0.0728 0.0390 no.mww“ ~0.0256 so.ommo -0 1568 -0.0545 -0el'
0.34% . =0.3627 =0 =0e
0.3451 11425 -0.2389 0.1264 -0.,0383 -0.5041 -0.1109 0.0048 ~0e3768 ~0.,0161 -0l
0.1326 1.9580 -0.9063 0.5564 -0.3296 -0.,4197 -0.5276 0.3280 -Ce7179 0.2308 ~0el
_ f Prior 1
Table 5-1
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Table 6

Bounds for Coefficients

5 0
B, B, By B B, I} B B B, B By By Tioghs
1.k2 2,55 1.13 1.89 1.1k 1.92f 1.50 1.35 1.51 1.32  1.77 1.92
“1.29 "-59 -200 "1033 -loh'r -.51 -1.92 -1088 .1¢19 -2.0,‘ ‘1055 "'3003
1.k2 2,39 1.08 1.82 .96 not .37 .78 .81 ) .62 not
’019 1.10 -1038 -076 -.93 c&lc. -1062 -lnhl -080 -1.75 -097 calc.
1.15 2.22 .80 1.55 .89 1.65 81 .69 .92 63 1.10 | -.h9
“'o?h. 002 "1-1‘2 "071 -093 102 ) "1053 -1052 -.90 -1.66 "'1017 "2.15
98 2.21 0 81 .27 | same 05 .52 6L -.21 .50 same
‘016 1.1‘1 -1.26 -061 -081 -1030 -071 -037 -1-33 -065
1.0k 2,09 66 1.k 18] 1.610] -3 Ak b5 -.25 .37 |-1.00
-.62 .156 -1.28 -.57T -.82 1.2 |-1.22 -.63 -.31 -.33 -.14 |-2.00
82 2. -.06 .57 .08 same same as above same
A2 1.5 -1,11 -.48 -.68
027 2.12 -062 068 -003 10,‘6 012 oOh -39 -ool"' oh3 -087
-008 1-70 -1005 021 --38 1.35 --38 "081 -031 -092 -.hh -1.“5
aine as above same | -.U0 -.26 .37 -.5T7 .26 same
-.72 -o63 012 “080 0007
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and r are given and vhere M is restricted to be a dblock diagonal matrix,
thereby disallowing constraints such as Bl - 82 = 86 - BT. The resulting
bounds are much more difticﬁlt to compute and I have opted instead to use
priors 3 and 4. But the family of constraints underlying prior 3 is still
too large since it includes comstraints such as 81 -8, = —(82 - 83), which
implies a very rugged, not a smooth, coefficient pattern. Thus, ideally, in
this case, g would be restricted to be a positive matrix; but again the
resulting bounds are difficult to compute.

'Incidenttlly, polynomial constraints of all orders are implicit in
these bounds. The constraint that the coefficients lie on a polynomial of
order zero is the constraint 81 =B, = 83 =By = 85. The constraint that
they lie on a line is 81 - 82 = 82 - 83 = 83 - Bh = Bh - 85, or a quadratic
(B) - By) - (B, - By) = (B, - B3) - (By - B) = (B, - B,) - (B, - B). But
in forming the bounds reported in Table 6 all of these constraints are
feasible. Thus the method applies when the order of the polynomial constraint
is unclear.

Although the bounds for individual coefficients are generally wide, the
bound for the sumbof the coefficients is relatively small. The prior one
bound for the long run income elasticity is wide [1.92, -.51]. But the
smoothness priors imply much narrower bounds [1.65, 1.2] and [1.61, 1.2k].
Notice that the "mispecification uncertainty” has a relatively greater

effect on the long run price elasticity in the sense that the bounds are

relatively large.
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