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I. INTRODUCTION

Expectations about the future values of certain variables are the
primary determinant of individual behavior in many economic models. For
instance, expectations about future inflation rates appear in models of
the demand for money during hyperinflation and in theories of the long-run
Phillips Curve. Expectations about future income underlie the life-cycle
approach to consumption demand. Expectations about future interest rates
are utilized in explanations of the term structure of interest rates.

And expectations about future sales and price levels influence price and

quantity adjustment dynamics in models of disequilibrium. Yet consider-

ably less justification is usually provided for the expectation formation
hypotheses employed than for other aspects of these models.

It is usually assumed that agents forecast future levels of economic
variables on the basis of the past observed values of the same variable.
Within this class are the static, simple adaptive, extrapolative, regres-
sive, and unrestricted distributed lag expectation formation schemes.
Choosing among these alternatives has tended to be somewhat ad hoc rather
than based on the statistical properties of the resulting forecast. An
alternative hypothesis is that agents form their forecasts "rationally"
on the basis of all economic variables known to them and with full know-
ledge of the process which generates future variables. This hypothesis
has considerable theoretical appeal as a means of consistently closing a
model with endogenous expectations, but has been criticized for ignoring

the substantial costs to an individual agent of acquiring and processing

large quantities of data. Nailve forecasting rules based only on the past



observations of the variable to be forecast may be "economically rational"
(Darby 1976, Feige & Pearce 1976) if the value of improved prediction from
more sophisticated rules is outweighed by the cost of collecting and pro-

cessing the additional information.

The purpose of this paper is to characterize a multi-level adaptive
expectations fdrecasting scheme as a Bayesian decision rule for an agent
with particular beliefs about the stochastic process generating future
variables. The process is sufficiently general that the constant coeffi-
cient adaptive expectations and extrapolative expectations schemes emerge
as special cases, even if the agent's loss function is not quadratic in
the forecast error. However, the assumption of Bayesian learning is suffi-
cient to imply strong and testable restrictions on the adaptation coefficients
in the adjustment scheme.

Section I of the paper characterizes the usual adaptive expectations
scheme as a Bayesian learning rule to exposit the general approach. Section
II then develops the two-level model in which an agent forms beliefs about
both the level and rate of change of the variable to be forecast. Section
I1I estimates and tests the specification of section II using survey data

on inflation expectations in the United Kingdom from 1961 to 1973.



I. SIMPLE ADAPTIVE EXPECTATIONS

Suppose an individual desires to forecast a variable P, which he

believes has the stochastic structure1

(1)

where u, and v, are independent white noise processes with zero means and
variances u and v respectively. For example, if P, is an observed market
price in period t then we could interpret Bt as the true market price, u,
as an observation error, and v, as the drift in the price level or inflation

since the previous period. Alternatively we could interpret u, as a tran-

sistory shock and v, as a permanent shock to the price level? We assume
that the individual's beliefs about St’ before observing»pt, can be
represented by a prior probability distribution which is normally distri-
buted with mean p: and variance 8, This distribution incorporates
information conveyed by past observations of p, knowledge of the structure
of the stochastic process given by (1) and any other factors previously
affecting expectations about Bt' The forecast problem is to characterize
an individual's probabilistic beliefs about the price Pet1 to be observed
in the next period, given his prior probabilistic beliefs about Et and the
observed value of P,

Upon observing the current price Pes the individual will revise his
beliefs about the current true price St' A standard application of Bayes'

Theorem (DeGroot, p. 167) reveals that the conditional probability distribu-

tion of Bt given P, is normal with mean p:' and variance s; where
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The mean of the individual's subjective distribution on Et is adjusted by
some fraction At of the difference between the observed P, and the mean
of his prior expectations about P> while the variance of his subjective
distribution is decreased. The application of Bayes' rule leads to an
adaptive expectations adjustment rule; however, in the general case given
by equations (2) the value of 8.» and consequently At, will vary with time.
The constant coefficient adaptive expectations rule is, therefore, not
necessarily a Bayesian forecasting rule. Turnovsky (1969) applies Bayes'
rule to a model where the true price level remains fixed (v = 0) and
obtains an adaptive expectations forecasting rule. He indicates that the
constant coefficient rule follows only if the variance of the observation
error or transistory shock u falls geometrically with time. This could be
the case 1if P, was the average of a sample of prices taken during period t
and if the size of that sample was increasing geometrically with time. We
wish to derive the constant coefficient rule for the more plausible situa-
tion where 5 varies with time but u need not decline.

With v > 0 what will be the individual's probabilistic beliefs about

next period's true market price P after observing pt? Since E will

t+l
change by vt+1, which has zero mean and variance v, his prior on ;t+1 will
e
be normal with mean Petl and variance 8 41 where
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The variance equations of (2) and (3) can be solved to obtain the stable

non-linear difference equation

_ 82

(4) s

—s -
t+l t u+ st

which describes how 8, varies with time. The equilibrium value of S, can be

computed by setting s s, in equation (4) to obtain

-
t+l t

(5) 8'12,'4' ,/(-\21)2+vu.

As 8 converges to the value of equation (5), the adaptation coefficient

asymptotically approaches the constant

' 8 -v JV¥ . v
(6) Avarar il (713)"' .

Equation (6) is identical to the expression obtained by Muth who sought that

linear function of (an assumed infinite number of) past observations which
provides the minimum mean square forecast error predictor of next period's
price. The constant coefficient adaptive adjustment rule is therefore the
asymptotic form of a Bayesian revision rule.

The value of A in equation (6) depends only on the ratio of the two
variances involved and varies from O to 1 as v/u varies from 0 to ». As
u increases, P, becomes a more unreliable indicator of the current true
price Et‘ The smaller value implied by equation (6) then puts less weight
on pt. As v increases, past information becomes less relevant because the

current true price may have drifted a considerable distance from previous



true price levels. In this case, the larger value of A implied by equation
(6) puts more weight on the current observation. Although the mean of the
in&ividual's prior beliefs about the price to be observed next depends only
on the ratio v/u and ﬁast observations, the same is not true of his subjec-
tive variance. The (asymptotic) variance of his prior distribution on P,
(including observation error) is s + u, and thus increases with both v and p.
The fact that the individual's prior distribution on next period's
price approaches a normal distribution with constant variance and a mean
which is given by a constant coefficient adaptive rule permits us to say
something about the individual's Bayes decisions over time. Suppose the
individual must choose some action at time t which we can associate with a
The choice is made so

).

real number x and whose payoff depends on Py

1.

as to minimize the expected value of some loss function L(pt+1, x

t+1

t+l

Further assume that the loss function (omitting time subscripts for the

moment) depends on x only through its difference with p. That is
€) L(p, x) = G(p-x) + H(p)

An example of this sort of loss function 1s the usual squared forecast

error where x is the agent's forecast of next period's price. A more inter-
esting example is to interpret x as the reservation trade price of a futures
contract for delivery of a commodity whose future spot price is p. The
speculator's profit is proportional to p-x, and G(p-x) represents his
utility associated with the corresponding profit level. It can be readily
verified that a translation of the individual's subjective probability
distribution on p induces an equal translation of the expected loss minimiz-

ing value of x for the above loss function. In other words, x* = pe + k
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where pe is the mean of the individual's subjective probability distribution
over p and where k depends on the higher moments of the distribution and
particulars of the loss function.

The importance of the above point rests with the fact that individuals'
probabilistic beliefs cannot be directly observed but their actions based on
those beliefs can. Suppose an agent with loss function (7) believes he is
operating in an environment described by the stochastic process (1). What
relationship should we observe between his actions x* and actual prices p
over time? If the individual has observed p for a sufficient time, then the
variance of his prior for each period is close to its asymptotic value of

8 + u, and hence x*

- e = * -
t+1 ~ Pe+l k is constant over time. Substituting x k

into (3) for pe implies we should observe

= x% -
(8) x:+1 xt + A(pt x:) + Ak

Although the agent's actions do not reveal unbiased estimates of his mean
beliefs about the next period's price, his actions would follow a constant
coefficient adaptive scheme with the addition of a constant term.

In this section we have demonstrated (at the cost of assuming normality
of all random variables) that the constant coefficient adaptive adjustment
rule is asymptotically an undominated Bayesian revision rule for forming
beliefs about the future values of variables generated by the stochastic
process (1) rather than just the minimum-mean-square-forecast-error predictor
from the more limited class of linear constant-coefficient functions of past
observations. Moreover this adaptive behaviour carries over to the optimal
Bayes decisions of the individual for a larger class of loss functions than

the quadratic, permitting the hypothesis to be tested even when it is



suspected that, because of risk-aversion or other factors, an agent's
behaviour does not provide an unbiased indicator of his mean probabilistic

beliefs.



11. MULTI-LEVEL ADAPTIVE EXPECTATIONS

Many economic variables relevant for individual decisions appear to
follow definite trends over time. In the presence of trends the simple
adaptive rule of the previous section will lead individuals to consistently
underpredict or overpredict the future value of P,- Because of the consis-
tent prediction errors, a rational individual would quickly reject the
working hypothesis that (1) represents the stochastic process generating
P.. A more general process, which admits the possibility of trends which

t

change over time, is

(9) P, = Pp_j +‘n +v

where Uy Voo and w, are independent white noise processes with zero means

and variances u, v, and w respectively. P, is the observed price, Et the
current true market price, 7 the trend or inflation in the true price

since the last period, u_ an observation error or transistory shock in Et’

t

v,_ a permanent shock in St or transistory shock in ;t’ and w

t a permanent

t
shock in w. If Eo and w are equal to zero we have the stochastic process
given by equations (1). If v equals zero the process is identical to that
used by Nerlove and Wage (1964) to discuss the optimality of adaptive fore-
casting. The asymptotic form of the individual's Bayesian revision rule will
be derived in precisely the same manner as in the previous section. However,

the problem is complicated by the fact that the individual holds joint

beliefs about both S and T.



-10-

Assume the individual's beliefs about the pair (St, ;t) prior to
observing pt can be represcnted by a joint probability distribution

sij]
It is shown in the Appendix that the individual's posterior probability

which is normal with mean (pi, ﬂ:) and covariance matrix Zt = [ ¢
distribution on (Et, Ft) after observing p, 1s joint normal with mean
(p:', wi') and covariance matrix Z; given by

er e e
P, =Pt X -p)s

e et e
(10) L LA Az(pt - Pt), and
r = —E |87 81
t u+s
11 8 8,,+ lfl
21 %227 5 .

The adaptation coefficients are (omitting time subscripts on elements of I)

811
Al Irt;—;;; and

(11) 81,

2 u + ’11

A

The elements of I and consequently Xl and Az generally change with time;
however, as sampling continues they converge to constant values.

The individual's prior distribution on (§t+1’ ) is obtained from his pos-

Te+1
terior distribution on (Et, ;t) given above and from his beliefs about the process
generating next period's prices given by (9). Specifically, his prior on

next period's mean price level and inflation rate will be normal with mean

e er et e e e
Petr “Pp + T =Pt X -p) + Ty
(12) e et e e
Tel T =T A0 - )

and covariance matrix

[11'10 10 11
(13) Peir T lo 1 Fe 1) Y Vo of *oefr af
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The variation of I with time can be determined by substituting the‘expression
for Z; given by equations (10) into equation (13). This substitution yields
three (since I i{s symmetric) independent difference equations which describe
the convergence of L to its asymptotic value. Setting Zt = Zt+1 = I gives
three independent second degree equations for the asymptotic values of 811°

312,‘and 8,9¢ It is shown in the Appendix that these equations reduce to

Y

81 =@ (u+ *’11)1/2
(14) sy, = ‘*‘;ﬁ"n/(u + 311)!5

(u+s - w%(u +s )g - 2u + v)(u + 811) - uw%(u + su);i + uz = 0.

2
11) 11

The last equation could be solved numerically for s .. if the parameters

11
¥, v, w were known, and the remaining elements 819 and 8,9 could be determined
from 8,1°

Can anything be said about the values of Al and Az without knowing the
values of u, v, and w? Surprisingly, the values of these adaptation para-
meters are confined to a remarkably small region just by the structure of
the model. The non-negativity of 8, follows from the positive-definiteness

of I, while that of s., follows from (14). That Al must lie between 0 and 1,

12
and that Az must be non-negative then follows from (11). Furthermore, if we
utilize A\ sll/(u + 311) and 1, slzl(u + sll) w/(u + sll) from the

first equation of (14), the last equation of (14) can be written in terms of

Al’ A2 and solved for Az to yield
A2 - @ -
(13) T =

1
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The area below the line A, = xi/(z - Al) in Figure 1 depicts the region

2
to which A, and A, are restricted by the structure of the model. The values

1 2
of u, v, and w which correspond to being on various boundaries are also indi-
cated. Many of the naive expectation formation schemes hypothesized by
various writers can be viewed as special cases of our model. With p = w = 0
(Al -1, AZ = () and ;0 = (0 we have static expectétions where the individual
believes that whatever price prevailed this period will prevail next period.

With w = 0 (Al <1, A, = 0) we have adaptive expectations on p. With v = 0

2
(Az - Ai/(Z - kl)) we have the Theil-Nerlove-Wage adaptive scheme. With
u=0 (Al =1, 12 < 1) the individual has simple adaptive expectations on T,

where n is the observed drift in P+ With w = v = 0 (Al - Az = 0)

t Pe T Py
the individual follows a regressive expectation scheme in which he expects
next period's price to fully revert to some fixed trend line with slope ;0.
Finally, with y = v = 0 (Al - Az = 1), the adaptation scheme reduces to the
extrapolative expectations hypothesis p:+1 =P, + (pt - pt-l)'

As we previously noted, the simple adaptive scheme of Section I will
yield consistently biased forecasts when there is a trend in P,- The model
of equations (12) solves this problem by having individuals update a forecast
of both the price level and its drift. Consider the simple case where w and 7
are initially zero and 7 then jumps to a higher constant value. The individual
would begin to forecast a value of p:+1 which was consistently less than Peg1e
As a result, he would continue to change his estimate of the drift until =&
converged to the new value of 7 and the forecasts no longer had any consistent
errors. In general, »€ would overshoot the true trend and would converge to T

through a damped oscillation or be critically damped to #. The path of &

would depend on the stability properties of the model. It is easy to show
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that the expectations scheme is stable over the entire region of Figure 1 and
will converge through a damped oscillation 1if the values of Al and AZ lie
above the dashed line defined by A, = 2 - Al - ZZIﬁTTCI-

The procedure used to obtain a specification of expectation formation
in this section can be extended to higher order stochastic processes gener-

ating pt. For example, if the trend drifts over time at a rate at an indi-

vidual may reject (9) and choose to form beliefs as if the process generating

prices is

Py =Py tu

Pe Py v 7tV
(16) } ]

T =y +d +w

! and z, are independent white noise processes. The asymptotic

rule by which the individual updates his joint prior on p, 7, and d 1is

where Uy Vo W

e e e e
e e e e
an Terr = Te ¥ APy - P *dpy,y
e e e
deyp = de * A3(pe - )
in which 1 > Al 3_A2 3_A3_3 0. This particular specification is among those

estimated in the following section. We will be particularly interested in

the case where Al equals unity. In this instance the model becomes

e e e
L + Az(nt - wt) + dt+1
(18)

e e e
d 1" dt + AB(nt - wt)

and is equivalent to updating #° and d° from observations on T.



~14~

I1I. EMPIRICAL RESULTS

Testing a model of expectations is difficult because variables gener-
ated by the model are inherently not observable. The standard approach is
to imbed the expectations equations in a model which attempts to explain
other phenomena such as the demand for money during hyperinflation. Testing
the model then involves a joint test, and it is impossible to untangle
specification error in the expectations equations from specification error
in the remainder of the model. An alternative approach is provided by
the various survey data on expectations such as the Carlson and Parkin data
for the United Kingdom.3 Although we will use the Carlson/Parkin data to
test the model developed above, it should be realized that we have not
solved the problem of joint hypothesis testing but merely changed its form.
We now jointly test the model of expectations and the method employed to
compute quantitative expectations data from the qualitative survey results.

For the period 1961 to 1973 a monthly Gallup Poll survey was conducted
in the United Kingdom to ascertain individual beliefs about the movement of
prices over the next six months. A sample of approximately 1,000 individuals
were asked to indicate whether they expected prices to go up, go down, stay
the same, or didn't know. Each month at least 507 of the individuals
expected prices to rise and in most months some individuals expected prices
to fall. Carlson and Parkin assume that individuals have a probability
distribution over expected future prices. If the mean of this distribution
is some threshold amount greater than the current price the individual responds
that prices will go up. If the mean of this distribution is some threshold

less than the current price the individual responds that prices will go
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down. The fraction of responses falling in each of these categories is
then used to generate an index of expectations. The index is arbitrarily
scaled to equate the average expectations index and the average actual rate
of inflation for the thirteen year period. We assume that this monthly
index represents data 7€ on the average expected rate of inflation over the
next six months. Because of the manner in which the index is scaled, we
agssume that the observed prices are the logarithm of the monthly price

index. We then regard w:

+1 28 the theoretical expected rate of inflation

over the next month.
Testing the expectation model involves solving equation system (17)
for the theoretical forecasts as a function of time. To obtain an analytic

solution we define the column vectors

e
Pe A1+A2+A3
xt - | and Zt = A2+A3 Pt
a¢ A
t+l 3

and write the model in matrix form

(19) X = AX + 2

t t-1 t’
where — —
l-Al-Az-A3 1.0 1.0
A= —Az-k3 1.0 1.0
i -A3 0.0 l.q_

The solution of this system of difference equations is given by

- at £, (t-1)
(20) X, =AX + I A Z.

where Xo is the vector of initial conditions and the unit of time is a month.



-16-

The matrix At can be computed from

t
At =M | o0 p; o | Mt
t
0 0 o

where Pys the eigenvalues of A, and M, the matrix of associated eigenvectors,

depend on the A If the eigenvalues lie within the unit circle, the solu-

4
tion is stable and consists of a series of damped sinusoidal terms. The
analytical solution obtained from the eigenvalue representation is computa-
tionally burdensome. We adopt the simple, but equivalent, procedure of
recursively generating the state variables. Starting from the initial con-~
1 from equation (19). Given X1 we can

then compute X2 in the same manner. By repeated use of equation (19), the

ditions Xo we numerically compute X

time history of Xt can be generated at successive points in time.

Given the model solution, the initial conditions vector Xo and the

1° AZ and A3 can be adjusted to find the set for which

the theoretical forecasts best fit the data. A problem arises because the

model parameters A

data ﬁi are not equivalent to any of the theoretical forecast variables.
The data are expectations of the average rate of inflation over the next

six months, while ne

t+1 is the theoretical forecast over the next month.

Because of the drift d:+l’ forecasts further into the future will differ

from ni+1. If “i+6 denotes the average theoretical forecast of the rate

of inflation over the next six months, then 7€ = "e+1 + 2.5 d§+

t+6 t 1°
Initial estimation results indicated that this additional complication was

unnecessary. We obtained approximately the same estimates whether the
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e

t+6° As a result, we have employed the computation-

e

forecast was Tepl OF T

ally simpler approach of using w:+1 ag the theoretical expected rate of

inflation. To determine the initial conditions and model parameters we
~e e 4

could then minimize the sum square of residuals Ait =N -

t = "e4y- This

loss function involves somebproblems with convergence because it is pos-

sible to generate reasonable solutions for m-,. which involve radical

t+l
departures of the predicted price series pi from the actual price series.
For instance, the actual price may be considerably larger than the predicted
price for most of the data interval. The larger differences between pre-
dicted and actual prices would be compensated for by adjustments in the
parameters Al’ Az and 13. To eliminate these pathological cases from
consideration we need to impose the restriction that p: not deviate radi-
cally from P,- The simple procedure we follow is to give some weight to

the residuals Apt =p - p:. We, therefore, select the initial conditions

t

and model parameters which minimize SSR = ZAﬁi + GZApi where § is a scale
factor. The scale factor was arbitrarily chosen so that ZAﬁi contributed
over 90% of the total SSR. The estimation results are not particularly
sensitive to variations in the scale factor. The model is nonlinear in
the initial conditions and parameters so the minimization of SSR requires
an iterative algorithm. We have used the technique of Marquardt (1963)
which involves an interpolation between the Taylor series and gradient methods.

Before discussing the model estimation we want to examine Figure 2
which depicts the expected rate of inflation data and the actual rate of
inflation. The monthly rate of inflation is very noisy making it difficult

to establish trends so we have plotted a yearly moving average.5 It is cleaf

that the model will be unable to reproduce certain aspects of the expectations
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data. There is a tremendous jump in expectations in November of 1967. This
increase in expectations is unrelated to changes in the actual rate of
inflation and persists for approximately six months before returning to a
level consistent with the actual rate of inflation. The jum@ in expecta-
tions was apparently caused by the announced devaluation of the pound.
After this episode the expectations data becomes much noisier although
the actgal inflation rates do not exhibit this pattern. From late 1971
on, the expected rate of iInflation remains consistently below the actual
rate of inflation. For this period, the average value of 78 1s approxi-
mately 2% below the average value of n. This difference probably results
from the way the survey data were transformed into a quantitative index
of the expected rate of inflation.

Because of the erratic behavior of the expectations data after October
of 1967, the model was initially estimated from the data prior to the
devaluation. These estimation results are presented in the first row of
Table 1. The results suggest that xl, is not significantly different from
unity, and this hypothesis is verified by the estimation results presented
in the second row of Table 1. We would, thus, have obtained equivalent
results if we assumed that the rate of inflation was observed and that
individuals update an expected rate of inflation and its drift. The model
differs significantly from the standard adaptive expectations model which
ignores the drift in the rate of inflation. Estimation results for the

standard model, which consists of the constraints A, = 1.0 and . = 0.0,

1 3

are presented in the third row of Table 1. The results indicate that A3

is significantly different from zero.6
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Our next step is to fit the entire data set to test the explanatory
power of the model after the devaluation. We assign zero weight to the
six values of 7° after October of 1967 because the model is clearly inca-
pable of reproducing the sudden jump in expectations. Weighting these
observations zero prevents their spurious residuals from dominating the
estimation process. An equivalent procedure would have been to use dummy
variables for these months. We use a single dummy variable for the period
August of 1971 to December of 1973. The dummy variable 7m* represents a
constant decrease in the expected rate of inflation generated by the model
and thus corrects for the consistently low values of 7€ during this period.
An equivalent approach would have been to compute a new daﬁa series ﬁi + wk,

The fifst row of Table 2 presents the estimation results. The para-
meters for the entire data interval do not appear significantly different
from the parameters obtained from the initial data interval. This hypothesis
1° Az and AB and the initial

conditions are constrained to the values obtained from the estimation prior

is tested in the second row of Table 2 where A

to the devaluation. The complete estimation does not provide significantly
better results than are obtained by extrapolating the initial estimation

results.7 Figure 3 illustrates the ability of wi to reproduce the data

+1

series 1.. For 7., we have plotted the value generated by the model and

t t+l
have, therefore, increased the data after July of 1971 by the constant w*,
We see that the theory is able to reproduce the general trend of the Gi
series but not its fluctuations.8 This is because the large swings in ﬁi

are unrelated to movements in the monthly rate of inflation. It is interest-

ing to note that the model provides a better forecast of the future rate of
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inflation than does ﬁi. Thg Gallup Poll asked about expected price movements
over the next six months so we have compared i: and wi+1 with the average |
rate of inflation over the next six months. The survey data gives an aver-
age (in absolute value) forecast error of 3.4% while the average error of
fhe model is only 2.82.9

Our analysis of the expectations data differs markedly from that of
Carlson and Parkin. They estimate the simple adaptive expectations model
(21) Tea ™ Te BT - D,
as well as the second order error learning model

e e e e
(22) Terr = e T By (T =) BN T M)

and conclude that expectations formation is a different process in the low
inflation years prior to June of 1967 compared with the remaining high
inflation years. Our model is able to provide a unified explanation of these
two periods because of the drift di in the expected rate of inflation.lo The
drift term captures aspects of the data which are not reproduced by the
ad~hoc second order model of equation (22). Carlson and Parkin also con-
clude that, except for the month of the devaluation, there appear to be no
other factors affecting the formation of expectations. This is contrary to
our findings of a lingering influence of the devaluation which is unrelated
to the actual L the increased noise in the data after the devaluatiom,

and the need for a dummy variable to correct the expectations daté after
September of 1971. To explain these differing views we need to examine the
solution of equation (21). The analytic solution is

[ t+l

e t t-1
(23) Teal = T8 T+ B Z,(1-8) T w_

where wg is the forecast before observing Ty Given the model solution
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we could iteratively determine the values of ﬂi and 8 which minimize

~e
Z(vrt

- w:+1)2. The results of this estimation for the entire data set
are given in the first row of Table 3. The model fits the 7& data
poorly and has significantly larger residuals than the model of Table 2
which includes the drift in the rate of inflation and the dummy variable
after July of 1971.

Carlson and Parkin do not estimate the model solution represented by
equation (23). Instead they substitute past data values for past theore-

tical values in equation (21) to obtain

e ~Q ~Q
el " Tpey F BT g)

(24) "
This equation is now linear in B and can be estimated using standard regres-
sion techniques. The estimation is greatly simplified; however, this
simplification is obtained by the questionable procedure of ignoring the
Because

difference between past theoretical values 7% and past data ﬁ

e
t t-1°

of the substantial errors in variables problems associated with the data,

the procedure will bias the estimation results. The procedure also tends

to insure that a dynamic model accurately fits the data even if its struc-
ture is incorrectly specified. To illustrate this last point, consider the
estimate of equation (24) presented in row two of Table 3. In direct contrast
to our previous results, these estimation results seem to indicate that the
simple adaptive expectations model accurately describes the dynamics of
expectations formation. Figure 4 further illustrates differences between

the two results. The model solution of equation (24) appears to accurately
reproduce the data while the opposite is true for the solution of equation

(23). These differing results are due to the mixing of data and theoretical
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values in equation (24). The substitution of 7% for past theoretical values
prevents the model solution from deviating significantly from the data and
thus insures a high value R2. This is clearly illustrated by the data
after the devaluation. The model is incapable of reproducing the large

jump in expectations and this is clearly indicated by the solution of
equation (23); yet, equation (24) has no problem after thg first devalﬁation
point. With equation (24) there is a large forecast error for November of
1967. This forecast error is eliminated by December because the substitu-
tion of past ;e for past € automatically draws the model back to the

data series. The same process occurs after September of 1971 where the
expectations data is consistently below the actual rate of inflation.

This period creates no problem for equation (24) because the substitution

~e

of Tl for ﬂz keeps drawing the model back to the data.
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IV. CONCLUSIONS

Compared with the simple adaptive model, we find that the ability of
past price changes to explain inflation expectations is significantly
enhanced if we assume individuals form beliefs about trends in the infla-
tion rate. Furthermore the model permits a unified view of the exﬁectations
adjustment process during periods both of relatively constant and of
rising inflation; there 1is no evidence of a changé in the relationship
between expectations and realized inflation. There are still large
unexplained fluctuations, to be sure. But it is not clear that these
result from individuals being more rational than we assume: The expectations
generated by the model provide better predictions of subsequent actual
inflation than does the survey data itself. Thus the model appears to
have some empirical usefulness.

It may be argued that the model leading to the specification estimated
merely pushes the level of ad hocery back one step -- from arbitrary choice
of a naive forecasting rule to arbitrary choice of a naive stochastic view
of the economy. But the model is one of the simplest capable of ration-
alizing the common human tendency to look for and extrapolate trends, and
it does provide a basis for choice among competing specifications. The
credibility of a particular naive expectations rule in a given application
might be more easily assessed by examining the circumstances in which it

would be rational than by examining properties of the rule itself.
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APPENDIX

Derivation of Equation (10):
Since the individual's prior on (Et, ;t) is normal with mean

(p:, n:), variance I = [ ]t’ and he believes the transitory

sij

component u_ of the next observation to be uncorrelated with any

t

past random variables that may have influenced his current prior,

it follows that his joint prior on (St, T, p,) 1s normal with mean

t

and covariance matrix (omitting time subscripts):

(A'l) E[p, 7, p] = (Pe, "e’ Pe)
B . 511 817 %1 %11 |
Cov[p, 7, p] = 812 = | %12 %221} %12
11 821 {(811™W) | | %11 Sa1 W11

A standard result on normally distributed random variables (T. W.
Anderson, 1958, Theorem 2.5.1) provides that the conditional distri-

bution of (p, 7) given p is normal with mean

Pe' =
(A.2) = E (E})
1rev m

from which is obtained

(A 3) et e 511 e
. p =p *+ e, (p-p")

(wts, )M (o-0%)




The conditional covariance matrix of (p, 7) given p is

11

8
(A.4) T = Cov(p,n|p) = ¢ -(}12> (u+sll)-1(s11 851

2

511 811%21

8 8
11 °21 -1
- (u+sll)

S12 822 811%12 %12%21

821

|z]

822 + —-——u

u
u+s

11 512

in which [Z] = 811852 = 81257 -

Derivation of Equation (13):

Equation (12) requires that in a steady state

1 1] , 10 10 11
(B.1) I = X + v + w
01 11 00 11

]
Substituting the expression in (A.4) for I into (B.l) and multiplying
out the matrix expressions then yields the three independent equations

(since I is symmetric)

(B.2) (a) s ,(u¥s ) = u(s 428 ,+4s,,) + |z|+-m(u+sll) + v(uts, )
(b) 812(u+sll) - u(slz+522) + || + w(u+sll)
(c) 322(u+sll) = us,, + lz] + m(u+sll)

Using |Z| = 811502 ~ 512891 and the fact that 819 =“821 permits (c) to

be solved for

(B.3) s.. = wi(uts, )?

12 11



Subtracting (c) from (b), solving for 8,99 then making use of (B.2)

provides

¢

w's

*u1f12 _“ %1

(B.4) s8,, = .
22 wts), (u+s11)*

Finally, substituting these expressions for s., and s,, into (a) and

12 22

collecting like powers of (u+sll) gives

(B.5) sja - (2u+sll)mk(u+sll)% + v(u+811)

which can be alternatively written as a fourth degree equation in

]
(u+811)

(B.6) (u+811)2 - w*(u+s11)

- (2u+V)(u+sll) - "w%("+811)% + u2 = 0

Notice that this becomes a quadratic in (u+sll) if w = 0 as in

section I.



FOOTNOTES

1 This is the same structure as used by Muth (1960) to discuss the

optimal properties of exponentially weighted forecasts.

2 p may be any variable whose stochastic structure is described by

(1), including functions of the variable to be forecast such as the

logarithm of a price level, rate of change of a price level, et cetera.

3 The Livingston survey data for the U.S. has also been used by a

number of investigators such as Turnovsky and Severn. We are using the
Carlson/Parkin data because the monthly series allows a careful study of

the dynamic specification of the expectations equations.

4 The model of equations (16) is non-stochastic and the estimation
strategy is equivalent to assuming that the error structure is dominated

by errors in the observations 7. This estimation method was adopted

t'
because of significant problems with the data set which are discussed

later in this section.

3 The price series used to generate the model solution and the yearly

moving average 1s the monthly index of United Kingdom retail prices pub-

lished in the Employment and Productivity Gazette.

sr-ssr
SSR

the constrained SSR, T is the number of observations, K is the number of

6 We assume that the test statistic v = (T;K)(S ), where SSR' is

fitting parameters, and q is the number of constraints, is distributed as



F (q, T-K). The test for Al = 1.0 gives a value of v = 0.0 when the 95%

significance level for F(1, 76) is 3.98. The test for Xl = 1.0 and A3 = 0.0
gives a value of v = 9.6 when the 957 significance level for F(2, 76) is

3'13.

7 The 8ix constraints give a value of v = 1.1 when the 95% signifi-

cance level for F(6, 149) is 2.17.

8 The noisiness of the 7 series may be due in part to measurement
error. Carlson and Parkin construct 7 to estimate the mean over the
population of the median inflation rates of the individuals' subjective
distributions. An assumption regarding thé form of this distribution
over the population was necessary, and they chose normality for computa-
tional reasons. However misspecification of the distribution would intro-
duce measurement error into 7 as an indicator of the population average
expected inflation rate. The fact that in several periods no survey
respondents expected prices to fall is unlikely given the long tail of
the normal distribution, and supports the possibility of this type of

misspecification.

? If we were to select model parameters which give the minimum squared

forecast error, the prediction errors of the model would be considerably

reduced.

10 Fleming (1976, 58-68) proposes a ''change of gear" model of expecta-

tions adjustment which might perform similarly. He suggests that individuals

switch back and forth between simple adaptive forecasting of p, m = Ap



and d = Azp, choosing the lowest order difference of the p series which does

not currently have a time trend.



Table 1

Expectations Model Fit to Monthly Data Prior to Devaluation

(1/61-10/67)

Type of Fit A A, Ay 2 | SssSR

No Constraints 0.957 0.0133 | 0.0024 | 0.298 59.09

Constraint 1.0 0.0137 | 0.0025 | 0.298 | 59.09
A, = 1.0

Constraints

roe1.0 and 1,70.0| 10 0.0290 | 0.0 0.103 | 74.02

Notes: The value of R2 is for n° alone while SSR is the weighted
combination. The sum square of residuals for AT are 54,31,
54.31 and 69.37 respectively. The initial conditions

estimated for the unconstrained case are pg.= 4.56 (the

actual ln(pt) = 4.56), "8 = 0.0024 (2.88%Z/year compared to
%g = 2.26%/year), and dg = -0.00003.



Table 2

Expectations Model Fit to Data Set 1/61-10/67 and 5/68-12/73

Type of Fit A ) Ay |m* Zhear R? SSR
No Constraints 0.845 0.0307 | 0.0016 2.39 0.562 274.3
Parameters from

Row 1 of Table 1 0.957 0.0133 | 0.0024 2.86 0.542 286.5

Notes:

excluded from the fit.

AT and Ap residuals.

SSR is for the weighted combination of

The values of SSR for the AT residuals alone

The value of R2 is for the entire 7€

are 265.60 and 277.61 respectively.

residuals including the six omitted points are 466.47 and 485.43

respectively.

Table 3

series including the 6 points

The values of SSR for the A

Simple Adaptive Expectations Model Fit to Data Set 1/61 to 12/73

Type of Fit B R2 SSR
Equation (23)| 0.059 0.205 599.7
Equation (24)| 0.038 | 0.685 | 237.2




Figure 1°

Relationships Between Al and Xz
1 (extrapolative)
2
AZ A1/(2-A1)
—— =, =2 -2 - 2/1-1)
1 1
J\2 v=20 u=0
(Theil-Wage adaptive) y (adaptive on )
/
/
/
7/
\ == (static)
0 (regressive) w=20 1

(adaptive on p)
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