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The publication of Hoerl and Kennard's [1] paper on ridge regression has
sparked a boomlet of activity among statié%icians end their clients [11, [2],
(5], [6], [7T], [8]. For the standard lineer regression model, ¥ = XB + &
where X(nxp), I‘(nxl) are observed and € is normal with Eg = 0 and Eee’ = 02;_ ,
the ridge estimator of B is ér = (E'E + kz)_lz'z. This procedure is most often
sold as a cure for the "multi-collinearity problem" which plagues users of
the traditional least-squares estimator. It is not recommended when E’E is
a diagonal matrix.

But whether the §'§ matrix is diagonal or not depends dn the choice of
parameterization. Whereas ridge regression'might be recormended for estimating
g, it would not be recommended for estimating g = gg if E'_lg'zg-l is diagonal,
Thus the excitement of ridge regression is limited to those vho are lucky enough
to choose the right parameterization;.

There is something that you can do if you are unlucky enough to be plagued

by the lack of collinearity. The off-disgonal elements of the X'X matrix may

be augmented by a common factor. For reasons that may be made clear below, the
off-diagonal elements of the X'X matrix will be augmented positively only when
the estimate vector b = (3'3)-13'1 is a positive vector. Otherwise the estimate
is first rotated into the first orthant, then translated by the valley regression
formula and last rotated back into its original orthant. In terms of a formula,

this can be expressed as follows.
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Let s

sy =1x sign (bi); b, = least squares estimate of B,
‘

S = p x p diagonal matrix, diag {sl, S5 cees sp}

Then the valley'estimétor for a given k is | .

") = slsxs + k-DIT g'FE, k20,
vhere } is a vector of ones,
Given a data set (z, z); as k varies, this formula wi;l generate a curve of
estimates known as the stream bed.

The valley estimator is recommended for precisely the same reason as the
ridge estimator. Namely, it is possible to prove the powerful theorem that there
exists a k such that the mean squared error of the valley estimator is less than
least squares. This result is proved in section 1 of this paper. Conéluding

comments may be found in section 2.



1. The Existence Result N

Given that Y is normal with mean XB and variance 021, and given orthonormal

‘
data X'X = I, there exists a k such that the mean squared error of the valley
estimator is less than the mean squared error of least squares. .

..
.

The valley estimator is

év(k) s(s's + k(ll'—I)) s'g'z

" &

s(I +x(11'-1)) 1§'b
where b = (X'X)_lX'Y = X'Y. The theorem states that there exists a k such that

BL(8"00) - 8)(8(x) - §)] < EL(8"(0) - §)'(6"(0) - )],

Proof:
The valley estimator may be written as

§v sc[c C+ kC‘(ll'-I)C] C'Sb

-~ os o0 o

for eny invertible matrix C. This takes a convenient form when

101 1 1 + 1 ]
1 -1 1 1 « 1

o = 1 0 -2 1 =+« 1

~ 1 0 0 -3 =+ 1
1 0 0 0 - =(p1)
> -l

Then
c'c = alag {p, 2, 6, 12, ..., p(p-1)}
C'(11'-I)C-= diag {p -p, =2, =6, =12, ..., -p(p-1)}

%b={§h§hlbﬂ [o 1, 10,1 * 1o, - 2[5 ], .o Zlbl-(pdﬂbl}
ip

It is easiest to compute the estimator of the last coefficient but by symmetry

the same formula applies for all coefficients.
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2 =1
sp{flbil(p + k[p® - pl)7" - (p-1) (ifplbil - (p - l)lbpl)

) 1-x"1p e 1™

s;u-km%ﬂ—[l+ﬂp;pﬂﬂ%|-ﬂ%““ﬂ-kh(lfﬂp-ﬂ)

sp{(l Sk-1- kp + k)X]biI + pll + kp - k]lbpl}/'(l - k)p (1 + k(p - 1))

5 {-xz|v, | + [1 + kp - k]lpr}/(l - k)(1 + k(p - 1))

s {-kx I |v|+ (1+kp-2k)|b]}/(1-K)1+Xk(p-1)).

The computation of the mean squared error of gp(k) makesuse of a result on
the moment of a truncated normal distribution. The least squares estimator bi is
normal with mean Bi and variance 02, and is independent of bJ' J#i. The density
function of this Jormal distribution will be indicated by ni(Bi) and the cumulative

function by Ni(Bi)° Then

E(|b,|) = E(by b, > 0) P(b, 2 0) - E(b, [b; < 0) P(b; < 0)

(8 + (y(0) = m,(=))(1 - K, (0N T"6*](1 - ¥, (0)]

(8, + (n (=) = n, (0)(N,(0) - N, (~=))""e®](n, (0)]

= 8,(1 - 2§, (0)) + 202ni(o)

~

The mean squared error of B;’is
E(§; - ep)2 = (1 - k)"?(l + k(p - 1))'2E{bp(1 + kp - 2k)

. _ _ 2
ks, i:plbil - Bp(l k)(1 + k(p - 1))}

= (1-%)"2(2 + k(p - 1)) B{(b - B)(1 + kp - 2k)

2 2
~ks 1§plbi| - Bpk (1 - p)}



. = (1 -%)"2(1 + k(p - 1))"20%(1 + kp - 2k)2

-2k(1 + kp - 2k)E[sp(bp - BP) iﬁplbil]

2 2
+k E[sp 1§plbil - Bpk(l - p)]

In order to show that there is a k > 0 such that MSE[EZ?k)]-<MSE[§;(6)]
it is necessary only to show that the derivative of this function evaiuated at
k = 0 is negative. Write the function as u/v with derivative (vau - udv)/v2
and note that

v(0) = 1, u (0) = 6°

av(o) = 2(p - 2)

2 -
au(0) = 2(p - 2)o° - 2L[sp(bp - Bp)iiplbill

Thus vau - udv = -2E[s_(b_ - B_) I |b.|]1.
. PP Py 1

But E[sp(bp ‘,Bp)]' E(lbp|) - BPE(SP)

2
Bp(l - 2Np(0)) + 20 nP(O) - Bp[l - Np(o) - NP(O)]

2
20 nP(O) >0,

and the derivative at zero is therefore negative.



2. Concluding Comments

(a) There is a Bayesian justification for this!

( N
(b) Epicurus to Mehoeceus: "Pleasure [not truth] is the end and aim of life."
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