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The traditional theory of point estimation describes a horse race among
alternative estimators. Although this race does identify clear losers, it does
not, in fact cannot, identify a clear winner. As a result, a practical data
analyst is faced with the dilemma that his data could sensibly support many
estimates. In this paper I attempt to determine the limits of this ambiguity.
For each of several classes of estimators, I will report a bound for the set of
estimates that may be computed from a given data set.

The first section deals with maximum likelihood estimators of the location
of a normal dist;ibution. When the variances and covariances of the observations
are unknown, many estimates may be computed from a given data set by varying the
covariance matrix. In fact it will be shown that any sample may support any
estimate if the covariance matrix is appropriately chosen. Moreover, even sta-
tionarity is not sufficient to bound the estimates between the extreme sample
observations.

The second section deals with bounds for estimates chosen to minimize the
distances from the sample values to the estimate. If the distance function
is monotone, the estimate must lie between the extreme sample values. If the
distance function is further restricted, two types of trimming procedures may
be employed to bouﬁd the estimate. The more restrictive bound makes use of

the assumptions of monotonicity, symetry, exchangeability, convexity and additivity.

#Conversations with Michael Ward, John Riley and Robbie Jones have contributed

to this manuseript. Support from NSF grant SOCT6 - 08863A01 is gratefully
acknowledged. The Monte Carlo study reported in Section 3 was done by Tom Means.



Given these assumptions the estimate must lie within the range of the "folded

sample," Z (X + X )/2, 1 =1, ..., n/2, vhere X, are the order statis-

~-i+l
tics. This' set of points is a set of weighted averages g= IX, 4, /T4, with
veights 4, > O such that if %, - > |x - 1 thendIX -1 >d|X -, -
The choice of point estimator wlthin the range of the folded sample is
shown in the last section ggg_to be & matter of indifference from the standpoint
of mean squared error criterion. A Monte Carlo study suggests that the median
of the folded sample -- the Bickel-Hodges (1967) estimator -- is often a better

estimator than the mid-point.



2.0 Bounds for Estimates of the Location of a Normal Distribution

¢
Tn this section it is assumed that the error distribution is normal; thus

the model can be written as _

x =1y + € (1)

|

where 1 is an n x 1 vector of ones and € is normally distributed with mean zero
and covariance matrix E. The maximum likelihood estimator of y is then
f=@rntary.
In words, ﬁ is an’ave?age of the observations weighted by the column sums of §_l.
The quespion now to be addressed is what set of estimates ﬁ can be generated
from a given data set x if § is allowed to vary'with the class of symmetric
positive definite matrices. Somewhat surprising, any value of ﬁ can be generated
from any sample provided that x is not proportional to the vector of ones. One
might have guessed that G would lie between the minimum and-maximum observations.
The fact that this isn't true in general stimulates a search for restrictions
on § that are sufficient to bound ﬁ within this range.. Of course if § is & diagonal
matrix this bound does applx. But otherwise I have beeﬁ unable to find interesting
restrictions on § which imply the bound, and the fact that several conjectures,
now to be discussed, are false; is more surprising to me than the fact that any
ﬁ is possible.
The estimate ﬁ may lie outside the range of the data if any of the column
sums of E-l is negative. A syﬁmetric positive definite matrix E-l can rotate
the vector of ones by as much as ninety degrees, and in general the column sums
of Z—l can be negative. Of coufse, if there is only one observation there can

~

be only one estimate of y. But if there are two or more observations any number



is a maximum likelihood estimate of W, given a suitably chosen Z!l This is
proved below for two observations, but obviously generalizes since any other

‘¢
observation can be ignored by setting appropriate elements of I to sufficiently

small numbers.

Theorem 1. There exists a symmetric posiéive definite matrix E such that

n = (}'E—l})—l(lg-lx) for any values of 1 and the vector x, provided x is not
proportional to }.

Proof. For the 2 x 2 case write L as

2
s 1 "%
& 2
P10, %o
and
2
1 % 9%
L T >
~P91% 9

A 2 2 2 2
Thus Y = [(o2 - p0102)x1 + (ol - po’lcz)xz]/[cl + o, - 2p0102]. The theorem states

that for any values of ﬁ,‘xl, Xy there exist cl’ 02, p such that the equality

just reported holds. This equality can be rewritten as 0 = (OS - poloz) (x1 - 1) +
(6% = 00,0, (x, = W) or (0] - po,0,)/ (0] - poy0,) = (x; = W/ - x,) vhere the
term on the right can be any real number. But the term on the left can also be

any real number, say c¢; to see tﬂis let r = 01/0'2 and the equation can be written
as ¢ = (r2 - pr)/(1 - pr) or r2 + ple = 1)r - ¢ = 0, which can be solved for

p in terms of r as p = (c - r2)/r(c - 1). [It is necessary to choose r such

-

lThis is true also for the regression problem; i.e. for ggx_(k x 1) vector E,

any (n x k) matrix X with rank k, and any (T x 1) vector Y which is not a linear
combination of the colums of ¥, there exists a symmetric positive definite matrix
£ such that B = (§'§'1§)'1§'§’1§. ' '



that 02 is less than one: (c = r2)2/r2(c - 1)2'< 1; or c2 —2r2c + rh <

2 2
r2c? - 2rfc+ r2, or 0< NP r2e? - rh = r2(1 - r2) + c2(r2 -1) = (" - 02)(1 -r).
¢« 2 2
Thus r must be chosen between 1 and ¢ .]
Geometrically, this result is illustrated in Figure 1. If I is the identity:

s " e

matrix, the vector x is orthogonally projected onto the vector of ones to form the

1%. In general, M is selected to minimize (x - lu)'Z-l(x - 1f1).

A~
"predicted x," 1lu

The function f(z) = (x - z)'X-l(x - z) defines an ellipse located at x. Minimizing

f(E) subject to z }ﬁ involves finding a tangency between an ellipse and the 45°
line. The theorem states that any point on the hSo line is a point of tangency
between the line and a suitably chosen ellipse located at X.

Figure 1 illustrates a situation in which 0< x2< xl< . The ellipses around
the vector x have the same shape as the usual confidence ellipses and from Figure
1 it is clear that I is outside the range of the data only if Xy and x, are posi-
tively correlated. The relative standard errors, 01/02, can be computed by
projecting an ellipse onto each of the axes. In Figure 1 the projection onto
the x, axis is smaller than the projection onto the X, axis, which means that

1
0. < 0,. This may now make clear why {i exceeds Xy Since Xy and X, are positively

1 2

correlated they are likely to be on the same side of M. Since 01_< 02, 3Y is

likely to be closer to Y than is x2. Hence {f should be outside of the observed
points, farther from X, than X, .

This example of an estimate outside the sample range requires unequal vsriances.

If the diagonal elements of E are equal in the 2 x 2 case, then the mean, (xl + x2)/2,
is the only estimatpr. This does not generalize as will be illustrated by an

example below:

False Conjecture 1. If the diagonal elements of I are all equal, then fi must lie

between the minimum and maximum samplé points.



FIGURE 1 A Geometrical Illustration of Theorem 1

X



A stronger statement is that the process.is stationary, that is that I is

a band diagonel matrix. But this too is not sufficient to restrict the fl to the

. <
range of the observations:

False Conjecture 2. If I is a band diagonal matrix, then ff must lie between the

v e

minimum and maximum sample points.

Both of these conjectures can be refuted by the following example. Let

1 .6 0
= 6 1 .6
o .6 1

l'z-la (.h’, -02’ Oh)

o =0, X) = X3 =1. Then f = 2(.4)/.6 = 4/3,

Although stationarity is not sufficient to bound the estimate between the

Suppose X

extreme observations, I do have two results on band diagonal matrices. First, it
is well known that if I is band diagonal the elements of H = §-1 satisfy the

symmetry conditions

Hig = By T Ha1g, ntd-1 © Pnelei, ned-g

An immediate implication of these symmetry conditions is that the weight allocated
to the 1th observation must equal the weight allocated to the (n+1 - i)

observation.

A second result, now to be presented, describes the row sums of §-l when

£ comes from an autogressive process.



Theorem 2. If the error € in (1) is drawn from an autoregressive process of

order p
‘

€, = $16 0 *0fp ot e T OE Y Yy

where u, is a white noise normal process;'hnd if there are enough observations

n such that n Z_Qp, then fi is a weighted average of the observations with weights

equal to

(ls 1l- ¢l’l 1- ¢1 - 4’2’ O id)i’ 1l- §¢19 esey l- ¢1 - ¢2s l- ¢1’ 1)0

Proof. The precision matrix H = Z-l of € can be computed as in Galbraith and

Galbraith (1974) as follows. Let v = (el_p, €op? *000 € 1o eo) and note that

u = (ul, Uy eees uh) can be written as

1 . 0 0 X 0 "¢p "'¢p_l LR -¢1
"‘¢ l O ees e
1 0 -¢p "¢2
B = -¢p : E + o o es e -¢ z

P

0 0 0 .. O

L 0 oooo-¢p l- L—O o ceeo o—
= Ac + Bv

The random variables u and v can be taken to be independent with covariances 1

and V respectively. The random vector € = Afl(u - Bv) therefore has variance

ANT + BVB')A' ™! and precision

oy

H

A'Y(T + BVB')'lA

o

l)-l

A'A - A'B(B'B + V_

~ e o

B'A.

—



But the last (n - p) columns of B'A are zeroes and, regardless of (B'B + V‘"]‘)"l

-~

»

the elements of H except for the upper left p x p block are equal to the values
-4

of A'A. The column sums of the last (n - p) columns,which can be computed from

A'A,are necessarily equal to the column seems of the first n - p columns, and !

the whole vector of column = sums is therefore computable fram A'A if n > 2p.

The column sums of A'A are

-y - | . -
AtAL = &' | 10 1"}’1"4’2"""%
1?“’;“*’2 1-¢,=by=e o -¢P
: = (1-6,=¢ =0 o=t :
l-¢1-¢2-...—¢p 172 P 1_6 -
' 1~%2
1_¢l_¢2-"'_¢$ 14
. 1
I 1-¢l-¢2...—¢P 1 L 1 .

A final result is that if the covariances are negative, then the estimate of

fi must lie within the range of the observations.

Theorem 3. If the positive definite matrix E has only non-positive off-diagonal
terms, then §_l£ is a non-negative vector.

Proof. Scale § so that the largest diagonal element is less than one. Write

§ as (E - é) where é is a positive matrix. The Hawkin- Simons conditions are
satisfied, and (E - é)_l can be written as I + A+ 52 4+ ..., which is a positive

matrix.,

The conclusion that seems warranted in light of the results in this section
is that the set of estimates that could be surported by a given data set is
surprisingly wide. Even stationarity is not sufficient to bound the estimate

between the extreme observations. Independence does imply the bound, but interesting

weaker conditions are hard to find.
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3.0 - Bounds for Robust Estimates of Location

This section deals generally with the minimization of a function of the
‘

distances from an estimate }ﬂ to the set of n sample values X = (xl, Xpp eeos xn).

The difference between the estimate and the sample will be ipdicated by

e(fl) = (x; - f, xy = B, ooy X - M) = x - 1.

 The problem to be considered is the minimization with respect to S of a function
w(f39) subject to the constraint e=x- lﬁ. The vector 9 will index a class of
distance functions, g € Eﬂ,and the minimization just described will imply a
function ﬁ(ggf) which is the value of fI which minimizes W(s;g), given x and 6.
The extreme values of -1f(g,x) for 9 eﬁi'will thgggfgrgmkppgd the estimates
that may be supported by a given data.set x and a class of criterion functions
W(e;0), @ @

For example, as in the previous section, suppose the criterion function is
the quadratic W(s;g) = S'gs where E is a positive diagonal matrix g = diag {91, 92.
esesy en}, ei > 0. Then of course the optimal estimate is a weighted average of
the observations ﬁ(g;f) = (9'})-1(9'5), and the extreme values of ﬁ(g;f) are the

smallest and largest sample observations.
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3.1 Properties of the Criterion Function .

Several possible properties of the criterion function will now be discussed.
: <
In the special case when the criterion function is quadratic W = e'Ije these

prdperties will restrict the matrix H in ways now to be poipted out.

(1) Monotonicity.

The function W(e) will be said to be monotone if

oW/de, > 0 for e, > 0
and _
aW/de, < 0 for e, < 0.
In words if one of the errors e, increases in absolute value, holding

fixed the other errors, then the criterion to be minimized increases. This
seems like a sensible restriction on a distance function but the quadratic form
W= s'gs need not 'be monotone. The vector of derivatives is then 2§s wvhich will
have the monotonicity property if § is a positive diagonal matrix but otherwise
not. It will be shown below that monotonicity is sufficient to restrict the
estimate to lie within the range of the sample observations, and the failure of B
the maximum likelihood estimate for the location of a normal distribution to
satisfy this bound is attributable to the violation of the monotonicity condition.
(2) Exchangesbility

The function W(S) will be said to be exchangeable if W(g) = W(s*) where e¥*
is a permutation of the vector S'

The vector of ones is an axis of symmetry for an exchangesable function.
Statistically speaking, exchangeability implies that the order of the observations
cannot affect the inferences. The quadratic form §'§g is exchanéeahle if
H=(I+ }p})_l =1-1(1'1+ p-l)-l%, since e'He then depends only on the sum

~ o~ o~

of the e, and the sum of squared ei.

i
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(3) Additive Separability

The function W(e) will be said to be additively separable if there exists
a monotone increasing function h such that

h(w(e)) = Z si(ei) .
i.-.

Additivity may be associated with a sampling scheme which generates statis-
tically independent obéervations since then the logarithm of the likelihood function
s additive. The quadratic form s'gs is additively separable if g is a diagonsal
matrix.

(4) Symetry
The function W will be said to be symmetric around the axes if

W(e) = w(le])
vhere |g| has ele?ents equal to the absolute value of the elements of e.
Independent sampling from a symmetric, unimodal density will imply a log-
1ikelihood function which is additive, exchangeable and symmetric around the

~ ety

axes. The quadratic form e'He is axis symmetric if E is diagonal.
(5) Convexity ’
The function W(s) is said to be convex if for all points e and e,, and
all ¢, 0< c< 1, Wee, + (1-cley) < cW(e,) + (1-c)W(e,).
If W is twice differentiable, con?exity is equivalent to the matrix of
second derivatives being positive semidefinite. Estimation of the location of
a normal distribution implies the ériterion function g'gi, which is convex.
But estimating the location of a Student function does not imply a convex criteriom.
The negative of the‘logarithm of the likelihood function would be W = § In(v + e?)
where v is the degrees of freedom. The second partial derivative is 32W]8u2 =

2(v - ei)/(v +e§)2, which is positive in the neighborhood of e, = 0 but turms

negative for ei > v.
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Convexity will be shown below to have an important effect on constraining
the range of supportable estimates but the property is not especially compelling.
It md& be pointed out that meny of the criterion functions which have been
used in the literature are convex. Researchers such as Forsythe (1972) end
Ekblom (19Thk) who have used the functioﬁ.£1eilp have restricted p to exceed

one. The M-estimators of Huber (1964) select fi which is a solution to

where Y is a monotone increasing function with ¥(0) = 0. The function ¥ can

be thought to be the derivative of a convex function.



1k

3.2 Results

-

Three different bounds are reported in this section. The first makes use
of the assumption of monotonigcity, the second uses also exchangeability and the
third uses all five properties. To illustrate, let X, (L = 1, 2, 3) be the set
of order statistics, and suppose that (fi'+ Xa)/2 < Xjes 11lustrsted in Figure
2. If only monotonicity is gssumed, then any estimate between Xl apd X3 is
feasible. If exchangeability and monotonicity are assumed, then fI must lie
between (Xl + Xz)/2 and (X2 + X3)/2. If all five properties are used, then fI

must lie between (Xl + X2)I2 and X2.

Monotonicity

Theorem U, If the function W(f) is monotone increasing then ﬁ which minimizes
W(S(ﬁ)) must lie.between the first and last order statistics, Xl<_' ﬁi Xn.
Conversely, theré exists a monotone W(s),such that any ﬁyin this range is a
solution to the minimization problem.

Proof: Consider a point u* < Xl. Then

aw/au|- = z(aW/aei) <0
p=p* i

since u* 5_xi for all i. . Therefore the minimum of the function must occur at

a point exceeding u*. The converse is also simply demonstrated by letting

W(e) =2 e?/og and choosing 02 appropriately.

i i

Monotonicity Symmetry and Exchangeability

Definition: The anchored pairwise averages are the set of points

le = (xl + xd)/a J =1, caey

YJn = (xJ + xn)/z J =1, eaep n
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(xl+x2)/2 (x2+x3)/2
¥ & 'y 'y J
v ) )
1 *2 *3
-< - Bound 1
-~ —= DBound 2
< —  Bound 3

FIGURE 2 Bounds for Estimates of-Location
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Definition: A pairwise avera,ge_a.n‘chored by the first observation, Y e will be said

to be unsupported if there is only one observation less than Y Jl:
R

< = LN )
Y 5 Xk k=2, s
An average anchored by the last observation, Y i will be said to be unsupported

if

xk< YJn k=1’ 2’ ooo,n-lo

If le is unsupported and if J' >J then Yj'l is unsupported. If YJn

is unsupported and J > 3', then Y,j'n is unsupported.

Theorem 5. If W(e) is monotone and invariant to permutations of the element
of e= {xi - u}, and if e has more than two elements, then Y which minimizes

W(e(n)) must lie within the range of the "unsupported anchored averages."

t
Proof: Suppose that YJl is an unsupported anchored average. Then it can be

shown that any location u < X 1 can be dominated by a location ¥ > Y e Let

the new location be u* = Xj - b'u + Xl, and let e; = X:L - ¥, Notice that e =-e3’

and ej = -e;_, which by the exchangeability and symmetry assumptions, produces

»
no change in the value of W, But for all other i we have | ' i|'< Ieil and hence

by monotonicity W(e) > W(e*). To see that Ie';| < Iei| , note that (e;)2 = (X, - u#)2

(X, + 1 - X -x1)2=([xi-u]-[x3'+xl-2u])2=(xl-u)z-(x3+xl-2u)

i J
. 2 2
(2[x, - u] - [xJ +X - 2u]) = ¢ - h(YJl - w(x; - YJl) < ¢}, since Y, >y

> .
and xi YJl

Monotonicity, Symmeiry, Exchangeability, Convexity and Additivity

Definition. The folded sample observations are the averages of symmetrically placed

order statistics.
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Theorem 6. If the differentisble function W(e ) is monotone, symmetric,
exchangesble, additive and convex, then fI which minimizes W(s(ﬁ )) must lie
within the range of the folded sample

min (zl, Z5s eee) < max (zl, Z5s cee)e .

Proof: By the additivity and exchangeability assumption, the function W(e)

can be written as

W(e) = I wle,)
e _iwei

where by monotonicity _g_a/w/a'_e1 > 0 for e, > 0 _and‘by_«convezd..t_y_'laavl ?e_f >0
The first derivative of W with respect to U is

oW/ay = I-(dvle)/3e,) = Tek; - )

where g is a function such that (symmetry) g(x) = -g(~-x) and,{convexity) for

x> x', glx) < glx').
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Minimization of W given the constraints e = X - 14 implies the Lagrangian
expression Zw(ei) + A'(X - 1 - e), wvhere A is the vector of n Lagrange multipliers.

4
Differentiation of this expression with respect to U and to e, implies the equations

A'1l=0 . . (2)

‘{g(ei)} = A

where {g(ei)} is the vector with elements equal to g(ei), the derivative of w evaluated

at e;. The function g has the properties that g(ei) 20ife >0 [monotonicity

of v}, g(ei) = -g(-ei) [symmetry of w] and for e, 2 ez,g(el) > g(e2) [convexity
of w]. Hence, {g(ei)} is & vector in the same orthant as e and also with elements
identically ordered in absolute value. Thus g(ei) can be written as l_)s where
D is a diagonal matrix D = diag {dl, dys eees dn} with 4, > 0 and
ayleyl 2 ale,l for leg] 2 le,.

Equation (2 ) and De = A imply 1'De = O; and then using e = l_( - lu we have

- o

1'D(X - 1f)) = O which can be solved as

~ - -~

= (1'1)1)'l (1'DX).

~ e - oo

In words, fl is a weighted average of the observations with the weights restricted
such that if |Y, - ] 2 IIJ - ] then [T, - 0] 2 dJlij - ff.
The foregoing implies that an estimate i is feasible if there exist di 20

such that 1'De = Id,e, = O and if Ieil > leJ| then dileil > dJIeJI. If g is

less than all the elements of the folded sample, then it can be shown that

Zdiei >0 for all di satisfying these restrictions. Consider the elements

s i <
in this summation pairwise, d,je;) + dn+1-,1en+l-.1° Since g (XJ + xn+1-3)/2

(g - XJ) < (x #1-3 = u). This, together with XJ < xnﬂ_J, implies |eJ| < len+l—.‘j|;

n
thus djlejl < dn-J+1|en—J+l| and 0 < -dJleJI + dn—,j+l|en+1-,j|' If ey and €h-3+1
are both positive, f.pen obviously dJeJ + dn+1-,j en*l—,j is also positive. Othervise

the sum can be written as d..je.1 + dn+1—J YOI -djlejl + dn+1-,j|en+1-3| > 0.
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The converse of this theorem is also true but a complete proof involves the

enumeration of mamy cases. One case will be considered here. Suppose that
4

Xk < XJ and we would like to find di such that Z‘1 <fl < Zk’ for some given fl.

S

uppose further that xk < XJ <fl < xnﬂ_J_ < xn-k+l’

Define now the constantsco =0, e, = -xn+1-,j - f, c, = fi - xj’ e, =fl - xk

¢, = xn—k+l - f c5 = o, It can be shown that 0 < cl < <, < c3 < e Let

n; be the number of observations such that fi + c; g X< 1+ c; and let m,

be the number of observations such that ﬂv- ci <X<fl~ ci 1°

Assign weights to observations as follows

if then
leil < e, di =0
e, < le| <c a = e
2 =151 b i i
n
2 -1
ey < leg] 4y = (1 + gDle ™

These weights do have the feature that if |ei| b leJ| then dileil 2> d,jlejl°
: n ‘

Furthermore Xdiei=n3+nh-?m3-mh+ (n5-m5)(l+i%)' But since
n2+n3+nh=.j-k,n5=k,m3=g-k, a.ndmsék-mh,thenZdiei=
J-k—na-(J-k)-mh+mh(l+i-i-)=0.
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L. A Monte Carlo Study of the Mid-point of the Folded Sample

The bound reported in Theorem 6 implies a set of estimates over which you
woﬁld‘be indifferent if "nothing is known" about the sampiiﬁg process except
that the observations come independently from a fixed symmb?ric unimodal distribu-*
tion with the logarithm of the density fﬁn;tion convex. In that case, any estimaté
in the range of the folded sample is a maximum likelihood estimate given a
suitably chosen density function.

If something more is known about the sampling process, the choice of a
point within the bound may not be a matter of indifference. A Monte Carlo study
vil; {llustrate this fact. For five different sampling distributions, the mean
squared error of the mid-range of the folded sample is compared with the mean
squared error of six other éstimators. If you thought your sampling distribution
were one of these, the median of the folded sample seems to be the‘best choice.

The following distributions were used:

(1) Uniform

1
r < 21Xl 3
: 0 otherwise

(2) Standard Normel

£(x) = fp(x|u = 0, 0% = 1)

(3) 5% Contaminated Normal

2

£(x) = 0.95 x £ (x|u =0, ¢” = 1) + 0,05 x t(x|u =0, o® = 9)

(4) 10% Contaminated Normal

2

£(x) = 0.90 x £ (x|u = 0, 0% = 1) + 0.10 x fy(x|u = 0, o® = 9)

(5) Double Exponential

£x) = & e—‘lxl



2]~

The following estimators were used where (Xl, ...,mxn) are the order

statistics

() Arithmetic Mean

x= I xi/n

i .
(2) Median
xﬁ/2+1, -n is odd
MED = ’ :
xN/2 + XI!/2+1 -n is even
2 ,
(3) Midrange
MIDRNG (x, +x)
2
(4) 25% Trimmed Mean
! ’ N-J
25-T™M = 1 I Xi
N - 23 J+1

vhere J = [N/4] and. -] is the greatest integer function. -

(5) 25% Winsorized Mean

N-J
25-WM = —((J X))+ I X+ (T Xy g4))
J+l
(6) Median of Folded Sample
A
M/2+1 -M is odd
F-MED =
(ZM/Z + ZM/2+1) -M is even

2

where Zl’ Seey ZM are the order statistics calculated from the folded

sample,

(7) Midrange of Folded Sample

Fouzp = (21 ¥ )
)
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Relative efficiencies were calculated with respect to the last estimator

(7), as follows:
y

- 100
RELEFF(1) = %’% where MSE(1) = I (6 - 9)2 1 =1, eeey T
1

-
.

Hence a value less than one implies a gain in efficiency relative to the

last estimator.
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Table 1

(Sample Size = 10)

MED- MP-
Mean Median MDRNG  25-TM 25-wM,  FMDRNG  FMDRNG
UNIFORM 1.023 2,264 0.L465 1.658 1.157 1.136 1.000
STD-NORMAL | 0.929 1.kks 2.155 1.081 0.956 0.971 1.000
.05~CNORM 0.272 0.186 3.969 0.1ko0 0.1k 0.1k45 1.000
.10-CNORM | 0.275 0.107 3.704 0.092 0.088 | 0.088 1.000
DBL-EXP 0.753 0.390 2.142  0.Lb5 0.613 0.5Th 1.000
Table II
(Sample Size = 20)

Mean Median MDRNG 25-TM 25-WM F-MED F-MID

UNIFORM 1.030 3.009 0.236 2,007 1.458 1.177 1.000
STD-NORMAL 6.761 1.138 2.835 0.87h4 0.797 0.759 1.000
.05-CNORM | 0,110 0.073 3.991 0.063 0.058 0.057 1.000
.10-CNORM | 0.043 0.002 4,026  0.001 0,001 0.001 1.000
DBL-EXP 0.573 0.283 2.357 0.321 0.37k 0.37h 1.000




2k

The results are reported in Tables 1 and 2. Notice that the median of the

folded sample out performs the midrange of the folded sample, except when the
samplfhg distribution is uniform. The mean works relatively well for the normal,
but otherwise can be substantially dominated. The median sefms to trim too much, -
but the other trimming procedures are efféétive. The median of the folded sample

has the further characteristic of simplicity, and overall seems the best.

—n
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