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1, INTRODUCTION

The last decade has seen a growing use of game theory to explain the
evolution of genetic mechanisms and hence the behaviour of animals and insects.
However, the Nash equilibrium concept used in the analysis of non-cooperative
human interaction 1is not directly applicable since it‘attributes rational
decisionmaking capabilities to the conflicting agents.

Building on the early work by Fisher (1930), and a paper by Hamilton (1967),
Maynard Smith (1974, 1976) in collaboration with Price (1973), has proposed an
alternative 'evolutionary equilibrium' concept. HMaynard Smith's particular
interest in developing this concept was to explain the nature of conflict
both within and among species. It is therefore to such conflicts that we shall
periodically refer.

In the following section it is argued that when interaction is between pairs
of agents drawn at random from a §initle population, a strategy which satisfies
Maynard Smith's conditions may not be protected against invasion by a mutant
strategy. Indeed for certain nutant strategies it is possible that the agents
using what Maynard Smith has called an "evolutionarily stable strategy' will be
completely eliminated!

Given such an unsatisfactory conclusion two alternative definition of
evolutionary stability ére then proposed. If a mutant has a lower fitness when
its numbers are very small the strategy of the initial population is described
as being strongly evolutionanily stable with respect to this mutant. If a
mutant has a lower fitness only when its numbers are sufficiently large, the
strategy of the initial population is described as being weakty evolutionaily
s4able with respect to this mutant.

The problem with Maynard Smith's definition of equilibrium is that it only

ensures weak stability with respect to all feasible mutants. Thus the number



of players required before the nutant has a lower fitness may exceed the
total population.

Section 3 considers the inplications for the simply "war of attrition"
discussed by Suith (1976) and developed more completely by Illines (1977) and
Bishdp and Cannings (1977). As the latter have established there is a unique
"ovolutionary equilibrium” in which animals coupete (for food or territory)
by trying to wait.out their opponent according to an exponential mixed strategy.
It is shown first that this is only a evolutionary quasi-equilibrium and that
for any integer n, there is sone nutant which has a higher fitness until its
population exceeds n.

The nature of nutant strategies for which n is large are then exanined,
It is shoun that only those nutant strategies which are similar to the weakly
stable strategy can invade to any significant extent. Therefore,for a large
finite population the unique veakly stable strategy can only be elininated
by a nutant strategy which is almost certain to be empirically indistinguish-
able,

it is tempting to draw the conclusion that the weakly stable strategy is
"approxinately" viable. However, the indistinguishable nutant is not itself
weakly stable. Therefore, once the players of "the weakly siable strategy have
been eliminated there exist further mutations which have a higher fitness.

It {s shown that these second round mutant strategies will in general
be very unlike the evolutionary quasi-equilibrium strategy. .Thus, after a
long period in which the behaviour of the great majority of some population
changed only imperceptably, it would be possible to observe quite different
behaviour spreading throughout,

Tn the final section it is shown that these stability problems can be

avoided bv altering the underlving model to take account of a natural



informational asywmetry. Instead of adopting a nixed strategy each agent uses
a pure strategy which is conditioned on its own information, The precise form

of the strong evolutionary equilibrium strategy is then derived for the war of

attrition,

2, EVOLUTIONARILY STABLE STRATEGIES IN SYMMETRIC GAMES
The essential features of an evolutionary equilibrium are most readily
described when the conflicting agents are identical except, possibly, in the
strategies tbey adopt. Let
r(v|u) = the expected return to adopting strategy V when the opponent
adopts strategy U.
Then each agent has the following matrix of possible expected payoffs.

opponent's strategy

v H
- v r(v|v) r(v|u)
strategy r(u|v) r(uln)

Suppose that the number of agents in the population is N + 1. Of these
M use the 'mutant strategy' W and the reméinder use the strategy v. If a
particular agent is among the former, the probability that a random encounter
will be with anofher of the same type is (1 -~ 1)/N., The expected return or
"fitness" of the agent is therefore
) rG) = (1 - Shrwlv + Shealw
Similarly, if the agent uses strategy Vv, the probability that a random encounter
will be with an agent using tﬁe mutant strategy is M/N. The expected return is
then
2) (V) = (1 - Profv) + grovfw
Suppose that the environment will support only a fixed population and that the

number of mutants rises whenever the fitness associated with the mutant strategy



is higher. We then seek some strategy; v, which is protected from invasion by
any nutant in the set, S, of feasible strategies._ That is, we seek some
strategy, VvV, satisfying,

(3) r(v) - r(u) >0 for all u # v, 4 € S.

Subtracting (2) from (1) yields

) r(v) - rW) = (1= PV - ]
+ Flrlw - rwlw]

+ £lralw - vl

Except for small populations, the first term on the right hand side of (4)
tends to dominate the other two for small M, Therefore a natural requirement
for V to be an equilibrium strategy is

Condition N: r(v|v) > r(u|v), for all u € S.
This is precisely the Nash equilibrium condition for non-cooperative games among
rational agents.

However, to ensure the viability of an evolutionary strategy it must be
shown that it has a higher fitness than alternative strategies. IlMaynard Smith
argued that when the proportion of mutants in the population was p, the neﬁ

advantage of strategy V could be expressed as

%) r(V) = r(u) = (1 - p)lrw|w) - ru|v)]

+ plr|w) - rmim]l.

The right hand side of (4)' has the sign of the first bracket for small p.
Furthermore, if the first bracket is zero the right hand side of (4)' takes on
the sign of the second bracket. This led Maynard Smith to propose the following

definition of an evolutionarily stable strategy.



DEFINITION 1: (Maynard Smith) Evolutionary Equilibrium Strategy.
Strategy V is evolutionarily stable if, for all feasible
alternatives Y
EITHER r(vjv) > ru|v),

OR r(v|v) = r(u|v) and rev|u) > r@ulw).

Comparing (4) and (4)' it is apparent that the two are formally equivalent
only for infinite é;pulations. We now show that, for finite populations, the
analysis of stability is very different., As the first step, suppose the mutation
has just occurred so that M = 1, Substituting into (4) we have

) - £ = [xOV) - =]V + FHrow - co]v)]
=-%[r(v|ﬂ) - r(v]wl, 1if V satisfies condition N,
Theredore strnategy v 4is protected from any invasion if it fares better in
conflict with a mutant, than in conflict with (tself.

This suggests the following definition of a stable strategy.

DEFINITION 2: Strategy vV is sirongly evolutionanily stable with respect to
the alternative Y, if it has a higher fitness when the proportion

adopting u is small,

From the above argument, if strategy V is a Nash equilibrium and, in addition
r(v|w) > r(v|v), then v is strongly evolutionarily stable with respect to the
nutant strategy d. All this leads naturally to the following definition of

equilibrium,

LOFLIITION 3: Strategy vV is a 4trwong evelutionany equilibrium strategy if it
it is strongly evolutionarily stable with respect to all feasible'

alternative strategies.



Unfortunately, as will be shown in the next section, there may be no such
strategy. Ve therefore seek some weaker stability requirement. Returning

again to expression (4), we have, for any lash equilibrium strategy Vv,
1
(5) r) - t() > SOl - c@l] + r@lu) - rwlv)

If the first bracket on the right hand side of (5) is positive, the entire
expression is positive for sufficiently large M. Thus when the number of invaders
adopting the mutant strategy exceeds sone absolute number, M(u), strategy v yields
a higher fitnéss. Strategy VvV is therefore protected from invasion beyond the

level M(u). Formally, we have the following definitions.

DEFINITION 4: If strategy V is a Nash strategy, and, in addition
r(v|w) > ru|w),
then v is weakly evolutionanily stable, with respect to the

alternative |,

DEFINITION 5: Strategy V is an evoluti{onauj quasi-equilibrium strategy if it
is weakly evolutionarily stable with respect to all feasible

alternative strategies.

If v is veakly evolutionarily stable against all alternatives, it is
protected against any particular alternative Y, beyond some level :f(u). Then

the largest encroachment by any mutant is M* = Max M(u).
MES
However, in the absence of further specification of S and N, there is no

assurance that M* is exceeded by N, hence the expression "quasi-equilibrium,"

The following example in which there are only two feasible strategies,

5 = {v,u}, illustrates the different concepts.



opponent's strategy

v H

own v | rw|v)=0 | rv|p)= -1+c
strategy

p| rulv)=0 | r@ujw= -1

Suppose that all agents initially use strategy V in situations of
conflict. Then one is replaced by an agenﬁ using the mutant strategy. Since
the mutant only meets non-mutants, its expected return is zero. The non-mutants
also achieve an expected return of zcro against other non-mutants. In addition
each has a pfbbability of 1/N that its opponent is the mutant. If c¢ > 1,
r(v|u) > 0 and the non-mutants are made better off by the arrival of the mutant.
The latter is therefore at an evolutionary disadvantage, and the initial state
is a strong evolutionary equilibrium,

However, if ¢ < 1 the arrival of the mutant lowers the expected return of
the non-mutants below that of the mutant. The mutant therefore has the evolution-
ary advantage. Now suppose all but one of the N + 1 agents use the nutant
strategy. The expected return of each mutant is

r(u) = ;ql-r(ulv) + (1 - %)r(ulu) = <14 =

N
Since the non-nmutant meets only mutants, its expected return is simply r(vlu) =
-1+ ¢c. If c is negative, strategy vV remains at an evolutionary disadvantage,
regardless of the population size. If ¢ is positive, vV is an evolutionary quasi-
equilibrium strategy. Moreover, Maynard Smith's conditions for evolutionary
stability are satisfied., However, unless c exceeds 1/N, the agents using

strategy V are again at an evolutionary disadvantage, regardless of their

proportion in the population.



3. THE WAR OF ATTRITIOR

In the original model analysed by Maynard Smith, two members of a population
both wish to obtain the same object. Each, in effect, makes a sealed bid. The
higher bidder wins and both must pay the low bid.1

Suppose the value of the object to either agent is V, Maynard Smith conject-
ured that, for such a game, the exponential mixed strategy of bidding x or more
with probability %efxlv, satisfied his requirements for evolutionary stability.
This has since been formally demonstrated by Bishop and Canning (1977). 1In this
section we bégin by showing that the exponeﬁtial strategy is only a quasi-equil-

ibrium strategy.
First of all, it is easy to see that no strategy which involves making any

bid, b, with finite probability, can be stable. If b were less than the value of
the prize, a mutant would obtain a higher expected return by bidding slightly
higher than b with the same probability. Similarly if b were greater than or
equal to V, a mutant would obtain a higher expected return by bidding zero with
the same probability.

Suppose, Fherefore, that the quasi-equilibrium strategy V, is to bid b or
less with probability Fv(b). Without loss of generality, we may normalize and
set the value of the prizé equal to unity. If the mutant's bid, a, exceeds b, it
wins the contest and receives a net return of 1 - b, If the mutant's bid is the

low bid it loses a. The net return to the mutant for different values of b is,

therefore, as depicted in Figure 1.

1 Maynard Smith suggests the following model of the animal world. Two doves
desire the same food source or territory., Each chooses to "display" for some
length of time, The longer the display, the higher the price each dove is paying.
Eventually one dove ends its display and departs. The other then collects the

Yesource,



b
bid by non-mutant

—a C ol

Figure 1: HNet Return to Mutant Bidding a

Multiplying by the probability density associated with each bid b, the expected

return is

r(alv) = Z(l - b)£, (b)db - aja'fv(b) db

Then writing
(6) T(a) = ZF(b)db,
and integrating by parts, we have,
(7 r(alv) = Fv(a) - a+ Tv(a).
This is the expected return to following the pure strategy of always bidding a.
If strategy V is the exponential mixed strategy it is readily shown that
r(alv) = 0, ¥a > 0

Therefore, regardless of the mixture of bids chosen by W its expected return
o]

r(ujv) = fr(a]\))fu(a)da
0

= 0,
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Since this is true for all p it is true for w = v. Thus condition X is satisfied
and the exponential strategy, v, is a Nash equilibrium strategy.‘
‘Bishop and Canning establish that, in the war of attrition, the exponential
strategy is evolutionarily stable in the sense of Maynard Smith, Moreover, we
"have seen that
r(ulv) = r(v|v), for all ueS.
‘ Therefore, from definition 1, it nust be the case that
(3) vl > ey, for all ueS.
It follows irmediately from definitions 4 and 5, that strategy Vv is an evolution-
arily quasi-equilibrium strategy.
Inequality (8) also demonstrates that for all u # v, strategy M cannot be a
Nash equilibrium, Hence strategy Vv is the uuiqde evolutionary quasi?equilibrium
strategy.
We now show that strategy V is not strongly evolutionarily stable. Suppose
a mutant were to appear in the population playing the alternative mixed strategy,
M, with associated cumulative distribution function Fu(a)' Utilizing (7)
r(b[w) = F () -~ b+ T (b)
Thus the expected return to playing the exponential mixed strategy V

against an agent playing U is

(9) r(v]u) = fe_b[Fu(b) - b - T,(5)1db
-0 :
£ b ~ b * ~b
= J e “F (b)db - be = - e T (b)db
[t mm - foe - [,

Integrating by parts, the second integral equals unity and the third integral,

¢ b _ R F -b
{e T, (b)db = [T (x)e]] + {e F, (b)db.
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From (6)

‘Tu(x) = [Fu(b)db

< ‘[(db since Fu(b) <1

=X

Therefore 1lim 'qu(x)e“x = 0, Collecting terms it follows that (9).can be
X>oo
rewritten as

(10) r(vjp) = 2 j'e’bFu(b)db -1
-0

In particular suppose the mutant strategy W is of the form,

0 b <ImAi; A >1
(11) Fu(b) -{

-b
1-)e b > InA
Substituting (11) into (10) we have

(12) rlw) = 3 - 1

Moreover, the expected return to a mutant when it plays another mutant is

given by

(13) r(ulu) = iju(b)[Fu(b) -b - Tu(b)]db
0

For the particular mutant strategy given in (11) we can integrate by
parts to obtain V
(14) r(uju) = -1ni,

Finally we note again, that for the exponential strategy Vv,
(15) r(u|v) = r(v|v) =0

Let M be the number of agents using the mutant strategy. Substituting
(12, (14) and (15) into (4), the net advantage of strategy Vv is

rv) - r(u) = %{“(')1\' =1+ 1nA) = InA}
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This is positive if and only if

InA
1
—>‘--1+1_n)\

(16) M > M()A) =

For all A > 1 the right hand side of (15) exceeds unity. Moreover, applying

L'HOpital's rule, 1
by
lim M(A) = lim (=—a— =) @
a1t ot ) - L
: A A2

Thefefore, in the war of attrition there are mutant strategies which have
a net advantaée over the unique evolutionary quasi-equilibrium strategy for any
finite population.

This would seem to indicate that the quasi-equilibrium concept is too weak
to be useful. However, in the above example the number of mutant invaders

becomes large only as A approaches unity. From (11), it follows that the number

of mutant invaders becomes large only as their stratégy resembles more and more
closely the quasi-equilibrium strategy.

We next show that this result holds not only for the special class of
mutants described by (11) but for alf mutant strategies. That is, only if a
mutant strategy is in a sense very similar to the exponential mixea strategy
can it invade to any significant degree.

Let M(u) be the number of mutants just large enough to eliminate their
evolutionary advantage. From (4) and (15) we have }

(17) r(v) - r(u) = H@ e - r@jw] + ruju) =0

If r(v|u) is positive it exceeds r(s|v). Then, from definition 2, strategy V

is strongly stable with respect to the mutant strategy MU. We therefore restrict
our attention to cases in which r(vlu) is negative or zero. From inequality (8)

we know that the bracket in (17) is strictly greater than zero for all u # V.
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Hence
(18) ° ruw) <0->zx(uw) <03 u#fV
Moreover, for all M > M(u), r(v) - r(u) is strictly positive. Thus M(u) is

indeed the upper bound to the extent of the potential encroachment by mutant

r(v
r{yju

is at an evolutionary advantage. Therefore, to solve for the most successful

strategy M. That is for all M > M(u) where M) = (1 - )—1, strategy V

invaders, we seek the solution of

Max{r(u|u)|r(v]u) = K, K < 0}
u

From (13)

r(ulw) {f(b)[F(b) - b - T(b)]db

But

j?f(b)T(b)db
0
= ff(b) ‘[F(a)dadb, from (6)
0
= J. J.f(b)F(a)dbda, reversing the order of integration
0 a
- b[u - F(a))F(a)da

Hence

r(ulp) = {[F(b)f(b) - bE(b) - F(b)(L - F(b))Idb

Moreover r(vlu) is given by equation (10). Therefore we seek the solution of

\) [--]
Max{{ [F(b)£(b) - bE) - F(b) (1-F(b))1db | 2f e PF(b)db - 1 = K}
F 0
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" This is a fixed endpoint problem in the calculus of ‘variations where the maximand
is subject to an integral constraint, Introducing the Lagrancg multiplier A, we
apply the Euler condition to the augmented integrand
H(b,F,F';A) = FF' - bF' + F(1 - F) =~ e 0F
It is a straightforward matter to check that
o, a < lnx

(19) F(ajl) = —a
. 1=-2 7, a> 1In)

satisfies the Euler condition, %% —'%E(%%J = 0, Moreover, since H is strictly
concave in F,’ (19) defines the unique global maximum. Comparing (19) and (11)
it follows that for any given K, the largest possible invasion is achieved by a
mixed strategy with distribution function F(a;A(K)).

From (12) r(v|u) =~% - 1 for the exponential family. Setting.this equal to

K we have

A=t

1+K
Then from (16), strategy ¥ is at an evolutionary advantage if and only if

M> (1 - K/1n(1 + K))"l

Finally we note that r(v|u) is a natural measure of the difference between the
distribution. Fv(b), associated with the quasi-equilibrium strategy and the

distribution. Fu(b), associated with some mutant strategy. Let
d(u,v) = zj?e-x(F (x) - F_(x))dx
0 H v

0o
= 2£.e-xFu(x)dx - ZJPFG(X)Fv(x)dx, since Fv(x) =1-¢"
= ZJ?e-xFu(x)dx - 1.
Comparing this with expression (10) it follows that

d(u,v) = r(viw.
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The above results can then be summarized as follows

THEOREM MAXIMAL INVASION BY A MUTANT
Let dlu,v) = Zfe (F,[x) - F{x))dx measure the difference between

the cumulative distributions Fu’ F, aAAocj,a,ted with stnategies u and v,

Then the exponential mixed strategy
F lb) = 1 - ¢
- is strnongly evolutionarily stable with nespect Zo all mutamt stnategies
u fon which dlp,v) 4is positive.
Furthenmone, among the mutant sirategies for which diu,v) 48 negative,
the tangest possible invasion is equal 2o [1 - diw,v)/en(1 + dlu,v117".

That this is a powerful result is easily seen by considering the following table.

d(u,v) [1 - d(u,v)/InCL + d@u,v)]7t
-1.0 0
-0.5 2
-0.1 20
-0.01 200
-0.001 2009

Except when d(1,V) is extremely close to zero, the upper bound on the

number of invaders is low.
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4, AN ALTERNATIVE APPROACH

In the previous section it was established that for the war of attrition
many mutant strategies have an evolutionary advantage over the unique quasi-
equilibrium strategy. However, it was also shown that unless the mutant strategy
is very similar to the equilibrium strategy, it cannot encroach upon the latter .
to any significant extent, This suggests that if the quasi-equilibrium strategy
were ever to be established it could survive for a very long périod of time,
However, suppose an empirically indistinguishable mutant were to invade and
eventually replace those using the quasi-equilibrium étrategy. From (18), we
know that the expected return to this mutant, when in conflict with another of
the same type, is negative. It is easy to show that drastically different strategies
are now at an evolutionary advantage. For example, the simple strategy of avoid-
ing all conflicts has a larger return (zero).

This raises at least the theoretical possibility that the quasi-equilibrium
strategy might eventually be replaced by one or more quite different mutant
strategies.

At the very least, the above results make it clear that for the model
described by Maynard Smith, partial encroachment is the rule rather than the
exception.

However, to this author it 1s far from clear that the usual formal descrip-
tion of Maynard Smith's model is entirely appropriate. Rather than assume both
agents place the same value V on the desired object, it seems natural that each
would value it according to some underlying distribution. For example, if the

object is food it is reasonable to suppose that each agent's value is dependent

upon the length of time since the last meal,
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This introduces an element of informational asymmetry since each agent
knows its own valuation of some contested object, but not that o? its opponent.
As we shall see, adding this asymmetry drastically changes the nature of the
evolutionary equilibrium and its-stability properties.

To keep things simple, suppose each agent's true value is distributed
uniformly over the interval [0,V]. When two agents conflict, bofh know thelr

own true value but not that of the other agent. Suppose the first adopts the

strategy; v, of bidding
2
(20) b1 = Vl/ZY |

where V. is the agent's true value of the object.2 1f the other agent's true

1
value is VZ’ and it places a bid, b, its expected return is
r(b|v) = (Vz—b)Pr{the first agent wins} - bPr{the first agénc loses}

(Vz-b)Pr{the first agent wins} - b(1-Pr{the first agent wins})

V.Pr{the first agent wins} - b

2
V2Pr{b1 <b}-b

V2Pr{vl < (ZYb)-I/Z} - b, from (20)

Furthermore we have assumed that V1 is distributed uniformly over [O0,V]. Thus

x/V x <V
Pr{v1 < x} = { - -
1 x>V
Hence
vzczyb)l’zly - b, 0<b < V/2
(21) r(b|v) = -7 ’
vV, - b, V/2 <b

A constructive derivation of this strategy is provided in the Appendix.
For a related discussion of equilibrium strategies for the English and Dutch

auctions, see Vickrey (1961).



The expected return r(b|v) is a strictly concave function of b, increasing
at b = 0, for all V2‘> 0, and decreasing outside the interval [o, %Y]. Thus
there is a unique optimal response, bZ’ and this must lie in the interval [O;EY].
Differentiating r(b|v) and solving, we have,

(22) by = V2/2U, 0 <V, <V
Comparing (20) and (22) it follows that the second agent's unique best response
is to use exactly the same strategy as the first agent.

Thué, for any alternative strategy, U,

(23) r(ulv) < r(v|v).

Consider again the net advantage to using strategy Vv, given in equation (4).
Since the secon@ and third brackets are bounded from below, the first term
dominates whenever M/N is sufficiently small,

From (23), the first bracket is strictly greater than zero for all alter-
native strategies. Therefore the requirements of Definitions 2 and 3 are satisfied
and strategy v is a strong evolutionary equilibrium,

Finally, it should be noted that this result is not dependent upon the
assumption that each agent's value is distributed uniformly on [0,V]. In the
appendix it is shown that if the conflicting agents values are drawn from any

continuous distribution there exists a strong evolutionary equilibrium strategy.
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Appendix 1: The War of Attrition with Asymmetrical Information

Suppose the values that two agents place on an object can be represented
as random drawings from a population with cumulative distribution G(V), where
G'(V) is piecewise continuous and G(V) = 1.

Suppose further, that the first agent adopts the strategy of making a bid
bl, which is a strictly increasing function of Vl’ its own valuation of the
object. That is
(24) b, = h(V)), h'(:) >0,

We shall refer to this behaviour as strategy V.
From section 4, if agent 2 makes a bid of b, its expected return is
r(b|v) = V2Pr{b1< b} - b
= V,Priv,< ih-l(b)} -b from (24)

(25) = vzc(h"l(b)) - b

The optimal response of agent 2, is therefore to séiect the bid, b2’ that maximizes
r(b|v).
Since we seek a Nash equilibrium we need consider bids in the interval

{h(0), h(V)]. Then associated with each possible bid b is a value

~

(26) v o=n"t).
Substituting into (25) we have,
27 r(b|v) = V2G(V) - h(V).

~

Therefore agent 2's optimal response is to select V2 to maximize expression (27).

Differentiating yilelds
d ”~ ~
(28) —r(b|Vv) = V,6' (V) - h'(V)
46 2
=0 at a local maximum,
Since b2 = h(Vz) the optimal strategy of agent 2 is identical to that of
agent 1 if and only if V2 = V2. Thus for a strategy v to be a Nash strategy we

require



U = . -
V,6'(V,) - h'(V,) =05 0 <V, <V

Integrating then yields °
v
hv,) = [ 2ve'(Mav + ¢
2" 0

Since h(0) = 0 the constant of integration is zero,

Integrating by parts we have finally
(29) h(V,) = V,G(V,) - t’)’Vzc(vmv :
Note that, since C(Vz) < 1, the optimal bid b2 = h(Vz) is never greater than
the value of the object. |

It renains to check the second order conditions for a maxinum,

Differentiating (28) and using (29) we have

2

o (xo]v) ,vzc"(\7) - RV
dv

L[]

-G' (V)
<0, 0<V<V.

Therefore if the first agent adopts strategy v, of bidding
: v
b=h (V) = v6(V) - [ G(x)ax,
v 0

any nmutant strategy M # V yields a strictly lower expected return to the second
agent. Thatris, for all p # v
r(ulv) < r(v|w
Strategy V is thus a strong Nash strategy with respect to all nutant
strategies, As already noted in section 4, this implies that v is a strong
evolutionary equilibrium strategy.

For the special case in which actual values are uniformly distributed on

[0,V] we have
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GV) =V/V  0<V<Y
Substituting into (25)
b = (V) = V2/2¥
Then all bids lie in the interval [O,Y/Z]. Moreover, since V is distributed

uniformly the average gain to agents joining such conflicts is

v Vo2, 2
_g‘r(h(vnv)dc =£ (v°/2y")av = V/6.

Finally, to solve for the average price paid, we note that this is simply

the expected value of the lower bid. Since both bids exceed V with probability
2
(l - G(V)):

1= (1=-cn?

Pr{lower bid < v}

26(V) - G(Vv)2

Then the expected value of the lower bid is

\ 1 N
-rvlzc' - 26G"}dV = V -.rc(v)(z -~ G(V))dav.
0 0 :

For the uniform distribution it is a straightforward exercise to show that

the latter integral is equal to 2V/3. Hence the average price paid is V/3.
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Appendix 2: Evolutionary quasi-equilibrium in the Var of Attrition.

For. completeness, an alternative proof that the exponential mixed strategy
is the unique quasi-equilibrium strategy, is provided below.
In section 3 it was shown that, for the exponential mixed strategy Vv, and
any alternative yu,
r(u|v) = r(v|v) = 0,
Thus V is a Nash equilibrium strategy. Also from equations (10) and (13)

(30) r(ujy) - r(viw)

oo . o0 _b
= {Fu(b)[Fu(b) -b - Tu(b)]db -2 _(l; e Fu(b)db +1

[vo]
Moreover, j.F'(b)Tu(b)db
0 H

= b
_gFl'l(b)_!). F (a)dadb

(2]

o0
.r Fu(b)FL(a)dadb, reversing the order of integration
0b

1

beu(b)(l - F, (b)db

Substituting into (30) we have

(31) r(ulu) - rv[w
= i ' - - : _ 9.~D
J[Fu(Fu b) + (1 Fu)l‘ 2e Fu]db + ;

We now ask which mutant strategy | maximizes this difference. Mathematically we

seek the distribution function, Fu(b), which maximizes

J 1), ¥ () ,b)ab
0
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such that F(0) = 0 and F(®) = 1 where
I=F(F-b)+ @Q-FF- 2¢ °F
This is a standard, fixed endpoint problem in the calculus of variation. Among

the family of continuous density functions, the Euler necessary condition,

o1 d .(BI)

(32) 3F " db =0

GOFY .
defines a local maximum, Moreovér, since the integrand, I, is strictly concave
in F, the necessary condition is also sufficient and hence defines the global
maximum.. Substituting for I in (32), the naximizing distribution function,

Fu(b), therefore satisfies _
~b d
- ' - - - =
(1 ZFu(b) + Fu(b) 2e ) db(Fu(b) b) 0
Rearranging we have,
F (b) =1~ e @
But this is the distribution function of thguexponentiél mixed strategy V. Then,

for any ¥ # Vv,

r(ulw) - rw) <max{r(ulp) - rvjw}
HES

]

r(v|v) - |V

= 0.
It follows that strategy Vv is the unique Nash strategy. Horeover the sufficient
conditions for weak stability, derived in section 2 are satisfied. Hence the

exponential nixed strategy is the unique evolutionary quasi-equilibrium strategy.



