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An Alternative Reporting Style for Econometric Results

Estimation results which are reported in the American Economic Review

and all other economics journals are selected from a large set of estimated
models. Journals, through their editorial policies, engage in some selection,
which in turn stimulates extensive model searching and pre-screening by
prospective authors. Since this process is well-known to professional readers,
the reported results are widely regarded to overstate the precision of the
inferences they claim,and probably to distort them as well, Statistical
analyses are, consequently, greatly discounted, and, by many, completely
ignored.

This informational equilibrium is tied to the current econometric
technology which generates inferences only if a precisely defined model
is available, and which can be used to explore the sensitivity of inferences
only to discrete changes in assumptions. The reporting of a complete
sensitivity analysis is ruled out therefore first, because the econometric
theory, which takes models as given, would be rendered explicitly inadequate
if the sensitivity analysis were reported, and, second, because the econometric
technology, if used to explore sensitivity issues, would generate vast
numbers of estimated models which journals are rightfully reluctant to print.

It is the purpose of this article to discuss an alternative econometric
technology, which could alter substantiallythe current informational equilibrium.
The philosophy underlying this technology is that analyzers of nonexperimental
data cannot sensibly take a model as a given. Because there are many
models which could serve as a basis for a data analysis, there are many

conflicting inferences which could be drawn from a given data set. If



this fact of life is acknowledged, it deflects econometric theory from the
traditional task of identifying the inferences it is proper to draw from

a data set given a model to the task of determining the range of inferences
it is proper to draw from a data set given a range of models.

A simple introduction to this alternative econometric technology 1is
given in Section 1 of this paper. In writing this section we have attempted
to communicate the main ideas as concisely as possible. As a consequence,
there is no reference to any sophisticated statistical theory and especially
no mention of the Reverend Thomas Bayes. For a more complete statement
as well as theological fanfare, consult Leamer (1978).

Revisionist econdmetric theories have been propounded from time to time,
but the (unfortunate) reality is that the last econometric theorist who had a
truly profound influence on the way economists report their results was
Carl Freidrich Gauss. Manifold important contributions have been made
since Gauss, but these haye typically involved perturbations on the central
theme. We believe our suggestion embodies a fundamentally distinct per-
spective. 1In an effort to make clear its value, we present three examples
in Section 2. These examples are not unrepresentative of the interpretive
richness which in our experience attaches to the use of the alternative
technology we propose. We are prepared to rest our case primarily upon
this richness as embodied in the examples. These examples were computed

by a program we have named SEARCH, which is available on request.



The Statistical Theory

For pedagogical purposes, consider the linear regression model

Yt = th + lelt + Yo2Zor + u, 1)

where t indexes a set of T observations, u, is assumed to be an independent

normal random variable with mean zero and unknown variance 02, (Yt’ X , 2

t 1t’

Zzt) is an observable vector and (B, Yl, YZ) is an unobservable parameter
vector. Inferences are to be drawn from a data set about the effect of the
variable x on the dependent variable Y. 1In an ideal experiment, the variables
z, and z, would have been controlled at some constant level. As a substitute
for experimental control, the variables zy and z, are included in the equation.
A researcher, wishing to show that B is large or finding it difficult
to estimate Y1 and Y, accurately might estimate the four different regressions
using different subsets of the "control" variables (zl, zz), and select for
reporting purposes the most favorable result. The alternative procedure,
which is advocated here, is, first, to enlarge the search, and, second, to
require reporting of both the most favorable and the least favorable outcomes.

The search may be enlarged by defining a composite control variable

w(®) =2z, +6z)

vhere 0 is a number to be selected by the researcher. The regression model

is now

Y = th + nwt(e) +u, (2)

Each value of 0 selects a different constraint of the form Y, = Gyl and

consequently a different method for estimating 8. Allowing 6 to take any



value contrasts with the usual search procedure in which 6 is implicitly
permitted to take one of only four values:

(1) if only z. is in the equation, then 6 = O.

1
(2) if only z, is in the equation, then 6 = «.
(3) 1if both z) and z, are in the equation, the coefficients n and nd on

z, and z, must be the least squares estimates of ?1 and ?2. Using the notation

that the least squares estimated coefficient of q as an explanatory influence

of p in a model also containing r is bpq-r' this implies that
byz * Xz
e:;/'fy\ =____2——-.-_1;
2°'1 b 7. .xZ
y21°%%2
(4) if neither z, nor z, is in the equation then the least squares

estimate of n must be 0. Denoting by M the idempotent matrix

I - x(x'x)—lx', this implies
¥
Ozﬁsb .Lfiw-

yw'X W Mw

so that 0 =y 'Mw = y'M[zl + 6z,].

y Mz, -y~Mz1/y'My - z,¥°X
Thus 8 = - g~ = Jo&, /y My b
y -z, y o/ Yy Z,y X
b -b
yzz.xz1 z,y°x
Constraining 6 to be one of 0, «, and 5 has the virtue of
yz, %2, z,y-x

historical acceptance and the additional merit that it is comparatively easy
to carry out computationally in\the context of the existing econometric
technology. It has no other obvious intrinsic virtues. €onsequently,
we now expand the search to include all values of 0.

To each value of © there is a least squares estimate of B, é(e).

The most "favorable" value of 0, for the researcher who wishes to show



B is large, is found by maximizing é(e) with respect to 6, and the least
favorable value is found by minimizing B(6). These extreme values, émin

and Emax, delineate the ambiguity in the inferences about B induced by the
uncertainty about the model. If the interval [amin’ amax] is short in
comparison to the sampling uncertaintyl, the ambiguity in the model may

be considered irrelevant since all models lead to essentially the same in-
ferences, But 1if the bound is wide, an effort should be made to narrow
the family of models, and, hopefully, to sharpen the inferences. One way

to narrow the family of models is to constrain the parameters, Yl and Yz’-

to lie within the ellipse

22, .2 _ 2
Y2t Y, < : (3)

where a is the relative lengths of the two principal axes and r is the radius.
This may seem initially to be a peculiar thing to do, but this constraint

is the foundation of the voluminous literature on "biased estimation."2

It can be justified in the following way. The only compelling reason for

the omission of the z-variables is that they are thought to be doubtful.

If they truly don't belong in the equation, then a better estimate of B can
be produced by an equation with the z-variables omitted. To say that the
z-variables are doubtful 1is to say that the parameters, Yy and Yy are

small. One precise definition of smallness is given by equation (3), and

a natural way to estimate the parameter B is to use least-squares subject

to the constraint (3). Henceforth, this constraint will be called the prior

lAn lternative definition of shortness derives from a decision problem
ﬁ- the interval is short 1f all values in the interval lead to

based on
essentially the same decision.

2This includes ridge regression, minimum mean-squared-error regression and
"Stein'" regression.



ellipse in reference to the fact that it represents infbrmation about Y1
and Y, which is available prior to the data analysis.

If the parameters of the prior ellipse, az and r2, were kﬁown, this
procedure would generate a unique estimate, but we are unaware of any real
data analysis situations in which the values a2 and r2 could be sensibly
taken as given. For any value of a and r, there is a constrained least-
squares estimate, @(a, r), computed by minimizing the sum of squares subject

to the constraint (3). We now turn to an examination of the function é(a, r).
Consider first the case when a2 18 known, taken without loss of generality
to be equal to one. For every value of tz, equation (3) defines a circle
located at the origin, depicted in Figure 1. Also depicted in Figure 1
are the unconstrained least-squares estimates of Y1 and Yo» and the contours
of equal residual sums-of-squares around (;1,;2). It should be noted that the
sum-of-squared residuals depends on the estimate of B as well as on the estimates
of Yl and YZ' The contours in Figure 1 make use of the conditional least-
squares estimate of B, given Y1 and Yys 80 that the residual sum-of-squares
can be written as a function of Y1 and Y, only.
The estimation problem of minimizing the residual sum-of-squares sub-
ject to the constraint (3) can be defined graphically in terms of a tangency
point between a sum-of-squares ellipse and the given circle located at the

origin. As the radius of the circle is varied, a curve of estimates is

formed which we call an information contract curve.éj This language is

selected to suggest the Edgeworth-Bowley analysis of trade between a pair of

consumers, a setting which is analogous to our own problem both mathematically

gfhis curve has been called the '"ridge trace" by Hoerl and Kennard (1970)
and the '"curve decolletdge" by Dickey (1975).



and substantively. In the Edgeworth-Bowley analysis, a contract curve
represents the Pareto-efficient allocation of commodities to a pair of
consumers with conflicting desires. Here, the information contract curve
represents the "Pareto-efficient'" set of estimates given two conflicting
sources of information.

The choice of a point on the contract curve in the Edgeworth-Bowley
analysis requires cardinal utility and a social welfare criterion. To put
it differently, there has to be a way of comparing the utilities of the two
consumers. Analogously, the choice of a point on the information contract curve
requires us to compare the strength or precision of the two information
sources, a problem to which we return below.

Next consider the case when neither a2 nor r2 can be taken as known.
For any a there will be a contract curve, two of which are depicted in
Figure 2. The hull of all such curves is just the shaded area, which has
been shown by Leamer and Chamberlain (1976) to be a subset of the set of all

weighted averages of the four regressions formed by omitting (or not omitting) the tw

z variables. This brings us back to the procedure which was first mentioned in
this section. Now we have a justification for it: 1if, in the researcher's
opinion (and his readers!), he thinks Y1 and Y, are small in the sense of

the ellipse (3), but he knows neither az nor r2, then the extreme estimates
that can be generated from the sample are the four regressions formed by
omitting the z variables. We would then recommend, in fact require, that

he report both the minimum and the maximum estimate of B from among this set of

four regressions, and in addition we would suggest reporting the other two

as well.



The widest bound for B swept out by the parameter 6 can also be
depicted graphically. The prior ellipses so far considered all have axes
in the coordinate directions. The quadratic form (3) which determines
these ellipses can be minimized by reducing Y1 and Y, independently. If

the quadratic form were, more generally,
2 2 2 2
Y8 + Yo + €YY, ir

then instead of reducing Yl to zero, it is preferable to translate Yl to
—cYZ/Zaz. This quadratic form determines a tilted ellipse, which can
generate estimates outside the shaded area in Figure 2. The hull of
all contract curves, with all families of prior ellipses, is the shaded
area in Figure 3, The boundary of this region, which is an ellipse, is
the set of constrained least-squares points subject to constraints of the
form Y, = Oyl, where 8 varies from == to w.ﬁ/

We have now discussed three bounds for the estimates of B which can be

generated from a given data set, The choice among these bounds depends

on how precisely the researcher is willing to define the vague notion tha;

the z-variables are doubtful. If nothing more can be said, the widest set of
estimates, depicted in Figure 3 applies. If it can be agreed that the definition
of doubtful should be restricted to mean that yi az + Y% is 1likely to be

small, where a2 is left undetermined, then the shaded area in Figure 2 is

the bound. If, thirdly, "doubtful" is even more precisely defined to mean

that Yi + Yg is small, then the contract curve in Figure 1 defines the bound.

-i/For a proof see Leamer [1978, p. 128].



To narrow the bounds further, it will be necessary to devise a method
for choosing points from a contract curve. As in the Edgeworth-Bowley
analysis, this will require us to compare the strengths of the sources of
information. If the sample information is relatively precise, it will be
better to select points relatively close to the least-squares point. Con-
versely, if the prior information is relatively precise, we will prefer
points in the neighborhood of the prior point, the origin in our example.
One way to make the prior information comparable to the sample information
is to act as if the prior information came from a previous set of observa-

tions. Suppose we observed the process
* = * * *
Ve = V12l Y V2% Y Y
with u: normally distributed with variance 0*2. Suppose also that

=0, I z*2 =1, and I z* Y* = 0.

L t it titt

*1e%3
Then the least-squares estimate of Yl and YZ would be
(?{, ?5) = (0, 0) with variance matrix 0*21 .

Now consider pooling this prior sample with the sample generated by

equation (1). The pooled estimates may be obtained by stacking the two

samples:
A "'l
R 0 0O x'x  z!x zéx
Yh . -2 =21 ., , '
1 c{ 01 0 +0 2)X 22, Z3Z9
Atk 1 1
Yy 0 01 2% 2524 2,2,
x'Y
0'.2 2!y
z!y
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Using the partitioned inverse rule we can obtain

~ ] -1
Yk L1 o0 _ofzIMz. z!Mz
1 - ok 2 + 5 2/°1 1 172
R 1
'Y** ] 1
2 0 1 zzle zzMz2
]
leY s
'MY °
%2

where M = T - x(x'x)-lx'. This equation describes the pooled estimates
of Yl and YZ as a function of the variance ratio 0*2/02. If this variance
ratio is small, the estimates will be close to the prior estimates (0, 0),
and if this variance ratio is large, the estimates will be close to the

least-squares estimates

~ ' ' -1 '
Yl lezl zluz2 leY
z - 1 ] ]
Y2 zZle 22M22 zzMY

Moreover, as the variance ratio is varied from zero to infinity, the
estimates (?**, ?3*) will sweep out exactly the contract curﬁe depicted
in Figure 1.

To the extent that the prior information can be considered as coming
from a hypothetical normal experiment, and to the extent that we can select
the variance ratio 0*2/02. we are now able to pick a particular point from
the contract curve.

The variance 02 can be estimated from the data Y, x, Z)5 Zgpe The prior

variance 0*2 presents greater difficulty. This number determines the size
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of the prior confidence intervals for Yy since a 95% interval, for example,
is ]yil < 1.960*. 1In selecting a value of o*, it is therefore necessary
for the researcher to ask himself how confident he is that Yy is small.
If he feels very confident that Iyil < 1.96, then o* = 1 may be a useful
starting point.

It seems to us unlikely that a Precise number for o* could ever be selected.
We recommend a sensitivity analysis in which several different values of o*
are selected. A researcher might sensibly constrain o* to an interval such
as .2 < 0% < 4. As o* is varied in this interval, a subset of points on
the contract curve is selected. Often this subset of points will be so narrow
that the ambiguity that remains will be for practical purposes irrelevant.

There is another approach that can be used to narrow the bounds. It
may be argued that the fictitious prior sample should not be treated on
the same footing as the actual sample. We would rightfully be suspicious
of prior information which implied an estimate outside the 95Z sample confidence
ellipsoid. This suggests repeating the preceeding analysis with the addi-
—tional constraint that the estimates fall within the aZ% sample confidence
ellipsoid.

To see the implications of this constraint, examine Figure 4. Given
particular values of Yy and Y,» an ea;imate of B may be computed by regressing
Y = 2z3Y] - 2,Y, on x: é(yl,yz) - (x'x)-lx'[y - zlyl-zzyzl, which is a linear
function of Y1 and Yo+ In the following discussion we assumé that x'22 =0
and consequently extreme values for B occur whén ?1 is éxtreme. If it is
desired to discuss the evidence about B, there are three points on the 957

ellipse which can be mentioned. Point C is on the contract curve. It is
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the point within the 95% confidence ellipse that 1is most favored by the
fictitious prior sample. Corresponding to point C is a unique value of o*
which would imply point C as a pooled estimate. If this number is very samll
it may be inferred that point C is an unlikely pooled estimate, since the
prior sample would have had to be quite informative to produce it. The
two other points in the figure, A and B, represent the extreme values of
é(yl, Y2) within the 957 sample ellipse, and also within the ellipse of
constrained estimates. The extreme points on the ellipse of constrained
estimates, A' and B', may be very unlikely from the point of view of the sample.
The points A and B, which may require an unlikely prior sample, are none-
theless reasonably acceptable from the standpoint of the data. 1In the
fortuitious event that A, B and C are all close, it is not necessary to
consider further the question of whether the priors that imply points A
and B are sensible.

All of this discussion may now be summarized in a single graph, Figure
5. The horizontal scale is the probability value attaching to a given sample
confidence ellipsoid. When that confidence level is zero, the sample ellipsoid
is a single point; as the confidence grows, the ellipsoid grows to contain
the whole space. The points A, B and C from Figure 4 can be found on the
graph, with left-hand side vertical scale. The value of 0* necessary to
determine point C can be seen to be .25 from the right-hand scale. Also
depicted is the pooled t-statistic of the coefficient, called the .8

posterior t. If O* is equal to .25 the posterior t for B is seen to be,72f/

We note in passing three simple generalizations that greatly increase
the applicability of the preceeding discussion. First, there is nothing
special about the choice of zero as a point of departure for coefficient
values. We have so far treated "doubt" about coefficients implicitly as
doubt that they are different from zero, but we could as easily treat doubt

that they are different from any other selected values.
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The second generalization is that prior information need not apply only
to individual coefficients, but may apply as well to linear combinations.
This amounts to the observation that the parameterization of the model has
to be selected by the researcher. For example, equation (1) can be rewritten
as Yt = B(xt + 21, + zZt)+(Yl - B)z1t + (yz - B)z2t + u., in which case, when
the variable zZ, is omitted, the restriction Y, = B is imposed. A member
of the continuous set of restrictions indexed as above by O then takes the form
(yy - B) =8(y; - B).

The third generalization is that we need not focus on a particular
coefficient value as the issue of interest; we can as easily treat the in-
ferential ambiguity pertaining to any linear combination of coefficients.
This, like the second generalization, can be expressed merely as the problem

of choesing the parameterization.

Examples

In this section, we offer three examples of the alternative method
and reporting style which we recommend. The numbers reported are all computable
by a regression package which we have named SEARCH (Seeking Extreme and

Average Regression Coefficient Hypotheses).

Doubtful Variables—zl

It is very common to have a model with a few explanatory variables that
are known to belong in the equation and a longer list of "doubtful" explanatory
variables. The first set of variables is likely to be the focus of the analysis,
and the second set is used to "control" for other influences. If the list
of doubtful variables is long, estimation with all the doubtful variables
included in the equation produceslarge standard errors on the coefficient

of the "focus" variables. In this situation, it is typical to try different

é-/'I‘his: material is drawn from Leamer (1978, p. 194-197).



14

subsets of the doubtful variables, and it is hoped that the coefficients
of the focus variables will nof change much as the list of doubtful variablec
is changed. But this search is both haphazard and nonexhaustive. Furthermore,
if the coefficients of the focus variables change very much, this ad hoc
search does not suggest how to average the many computed estimates into a
single number.

SEARCH is ideally suited to deal with this problem, The bounds that
the program reports are the extreme estimates of the focus coefficients
with ideally chosen doubtful variables included in the equation. There is
no way of "fiddling" with the doubtful variables to get an estimate outside
the reported range, The points on the contract curve reported by the program
are mixtures of the 29 regressions that could be computed using subsets of
the q doubtful variables. Thus the program searches exhaustively the set
of possible regressions and also suggests weighted averages of the regressionms,
the latter being important when the bounds are wide.

The following example has eight "doubtful" regional dummy variables.
The dependent variable is the wage rate, and the focus variables are the
education of the wage earner, his age, and the square of his age. A dummy
variable for a region 1s necessary if the labor market in the given region
is "separated" from the markets in other regions. To say that the dummy
variables are doubtful is to say that in the‘absence of evidence to the
contrary, we should view the labor market as a national market.

The estimated model with all the dummy variables included is (standard

errors in parentheses):
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(.34) (.32) (.46) (.34)

4

+.004D5 -.17806 + .086D7 +.060D8

(.46) (.43) (.50) (.35)

+.05EDUC + .137 AGE - .0015(AGE)> + 5.737
(.30)  (.047)  (.0006) (.96)

where b, = liid-Atlantic
D, = East North Central
D, = West North Central
D, = South Atlantic
D, = East South Central
D, = West South Central
D, = Mountain
D, = Pacific

(New England omitted)

The bounds for the coefficients of the three focus variables are
reported in the table below., The numbers in parentheses are the standard
errors of these coefficients if the model that implied the estimate could
be taken as given, (Remember that these bounds include regressions subject
to constraints such as Bl = 82, which says the Mid-Atlantic and East North
Central regions can be aggregated. They also include constraints of the
form Bl = 0,)

Table 1

Bounds for the Focus Coefficients using Any Combinations of Regional Dummies

EDUC AGE (acE)’

Minimum .0446(,0178) - .131(.029) -.00155(.00035)
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For this particulaf problem the ambiguity in the specification does not
translate into substantial ambiguity in the focus coefficients. The
interval of estimates for the education coefficient is .0446 to .0577. But
the sampling standard error of this coefficient in the unconstrained model
is .03, which is large compared to the specification range .0577 - .0446 =
.0131. To put it briefly, the sampling error is more important than the

specification error.

Functional Form

The descriptive perspective of the "doubtful variables" problem just
treated can readily be generalized to encompass wider problems of the func-
tional form of the underlying relatiomship. An investigator may wish to see
ﬁow sensitive his inferences are to changes in functional form. A common

apbroach to this problem is to add second order and interaction terms in
variables to see how much difference they make. SEARCH provides a more
complete and definitive approach.

As an example, supppse we were interested in estimating the value of
adding a room to a house. We might consider the log linear hedonic price

index for housing attributes estimated using ordinary least squares:

1n py = .0024yr, + .045 Hodkiti + .046 Garages, + .049 Hearths

L i
(,0002) (.009) (.006) (.006)
+.,0029 Lot, + .24 Floor, + .11 Baths, - .033 Consqual,
(.0002) (.02) (.02) (.003)
+.19 1n (Rboms)i + ,021 Ppupttc;i + .15 ln(Inc.)1
(.03) (.004) ©(.03)
-.0015 Dist, - .014 rloorf +.0083 Floor, Baths,
(.0002) (.005) (.008) -

-,0092 Floor Rooms

_ i i
(.003)
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where Py is the price of the ith house
yry is the year in which the house was built
Modkiti is 1 1f house 1 has a modern kitchen

Garagesi is the number of garages 1

Hearthsi is the number of fireplaces

Loti is the size of the lot (in 1000s of square feet)

Floori is the floorspace (in 1000s of square feet)

Bathsi is the number of baths

Consquali is a construction quality index from 1 to 9 (with 1 best)

Rooms, is the number of rooms

i
Ppuptrct1 is the per pupil school expenditure in the census tract m
Inc, is the average income in the census tract

i
Dist:i is an index of distance to employment for the town in which

the house 1is located
1 is from 1 to 2195 single family houses sold in one of thirteen

" guburban towns in the Boston SMSA in 197 .

The focus variables in this equation are baths, rooms, and floorspace; the
issue at hand is the value of additional rooms. The last three terms (floorz,
floor * baths, and floor * rooms) are included because concern has often

been expressed by researchers using this data that the relation between

house value and these variables may be nonlinear and may involve interactions.
These variables are to be treated as "doubtful"; thus, the issue to be
investigated is whether it is material (in terms of inferences concerning

floorspace or room value) whether the relationship between the log of house
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price and floorspace, rooms, and baths is presuméd to be simple and linear
or, rather, nonlinear and interacti#e.

Since the index is log-linear, the derivative of the dependent variable
with respect to an explanatory influence is the estimated percentage change
in house value for a one unit change. Because the relationship is nonlinear,
we must choose a point at which to describe the derivative. We focus initially
on the "mean attribute house,” which has the mean floorspace (1491 sq. ft.)
number of rooms (6.8), and number of baths (1.6).

Table 2 shows the extreme bounds for estimates of the value of 500
sq. ft. of additional floorspace and the value of an additional room, both
evaluated for the mean attribute house, under the presumption that the three
quadratic terms in the equation are doubtful. Consideration of potential
specification error in this form clearly generates substantial ambiguity
about both issues. We are therefore forced to consider additional restric-

tions that may help us to limit our uncertainty.

Table 2

Bounds for Value of Floorspace and Rooms as % of House Value

Value of 500 sq. ft. Value of

of Floorspace Additional Room
Extreme Upper Bound 7.4 (.5) 1.9(.3)
Extreme Lower Bound 4.8 (.4) 1.2(.3)

We consider first the value of additional floorspace by itself. Treat-
ing the three quadratic terms in the equation as doubtful, the extreme
estimates for the value of 500 square feet of floorspace (with no additional

room) are 4.8% and 7.4% of the value of the house. This range of 2.6%,

compared with the standard errors of about .4%, is quite wide.
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The summary diagram, Figure 6, shows the constrained extreme bounds
for all values of the data confidence level. We note immediately that
practically all of the ambiguity (in terms of the width of the unconstrained
bounds) occurs at points in the feasible ellipsoid that are highly unlikely
in the view of the data. If we agree to limit consideration to those points
that are both within the ellipsoid of constrained estimates and also within
the 90% data confidence ellipsoid, then the range of estimates is only from
6.6% to 7.4%.

Narrowing the estimate further would require the imposition of additional
information. For example, it might be believed that the statement that the

15
quadratic terms are not important takes the special form that I e? is

= J
small. This narrows the focus from all possible contract curvislzor this data
with these three terms doubtful to one special contract curve. If we consider
the whole range of this contract curve, the range of estimates is from 4.9%
to 7.3% of house value, which is almost as wide as the range given by the
extreme bounds. If we restrict attention to the part of this contract curve
that lies within the 90% data confidence ellipse, the range of estimates
is from 6.7% to 7.3%. This range is nearly as wide as the extreme bounds
within the 90% confidence ellipsoid.

Figure 6 thus shows that imposition of this special form of doubt that
the three quadratic terms belong in the equation hardly reduces the inferential
ambiguity at all. This is because the particular contract curve we have
chosen starts almost as high as the extreme upper bound and runs very close
to the extreme lower bound. This special restriction on the form of doubt

is much less helpful in this instance than is the restriction of attention

to estimates within the 90% data confidence ellipsoid.
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We focus next on the value of an additional room (with no additional
floorspace) for the mean attribute house. Here the extreme bounds are 1,22
and 1.9% of house value, with standard errors approximately .3%. This
range seems smaller only because the estimates are smaller absolutely.

The ambiguity due to uncertain knowledge of functional form is of the same
order as the sampling uncertainty. Figure 7 shows the constrained extreme
bounds over the range of data confidence ellipsoids. We note that in this
case the constrained bounds increase smoothly, and that only fairly severe
restrictions in terms of data likelihood provide material reductions in
inferential uncertainty. For example, even by restricting attention to
estimates within the 75% data likelihood ellipsoid we are left with a range
of estimates from 1.3% to 1.7%, which offers hardly any improvement over
the unconstrained bounds.

In this case, however, as indicated by Figure 7, the additional restric-

15
tion that I 82 is small limits the range to from 1.5%Z to 1.6%. Moreover,

. b

j=13
restricting attention to those estimates on the contract curve within the
99.9% data confidence ellipsoid reduces the range to from 1.48% to 1.53%.
We conclude that the value of an additional room can be estimated with

little specification ambiguity, but only if we accept a special restriction

on the form of '"doubt" that the estimating equation is nonlinear.

We now consider tﬁe combined effect of an additional room and 300
square feet of floorspace. To make the nonlinearities in the equation
more important, we shift focus to a house larger than the mean, with 2,000
square feet of floorspace, 2 1/2 baths, and 8 rooms. The extreme estimates

with no limiting assumption about the form of doubt that the equation
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involves second order interactions, are 3,82 and 5.0% of house value, with
standard errors of about .3%. This range is appreciable, but appears less
important than that of either floor value or room value alone.

If we did wish to narrow the range further we would turn to the constrained
bounds. Figure 8 shows the constrained bounds and contract curve. As in
the case of value of a room alone, the constrained bounds increase smoothly
as we consider less likely data confidence ellipsoids. There is again little
to be gained except by inposing quite severe restrictions on the level of
data confidence. As the figure indicates, however, we can reduce the ambiguity

greatly by limiting consideration to the single contract curve corresponding

15
to the restrictions that I B? is small. This limits the range to only 4.3%
j=13

to 4.5%2. 1t is interesting to note that restricting consideratibn to the
part of the contract curve within reasonable data confidence ellipsoids is
not particularly helpful, since the values from 4.3% to 4.45% are en-~

countered within the 50% data confidence ellipsoid.
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Distributed Lga:Estinntion

Another common problem in economics is the estimation of distributed lag
processes. Consider the import demand function estimated by ordinary least
squares adjusted for autocorrelation equal to .98:

M = .20Yt + 1.9Yt_1 - .91Yt-2

t
(.43) (.51) (.52)
(.54) (.41) (.55) (.58)
(.52) (.54) (.51)

where standard errors are in parenthesis and where

Mt = logarithm (United States imports in the tth quarter divided by a price
index of imports)

Yt = logarithm (United States GNP in quarter t divided by the GNP price
index)

Pt = logarithm (import price index divided by GNP price index)

t = 1951 first quarter to 1967 fourth quarter

Economists would generally expect to see the coefficients on the income
variables positive and the coefficients on the price variables negative. The
peculiar saw-tooth pattern of coefficients would be regarded as highly
unlikely, and some constraint on the coefficients would undoubtedly be
used to "improve" or to smooth the estimates. One possibility is to constrain

the coefficients of each of the distributed lag patterns to lie on a line.

The resulting estimates are
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-030Yt_ - 054Pt - .33Pt- -012Pt- (3)

1 2

4

+.09 + .31Pt

t-3 =4
Although this constraint does eliminate the wild pattern of coefficients, it
does not produce coefficients that are all the same sign for each variable.

We could constrain them all to be equal, yielding the estimated equation

4 4
M =a+ .26 LY -.22 TP __. (4)
t =0 T =0 T

Each of these three estimated equations is appropriate for one extreme
form of information about the coefficients. Since we believe none of
these three forms of information completely, we might informally mix together
the three results.

For example, if it were desired to estimate the long run ineome and price
elasticities, that is,the sum of the coefficients, it might be noted that
the three estimates of the income elasticity are 1.37, 1.41, and 1.30,
which are not especially different. The estimates of the price elasticity
are somewhat more dispersed: -.68, -.58, -1.1. This contrasts nonetheless
with individual coefficients which vary greatly from equation to equation.
The three estimates of the coefficient on Yt-2’ for example, are -.91, .28,
and .26,

1hese 1esults, however, are hardly definitive. We would like to consider

more general (and sensible) restrictions on the form of the lags to see if

the important conclusions we wish to make are sensitive to knowledge about:



24

the lag structure. The natural family of simple restrictions on the coef-
ficients is R = (Bl =By, B, = Bys 33 = 84, BA = 35, B = By»

B ). 1If all of these restrictions are imposed,

B, = B> By =By By =Fpp
the estimated equation is as reported above, Equation (3). Alternatively,
these restrictions can be subtracted from each other to form the set
[(B,-8)) = (B,=B3) =0, (B,=B,) - (B,=B,) = 0, (B,-B,) - (B,-B) = O,
(Bg=B,) ~ (B,=Bg) = 0, (B,-Bg) - (Bg=By) = 0, (Bg-Bg) - (Bg- B,,) = 01. If
these restrictions are imposed, Equation (3) is the result. If this dif-
ferencing is done repeatedly, the coefficients can be restricted to lie on

a polynomial of arbitrary degree. Another way of imposing smoothness on the
coefficients, which captures partly the notion that the right tail of the
distribution is likely to be smoother than the first coefficients, is the

restriction (Bi - B, .,) =A(Bi+1 - 81*2), 0 <A<,

i+l

Any estimates that would result from any of these restrictions are within

the bounds reported in Table 3. These bounds are the extreme estimates
of the indicated coefficients or indicated linear combinations, computed
.using linear combinations of the set of constraints R, identified in the
paragraph above. Only the long-run income elasticity, ZiBi, turns out to
be insensitive to the form of smoothness imposed on the coefficient. There
is no smoothness notion which would produce an estimate for ZiBi exceeding
1.49 or falling short of 1.18. The long-run price elasticity Zéoﬁi is
also relatively insensitive to the form of smoothness prior. The ranges for
individual coefficients are, however, quite wide,

These bounds can be narrowed in two ways. First, a single 'contract"
curve of estimates may be produced by making the special assumption of Shiller

2

4 2 9 - " n
(1973), that zl(Bi-Bi+l) + 26(8i Bi+1) is "small. Secondly, we may
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Table 3

Bounds for Estimates of Distributed Lag Process

Using Linear Combinations of the Constraints

R = [8,=B,, B,=By, B,=B,, B,=Bs, B,=8,, B,= By, Bg=By, By=8,]

5
By B B B By LB B B Bg B
Max 1.18 2.22 .82 1.59 .86 1.49 .86 .92 1.25 .75

Min -.72 -.06 -1.48 -.80 -.95 1.18 -1.53 -1.62 -1.02 -1.59

1.19

-1.01

1
61
-.25

"1.54
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restrict our choice of estimates to lie within a sample confidence ellipsoid
with a certain "acceptable" confidence value, say .95.

The contract curve is reported in Table 4. The first column of this table
is the classical probability value attaching to the ellipsoid on which the

indicated estimate lies. The least-squares point is the first row, and

it has by definition a confidence value of zero. The last row is the con-
strained least squares point, indicated above by Equation (3). This point
lies on the boundary of the .9696 classical confidence ellipsoid, which is
perhaps farther from the unconstrained least—squares'point then we would want
to go. If we restrict ourselves to the 95 percent ellipsoid, the coefficients
are "properly" signed and "pleasantly" smooth. Troubles, in that sense, begin

when we get interior to the 75 percent ellipsoid.

The column SIGMAl indicates the prior standard error of Bi - Bi+l which
would be necessary to produce the indicated estimates. A standard error
of infinity is necessary to produce the least-squares point, and a standard
error of zero produces the constrained least-squares estimates. From our
perspective, a SIGMA1 in the neighborhood of .1 seems sensible. The long
run elasticities, ZiBi and ZéoBi, are likely to have absolute values in
the range of .5 to 2, and it is highly doubtful that neighboring coefficients
would differ by more than .2.

A graphical description of the evidence about ZzoBi is given in Figure
9, and about Bl in Figure 10. In Figure 6'it is seen that the upper bound
is attainable at very low confidence levels, and the lower bound is attainable
by a confidence level of .90. The data information is therefore not suf-
ficiently strong that the ambiguity in the prior can be ignored. The contract

curve is relatively flat until a probability value of .75 or, equivalently,

a SIGMAl of .28.



PROB*
0
.25
.50
.75
.90
.95

. 9696

*PROB is the classical probability value attaching to

**SIGMA1 is the prior standard deviation of 8i - Bi+i

SIGMA1**

oo

.70

47

.28

.15

.08

0

22(81'
B, B,
.20 1.9
.61 .93
.63 .75
.57 .57
43041
.33 .31
.26 . .26

the indicated point.

B:|.+l

27

Table 4

Contract Curve

B3
-.91
-.04

.09

.19

.24

.26

.26

2 10
) + 26 (Bi-B

64
.54
-.05
-.03
.04
.14
.22

.26

)2

1+1

is small

5
B5 2181 B B 7

-.34
-.08
-.07
-.02
.10
.20

.26

1.38
1.38
1.37
1.35
1.33
1.31

1.30

-.45
-.68
-.56
-.39
-.26
-.23

e 22

-.47
-.12
-.15
-.18
-.19
-.21

-.22

.05
-.01
-.09
-.17
-.20

-.22

-062

-.14

-.11

B10 Zégi
.41 -.68
A2 =77
.05 -.79
.07 -.86
17 -.98
.21 ~1.06
.22 -1.11

the selected ellipsoid.

necessary to produce
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Because the posterior standard error is fairly constant, the t-value increases
in absolute value as the prior becomes tighter. Regardless of the prior,

the estimate is more than one standard error from the origin. In this

case the contract curve reveals that a little bit of prior information has

a sharp effect on the estimate, but as the prior is further tightened the
estimate changes very little. This region of insensitivity corresponds to
confidence levels from .15 to .75 and values of SIGMAl from 1.0 to .28.

If SIGMAl is further reduced, the estimate of Bl declines, but the confidence
level begins to be unacceptably high. The posterior t value behaves somewhat
similarly. A little bit of prior increases the t-value from .45 to 2.0.

If the prior is assumed to be very precise, the t-value can be increased

to 5.

From this discussion, and from a similar study of the behavior of the
other estimates we conclude that a value of SIGMAl equal to .28 produces
estimates which are a reasonable compromise between the least-squares
estimates and the constrained least-squares estimate. The prior standard
error of .28 for Bi - Bi+l represents a rather weak prior. As described
above the inferences will change little if the prior is further weakened,
but may change considerably if the prior is tightened. But if the prior
is tightened the data confidence level grows too high. For SIGMAl = .28

the estimated equation is

+ .04Yt_ - .02y - .39P

M_ = .60Y  + .57Y_ , +.19Y _, 3 et .
(.22) (.17) (.16) (.16) (.20) (.26)
-.18p__, - .10P _, - .14P _, =-.07P _, =~ 3.64
(.20) (.20) (.22) (.28)

If we were forced to select a single equation, this is the one we would choose.
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Conclusion

The three examples we have offered illustrate what we believe iz a higily
useful way of exploring and reporting the sensitivity of inferences to
changes in ‘the model. The procedure begins with the thoice of a very general
model. The models we have in mind include many more explanatory variables
than are commonly used in any single estimated equation. The model should
be general enough to include as special cases all models which the researcher
might like to see estimated with the given data. Adequate degrees of
freedom are a concern only for estimating the residual variance og an issue
which need not concern us here.

Next a family of constraints on the general model is selected. There
are likely to be many doubtful variables which have coefficients which are
candidates to be set to zero. Other constraints will depend on the setting.
The description of the family of models is then completed by selecting
a prior variance-covariance matrix for the set of constraints. Constraints
which are thought to be quite likely to be approximately true will be
assigned relatively small prior variances. Non-zero covariances can be
selected when constraints are conceptually interrelated.

The last step in preparation for the data analysis is the selection
of a set of issues which are the focus of the inferentiai exercise. An
issue may be a particular coefficient or a linear combination.

The data analysis commences with the computation of the unconstrained
least-squares estimates and standard errors of each of the issues and also
the computation of the bounds for these issues over all constrained estimates.
when these bounds are narrow relative to the sampling standard errors or

to anticipated decisions, the process terminates, and it is reported that
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uncertainty in the model is essentially irrelevant for all the issues.
This is the case for the first example in which the choice of regional dummy
variables was shown to have little effect on the estimated coefficients of
education, age and age-squared.

When these bounds are wide, it is necessary to analyze and to report
the SEARCH diagram which describes (1) bounds constrained to selected
confidence ellipsoids and (2) the contract curve. When the constrained
bounds are narrow for all reasonable confidence vaiues, again the process
may terminate. In this case it is not reported that the uncertainty in the
model is essentially irrelevant; rather, it is said that only relatively
strong priors can produce estimates which are importantly different from
the least-squares estimates. An example is Figure 6, the value of additional
floorspace.

Another way to narrow the set of estimates is restrict attention
to the contract curve. This curve has meaning only if it is possible to
select a quadratic form which measures the prior distance of an estimate
from the prior constraint values. For example, doubtfulness of the higher
order terms in the functional form example does not seem to imply any special
distance function. Shiller's prior for the distributed lag example which,

though open to considerable question, nonetheless has a greater intuitive

15
appeal than I B; for the functional form example.
j=13

Another feature of the distributed lag problem is that the prior
scale factor SIGMAl can be discussed, and the estimates may be finally

narrowed to a set of points on the contract curve.
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The reporting philosophy which we espouse should now be clear.
Because any economic model is open to considerable doubt, the inferences
implied by any particular model are of very limited value. The only solution

we can see 1is to report the inferences implied by many different models.
A data set determines a mapping from assumptions into inferences: ''the
mapping is the message." The problem which then arises is how to weigh
completeness versus economy in reporting this mapping. We offer in this

paper what we believe is both an economical and an infdrmative reporting

style.
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