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l. Introduction

A major difficulty -- perhaps the major difficulty -- of modeling oligopoly
is the problem of specifying how each oligopolist anticipates his rivals
will react if he varies his price or output. Depending on what anticipations
each oligopolist is assumed to have, one obtains quite different solutions
to the oligopoly problem.

It is widely recognized that the classical oligopoly theories have
a serious common flaw: they arbitrarily and mechanically assume some
particular anticipation on the part of the oligopolists which may not be
confirmed by the oligopolists' experience. The Cournot solution, for example,
simply assumes that each oligopolists anticipates no reaction at all by
his rivals as he varies his own output. This zero "conjectural variation"
would be belied by the oligopolist's experience. Alternatively, an

asymmetrical but correct set of anticipations are postulated, as in the

Bowley-Stackelberg solution.

This paper builds on earlier contributions by Leontief (1936) and
Marschak and Selten (1978) in which correct and symmetrical anticipations
are assumed. We call these anticipations endogenous conjectural variations
(CVs), because one can view the oligopolists as learning from their experience
of past reactions by their rivals. We distinguish two types of oligopolistic
interactions: (a) passive, in which all actors adjust their own output
levels so as to keep their profits at a maximum, disregarding the effect
of the implied reactions on their rivals' outputs (but correctly anticipating
the other actors' reactions), and (b) active, in which actors actively choose

reactions that have anticipated effects on other actors' levels of output, and



abandon the objective of maximizing their own profits when other actors'
outputs are not at their equilibrium levels.

The model of active reactions goes beyond the work of Leontief, Marschak
and Selten and is based on earlier work by Guttman (1978).1 Active reactions
are simply threats that if another ologopolist changes his output, one's
own output will respond in a certain fashion. Unlike the cooperative game
of Nash (1950), however, we explore the case -- which is considerably more
relevant to oligopoly as well as to political behavior -- that these threats
are not enforced, but rather are self-enforcing. We have not, however,
developed a general theory of non-cooperative threat-making. In order to
obtain determinate results, we have been forced to make strong simplifying
assumptions. The oligopolists' '"reaction coefficients" are assumed to be
constants, i.e., each oligopolist's output is linearly related to other
firms' outputs.2 It is assumed, moreover, that the reaction coefficients
are chosen before actual levels of output are chosen.

Neither of these assumptions departs from the (implied) assumptions
of Leontief or those of the classical oligopoly theorists; this facilitates
a comparison of the implications of active interactions to those of passive
interactions. But our model of "matching behavior" cannot be regarded as
more than a first exploration of this difficult problem. To appreciate

the apparent necessity of limiting, in some way, the form of the reactionms,

1A note by Anderson (1977) suggests a similar concept of "matching
behavior,”" but does not develop it in detail.

2One basis for such a linearity assumption would be an argument from
the existence of imperfect information and, perhaps, bounded rationality.
See, e.g., Simon (1959). (I am indebted to J. Hirshleifer for this point.)
It may be argued that it takes time for each duopolist to learn its rival's
reaction strategy, and that to impute higher—order terms in the rival's
reaction strategy would be uneconomical, given the necessity of continuously
revising one's CV in any case.



suppose each of two duopolists announces to his rival that his own output
will be that which maximizes combined profits if the other duopolist does

the same,3 but at any other output of his rival, the first duopolist will
choose so high an output that his rival's profits will be negative. Such

a threat, when made and believed by both duopolists, would assure a result
identical to a merger of the two firms. Such threats are seldom observed,
however, perhaps because they would probably not be believed. If one firm
were to call the other firm's bluff, would the other duopolist follow through
with his threat? To do so would impose high costs on himself. Nevertheless,
it must be admitted that all meaningful threats involve some costs to the
threatening party if they are carried out: if each duopolist kept his output
at its profit-maximizing level regardless of his rival's output, we would
have the model of passive interactions suggested by Leontief. The feasible
"degree of extremism" of threats depends on how often and for how long

one's bluff is expected to be called, and this frequency of bluff-calling
has yet to be modeled formally. We have simply chosen the simplest type

of threat to consider, with the intention of illustrating the basic line

of reasoning involved in active duopolistic interactionms.

We consider only output variations. Since we limit ourselves to duopolists
producing an identical product, allowing price variations would seem to force
us to accept Chamberlin's (1938) contention that if each oligopolist
could foresee the reactions of his rivals, he would anticipate price-matching
for all price cuts (though not, as Chamberlin implies, for all price rises),
because such matching is necessary for the other firms to survive, leading
us to accept the kinked-demand-curve model criticized on empirical grounds

by Stigler (1947). This consideration suggests that output variations are

3Here we are assuming that there is a unique pair of joint-profit-maximizing
outputs. This involves assuming rising marginal costs, if the firms are identical.



the more plausible case to analyze, at least in the framework of endogenous

CVs developed here.

2. Passive Interactions

As indicated above, Stackelberg (1934) analyzed the case in which one
firm forms correct expectations of how the other firm will react to changes
in output. Stackelberg believed, however, that a "leader-leader" equilibrium
was inherently unstable. 1In such an equilibrium, eaph duopolist would an-
ticipate the reaction of his rival and take this reaction into account in
determining his own output, always assuming the rival acts like.a Cournot
duopolist. The classic "Stackelberg equilibrium" is a "leader-follower"
equilibrium, in which one duopolist (the follower) takes the output of
his rival as given, as in the Coﬁrnot model, while the other duopolist takes
the reaction function of his rival as given, and chooses an optimal output
conditional on that function. Both duopolists' anticipations of their
rivals' behavior are correct, i.e., the follower is viewed by the leader
as choosing a reaction function, whilé the leader is (correctly) viewed
by the follower as choosing an output. But these anticipations are asym-
metrical, and this asymmetry leads to severe instability, at least as long
as the firms' cost functions are not too different.

Provided the duopolists do mot act simultaneously, this asymmetry is
plausible. If the first duopolist to act chooses a reaction function, it
is optimal for the other duopolist simply to choose an output. On the
other hand, if the first duopolist knows the second will follow him in
sequence, it may be optimal for him to choose a flat output and let the

other choose a reaction function, i.e., react to his output.a Imposing

4¢f. Thompson and Faith (1976).



such a time-sequence, however, requires either an enforcing agent (as in
the Thompson-Faith model) or an arbitrary sequence of "whoever acts first,"
which, for non-identical actors, leads to indeterminacy.‘

Leontief (1936) showed how the “rational expectations" of Stackelberg
duopolists can be made symmetrical.5 Each duopolist knows the reaction
of his rival if he were to change his own ouptut, and bases his choice of
output on that expected reaction. Neither duopolist actively "chooses"

a reaction function in the sense of an active matching or threat policy;
rather, each passively reacts to the other firm's choice of output.

A formal model of such interactions was provided, in a more general
context, by Marschak and Selten (1978). In their game, each firm chooses
a level of output and a reaction strategy that shows how its output would
change if the other firm were to depart from its current output. The
equilibrium conjectural variations in Leontief's model are “stable'" and
"restabilizing" in the Marschak-Selten sense: i.e., no firm would change
its output, knowing the reaction of its rival, and no firm would have an
incentive not to follow through with its announced reaction if it is called
upon to do so.

Leontief believed that his generalization of the Stackelberg model
would only rarely yield an equilibrium.6 This belief, however, appears
to be incorrect. It is not difficult to show that under Leontief's assump-

tions of linear demand curves and upward-sloping, linear marginal cost curves,

two identical duopolists will always find an equilibrium pair of CVs and

5Negishi and Okugushi (1972) developed a similar model. Their model,
however, postulates that each duopolist assumes that its rival is a "follower"
in Stackelberg's sense. The Negishi-Okuguchi equilibrium simply makes the
resulting CV's consistent with each other.

6 Leontief described his equilibrium as "not very probable, but never-
theless theoretically significant.” (1936, p. 556)



outputs. There are two equilibria, but only one is stable. As in the
model of active interactions, we assume each duopolist's output reacts
linearly to changes in his rival's output. In equilibrium, each firm's
"reaction coefficient" (which is the CV anticipated by its rival) is its
best reaction coefficient given the reaction coefficient of its rival.
Let the demand curve facing each of two identical duopolists be

p=K- alq +4q,),
where

p = the price of their output

95 9 = their outputs, and

k, o = positive constants.

Moreover, let each duopolist's marginal cost curve be

(1) MCi = (K-B) + Aqi

where B and A are positive constants. Each firm's marginal revenue is
=K - —1 -

where the hat above dqj/dqi denotes "expected." Let the actual dqj/dqi

be denoted as bj' Then, in equilibrium, we have

dl\
- —d
(3) bj dqi s
and similarly for firm i. Equating Mci and MRi and using (3), we obtain,

for optimal 9y

(4) qi* - [X—;—a%ixsgjl(ﬁ'qu)-



Differentiating with respect to qj,

('5) Sg-i— = b = ——-—————-—-a
dqj i A+ u(2+bj)

Writing out the corresponding expression for bj and solving, we obtain

2

. tb.g—(2a+x)i‘v(2a+)\)2-4a
i j 20

The expression under the square-root sign is positive when A > 0,
that is, when marginal costs are rising. In this case, we obtain two
equilibria, but only one of these -- the one whose b's are smaller in
absolute value —- is stable in the following sense: if one firm's bi
were to deviate from equilibrium, the ensuing interaction of the b's would
lead back to equilibrium.

It should be noted that equilibrium in the "b-game" is a Nash equilibrium,
i.e., each duopolist takes the other's bj as given in determining his optimal

b This implicitly places a limit to the sophistication of the duopolists.

i
One could imagine a more sophisticated model in which duopolists form
expectations on how the rival's reaction (bj) will change when one's bi
changes. Clearly, however, at some point this process of forming conjec-
tures must stop. Our making the equilibrium (bi’ bj) a Nash equilibrium
is in the same spirit as our assumption that the duopolists treat their

rivals' b,'s as constants.

i
To illustrate the passive reaction model with Leontief's example,
suppose the duopolists' demand curves are

p=K-(q1+q2)

and that their marginal cost curves are
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MC--;—qi, 1=1, 2.

Then the equilibrium b b2 are
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Thus the two equilibrium CVs are (- %3 - %) and (-2, -2), but on}y the former
is stable. The "reaction curves" in the b-game, given by equation (5),
are depicted in Figure 1. By starting at a point other than (- %3 - %),
it can be seen, following through the interactions, that one is lead to that
point. Such a movement towards equilibrium is shown by the dotted lines.
Once the equilibrium (bl’ b2) are determined, it is a simple matter
to find the equilibrium outputs. In this case, they would be determined
by the reaction functions given in (4) as
ql=%(K-q2)
or

q; = K/3.

This may be compared with the Cournot duopolist's output of .286K, and with
the output of each duopolisf if the two firms merged and maximized joint
profits, which is .22K. Thus, the model of passive reactions predicts a
larger output than either of these two alternative models. This is to be
expected, because each duopolist expects the other to cut back when he

increases his output.

3. Active Reactions

The model presented in the previous section assumed that each duopolist

simply adapts his output to the output and expected reaction of the other



duopolist. It was noted that, in equilibrium, duopolist i expects the

other to reduce his output if duopolist 1 increases his output; this conjec-
tural variation is not postulated a priori, but is derived as a consequence
of equilibrium. Each duopolist, however, would eventually realize that if
he were to adopt a policy of positively matching his rival's output, his
rival would be induced to choose a lower output, resulting in a higher price
for their product. The model of active reactions is an attempt to capture
this idea of matching behavior formally.

In order to make the model comparable to the Leontief-Stackelberg analysis,
as well as to keep the analysis simple, we continue to assume that the
reaction coefficients of both duopolists (i.e., their rivals' CVs) are
constants, and that they are determined before the actual levels of output
are determined.

To visualize how such a process could occutvwithout any coordination
between the duopolists, consider a sequence of outputs by the duopolists
continuing over time. Occasionally, one firm "tests" the other by varying
its output from its profit-maximizing level and watching the response of
the other firm. With this information on the response of its rival, the
firm adjusts its output so that, taking its rival's reaction into account,
it is maximizing its profits. Each firm determines its reaction so that
its profits are maximized, taking into account how its choice of reaction
coefficient affects its rival's output and thus affects its own profits.

This maximization of profits by varying one's reaction coefficient is
accomplished by predicting the equilibrium levels of outputs of both firms
given any pair of reaction coefficients, bl and b2. The firm's profits are

not maximized at any other pairs of outputs. When either firm is "tested,"
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its rival has moved away from this equilibrium, and thus the firm being
tested has an incentive to fail to react in its earlier-revealed manner.
We assume, however, that each firm views such costs as being transitory
and therefore negligible in any long-run calculation such as the one considered
here. The benefits of reacting as previously revealed or "announced,"
in contrast, are permanent -- they are maintaining one's credibility and
thus maintaining an equilibrium pair of outputs that maximizes the firm's
long-run profi@s.

Although we have described the process of duopolistic interaction as
being a continuous process extending over time, it is simplest to model
this process as consisting of two single-period games. In the first of
these games the reaction coefficients of the duopolists are determined.
'(In reality, these coefficients would be revealed by the duopolists
over time in response to testing by their rivals.) In the second game, "flat"
levels of output are determined, the duopolists having "understood" that
these flat outputs would be matched by their rivals at the rates revealed
by the reaction coefficients. These flat levels of output are chosen so
that the full output of the firm (including its matching of the other firm's
flat output) is at its profit-maximizing level, given the other firm's flat
output and its reaction coefficient.

By modeling duoﬁolistic interaction in this way, we are introducing
an important difference between the model of active reactions and the Leontief
model of passive reactions. In the Leontief model, the reaction coefficients
are only hypothetical in nature: if firm 2 changes its output, firm 1
would respond in a certain way. These reaction coefficients, moreover,

are not consciously "chosen,” but are passively "determined" by the equilibrium
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conditions, i.e., (a) that each firm maximizes its profits given the expected
reaction of its rival (CV) and (b) that each firm's CV is the actual reac-
tion of its rival. In the model of active reactions, the reaction coef-
ficients are not hypothetical: an increased reaction coefficient means an
undertaking to match one's rivals' flat output (not simply changes in his
output) at a higher rate. The reaction coefficient, moreover, is now actively
chosen with an eye on the resulting equilibrium of flat contributions.

The model's specification that actual flat outputs (and not merely
changes in outputs) be matched is a device for making large threats more
costly than small ones. If only changes in outputs were threatened with
matching behavior, infinitely large matching rates (reaction coefficients)
would be chosen, as long as no changes in the rival's output (i.e., "tests')
were expected.7 One would then need to develop a model predicting the
frequency of testing of threats. But if, as in our model, flat outputs
are matched and not merely changes in outputs, the threats are continuously
tested and large threats become costly relative to small threats.8

To describe the model formally, let ay be the "flat" output of firm i,
and bi be its reaction coefficient. Then

q; = a, + biaj

7Alternatively, one would begin at, say, a Cournot equilibrium, and
make the matching rates applicable only to changes in rivals' outputs from
that point. Here a one-time change in output takes place, which can be
predicted and modelled.

8One might ask why not have total outputs matched, and not only "flat"
outputs, i.e., a model in which q;j = aj + bjg4? One answer is that it can
easily lead to no equilibrium -- if bibj > 1.7 A second answer is that there
is no "point" in matching the component of one's rival's output which itself
is matching one's own output, at least not at the same rate as one matches
the "autonomous" ("flat," in our terminology) component of the rival's
output.
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1s the output of firm i, where aj is the flat output of firm j, its rival.
We continue to assume linear demand curves with slopes of -1:
P=K- (q4+aqy
The restriction of the slope to -1 could be dropped without affecting our
results. The cost curves of the equation are quadratic and marginal costs
increase with output:
C, = haq, +ua A, >0
i i iy i*d )
When the reaction coefficients (bi) are determined, the flat outputs
(ai) are determined in a Nash non-cooperative game. The reaction functions,

which give the profit-maximizing ag for given a,, are

A
© " K - Ai 1+ bi(2+2“i + bj)

i 2(THi) + 2, T8y T W) + 2b

1 .

3

*
Equation (6) indicates that a; is a linear function of aj, and that dai/daj

depends on the matching rates bi and b,. Depending on the magnitudes of

3

) may be unique and stable in the Cournot

bi and b, the equilibrium of (ai, a

h| h
sense, or non-unique and unstable. The possibilities are illustrated in
Figure 2. 1In Case (a), there is a single, stable equilibrium. In Cases
(b) and (c), one reaction line encloses the other, again leading to a single
equilibrium -- at a corner, where one flat output is zero. In Case (d),

the two reaction lines intersect, but the interior equilibrium point is

unstable in the sense that any movement from that point will not be lead
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Figure'2, Possible configurations of reaction functions in
%a-game", model of active interactions '
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back to the equilibrium if the actors act sequentially.9
As each firm contemplates alternative choices of its reaction coefficient,

b,, it must predict the equilibrium (or equilibria) resulting from its

i’

choice, given the reaction coefficient of its rival, b,. To do this

h|

analytically poses serious difficulties, because as bi changes one moves

from one case to another in Figure 2, resulting in possible discontinuities

in the payoff function. Therefore, it appears to be necessary to simulate

the model numerically. An additional difficulty 1is posed by the fact that
multiple equilibria may result in the game determining the flat outputs.

Our approach to solving this problem is, first, to examine only '"stable"
equilibria, and, second, to let the firm's expected profit be the mathematical
expectation of its profits in those equilibria -- with the two equilibria
considered equally probable. An alternative solution would require dominance
of all equilibria given (bi’ b

) over (bi, b,), for bi to be chosen over bi.

3 h|
Adopting this alternative does not seem to alter our results.

In addition, we restrict the ay and bi to be non-negative. The restric-
tion on the a; appears required for intuitive reasons: it is difficult to

conceive of a negative output, "flat" or otherwise. The restriction on

the bi is made partly to avoid negative outputs. Alternatively, we would

'9We beg the question as to whether sequential action "makes sense"
in a Nash equilibrium context, and thus whether this notion of stability is
meaningful. An interpretation of a Nash equilibrium in which no naivete
is assumed requires that we eschew a sequential-action interpretation, in
favor of the following: Each duopolist somehow correctly predicts his rival's
action and chooses his best response to that action. The basis for such a
prediction, however, is unclear without one's rival having prior information
on one's own choice. To postulate that firm i's rival j predicts that i's
output will be i's best response to firm j's output also involves prior
information, this time on the part of firm i. Ultimately, there appears
to be no justification for simultaneous-action interpretations of Nash equili-
bria other than the internal consistency of such equilibria.
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require complicated constraints on the combinations (ai, bi) which
would lead to a hopelessly complex analysis. A second reason for restric-

ting the b, is that there is little point in revealing negative bi: such

i
bi would only encourage larger outputs by one's rival and reduce one's
own profits. If a small output is desired, a zero reaction coefficient
is preferable.

Table 1 presents the results of some simulations of the workings of
the model, and compares the resulting equilibria Q* with the Cournot equilibrium
(Qc) and the equilibrium resulting from letting the firms merge and maximize
point profits (Qm). In all cases, the firms' marginal cost curves slope
upwards; otherwise, there is no equilibrium. Two patterns emerge: First,
firms with smaller marginal costs choose larger reaction coefficients.
This is an implication which is testable, in principle, e.g. with experi-
mental data. Second, an interesting relationship between Q% Qc’ and Qm
emerges. The predicted equilibrium output (which, with non-identical
firms, involves a slight indeterminacy) is approximately one-third of the
way from the Cournot Qc to the joint-profit maximizing equilibrium Qm'
The questions of whether this holds in all cases or whether similar regulari-
ties appear with more than two actors remain to be investigated. Nevertheless,
it is significant that the present model goes part of the'vay to explaining

cooperation by duopolists without invoking the usual requirement of coopera-

tion -- enforceable agreements.



Simulations of Model of Active Interactions
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Table 1

Reaction

Cost functions of duopolists coefficients Q* Sg SE
(a) MCl-MC2=K-1+2qi, i=1,2 bl-bzs 2.0 .375 .40 .333
MC1 = K-1 + 2q1 b1 = 2.6 . 344~ .368 .3125
(b) .353
MC2 = K-1 + 3q2 b2 = 1.2
(c) .397
MC, = (K-1) + 2q2 b, = 1.6
(d) MCl-Mcz-K—l +4q,, i=1,2 bl-b2-6.0 467 <50 .40
(e) 418
MC2 = (K-1.2) + 2q2 b2 = 3.5
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4. Concluding Remarks

We have described two alternative models of endogenous conjectural
variations: a model of "passive interactions" originally suggested by
Leontief, and a model of "active interactions' based on the notion of match-
ing behavior. On the theoretical front, a number of improvements and generaliza-
tions could be made. The analysis could be generalized to the case of more
than 2 firms; non-linear demand curves and variable reaction coefficients
could be investigated. But perhaps a more promising'line of future inquiry
would be empirical. While reaction functions are difficult to estimate
statistically, in an experimental situation they can be identified more
easily. Most experimental work on oligopoly has focussed on output decisions
and not on interactions among oligopolists.lo In a future draft of this

paper, we hope to pursue this line of investigation.

lOBut see the work of Hoggatt (1967), who finds evidence of matching
behavior.
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