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In the two decades since the serinal paper by William Vickrey
(19€1) literature on the theory of auctions has developed at a
rapid though uneven pace.1 Much of this literature is fragmentary,
varies widely in scope and is not easily accessible to economists.
As a result, the implications of different auction rules in various
settings remain relatively unknown. This paper provides a system-
atic exarination of alternative forms of auctions. 1In so doing it
presents a general characterization of the implications for resource
allocation of different auction designs within the mocel originally
pProposed by Vickrey.2

The auction model is a useful description of "thin markets”
characterized by a fundamental asymmetry of market position. While
the standard model of perfect competition posits buyers and sellers
sufficiently numerous that no economic agent has any degree of
market power, the bare bones of the auction model involves compe-
tition on only one side of the market. 1In this setting a single
seller of an indivisible good faces a number (n) of potential
buyers. Competition among the (possibly small number of) buyers
takes place according to a well-defined set of auction rules
calling for the submission of Price offers from the buyers. Most

commonly the choice of auction method employed rests with the

monopolistic seller.

%Acurrentbibliography by Robert Stark and Michael Rothkopf (1979)
lists nearly five hundred papers written over this period._ For a
recent survey of this literature see Richard Engelbrecht-Wiggans
(1978).

2A number of unpublished dissertations have discussed auctions.
Versions of Propositions 1 and 2 are contained in Armando Ortega-
Reichert (1968), Gerard R. Butters (1975) and William F., Samuelson
(1978). Butters also provides examples illustrating Propositions
3 and 7, both of which are derived by Samuelson.



These brief observations suggest two natural questions for
analysis: First, what form does the competition among the few
buyers take under the most common auction proceduvres? 1In turn,
how is a sale price determined? Second, by what means can the
seller best exploit his monopoly position? For example, would it
be more prcfitable for the seller to assign payment not just to
the high bicdder but also to those with lower ranked bids?

As one might expect, any change in the rules of the auction
results in different bidding strategies on the part of the buyers.
In particular, if the auction rules posit a minimum payment for
one or more of the bidders (determined by rank), those with
sufficiently low valuations will be discouraged from entering a
bid.‘ Our analysis will demonstrate that in a risk neutral setting
it is the minimum entry value (below which a buyer opts to rermain
out of the auction) which is crucial. To be precise all auctions
which have the same entry value yield the same expected profit to
the seller. Moreover, the seller maximizes expected profits by
settinc the entry value strictly above his own reservation value.
A further rather surprising result emerges: The optimum entry
value is independent of the number of competing buyers.

Throuchout the paper we shall retain the following basic
assumption.

a) A single seller with reservation prive Vo faces n potential

buyers, where buyer i holds reservation price Vi
i=1, ... n.

b) The reservation prices of the parties are independent and



identically distributed, édrawn from the common distribu-
tion F(v) with F(v) = 0, F(7) = 1 ang F(v) strictly
increasing and differentiable over the interval [v, ¥].
We will refer to this as the 11D assumption.

The IID assumption was first presented by william Vickrey
(1961) and has been freguently erployed in the bidding literature.
Ir practical terms, each party is uncertain about the others'
reservation prices believing that each individual formulates his
Price (or measure of value) independently of the others. 1In
addition, the parties share common priors with respect to the
possible reservation Prices of each individual.3 With the 1ID
assumption, the bidding procedures we outline below belong to the
class of games of incomplete information first formulated by John
Karsanyi (19€8).

Given the practical importance of the "English" or "ascending
bid" auction and the sealed "high bid" auction in which the highest
bid is accepted by the seller we consider these separately in
Section 1. It is shown that in each case expected seller profit
is maximized by the introduction of a reserve price. Then in
Section 2 we present our central result on the partitioning of

auction designs into seller equivalence classes. It is shown that

3In recent years Robert Wilson (1975) and Matthew Oren and Albert
Williams (1975) have studied a different model of competitive
bidding -~ one relevant to the auctioning of off-shore oil field
leases. In this model buyers begin with common prior beliefs
about the value of a resource but have different posterior beliefs
as a result of independent sampling.

For discussions of auctions in which buyers have different prior
beliefs see Wilson (1967). ‘



the "English" and sealed "high big" auctions, cum reserve price,
are members of the equivalence class optimal for the seller. It
is also shown that the seller cannot profit by concealing his
reserve price. 1In Section 3 several alternative designs are
examinel in detail and their implications for the seller are com-
parec. Finzlly in Section 4 the two commonly used auctions are
once again compared under the assumption that the buyers are risk
averse rather than risk neutral. It is shown in this setting

that the Enclish auction is dominated by the sealed "high big"
auction and that the optimal reserve Price is a declining function

of the degree of buyer risk aversion.

l. "HIGH BID" AND "SECOND BID" AUCTIONS

Eecause of their overwhelming practical importance, we begin
by contrasting the sealed "high bid" auction with the "English" or
"ascending bid" auction. The rules of the latter bear some expla-
nation. Commonly, when antiques, estate objects and works of art
are auctioned, thegood is awarded to the buyer who makes the final
and highest bid. The buyer Placing the highest valuation on the
good therefore pays approximately the maximum of the reservation
prices of the other n-1 buyers. &as Vickrey noted, this is eguiva-
lent to a sealed bid auction in which each buyer submits a bid angd
the high bidder pays the second rather than the high bid.4 To see
this, suppose the ith buyer considers shading his bid bi below his

reservation value vye I1f b, = max bj exceeds v; another buyer is
i

4This type of auction is sometimes referred to as a Vickrey auction.



the high bidder so such shading has no effect on buyer i's profit.
If b, < bi' buyer i remains the high bidder and continues to gain a
profit of v, - b,. FHKowever, if bi < b, < V,;+ the shading yields a
zero profit whereas without shading the profit is vy - b,. The
optimal strategy of each buyer is therefore to submit his reserva-
tion value. It fcllows that just as in the English auction the
high bidder ends up payinc the second highest reservation value.
This equivalence greatly simplifies the comparison between the

> since it implies that we need

English and sealed high bid auctions
only compare the two sealed bid auctions. For each auction we
allow the seller to announce a reserve price bo. Unless there is
a bid higher than bo the good is withdrawn by the seller. There
are two reasons for introducing such a reserve price. First, the
results are presented in anticipation of the general theorem in
Section 2. Second, at the practical level, the establishment of a
seller reserve price is a freguent occurence in auction sales
involving art as well as basic commodities. Annéuncing the reserve
price is the more common procedure. In an English auction, however,
the seller can establish a silent reserve price by instructing an
ally in the audience to buy back the good if it would otherwise
sell for too low a price.

For the high bid auction buyers have an incentive to behave
strategically shading their bids below their reservation values in
order to make an expected profit. Because of the symmetry of the

problem we seek a strategy with the property that, when adopted by

5'I‘he sealed high bid auction also has its open auction equivalent.
In this "Dutch" auction the sale price is initially set at a high
level and is then lowered until a bid is made.



n-1 buyers it is optimal for the nth buyer to adopt it also. We

begin by characterizing this strategy.

Proposition l: Suppose the IID assumption holds, all buvers are
risk neutral and the seller announces a reserve
price bo. Under the high bid auction the eguil-

ibrium bidding strategy of a typical buyer is

v F(x)n-ldx ) v max{bo,x}d(F(x)n-l)

b=0(v)sv-

b F(v)"~ 0 F(v)Pi

0

While the literature contains several proofs of this proposition
the following derivation is especially direct. It also brovides
an introduction to the more general analysis of Section 2.

Suppose all but buyer i adopt the strategy of bidding accord-
ing to the increasing function b = 0(v). Since buyer i can win
with probability 1 by bidding bi = O(V) he has no incentive to bid
outside the range of possible bids by the other huyers. Then

there is some ve[v,V] such that the profit maximizing bid by buver

i, bi' satisfies

(1) bi = 0O(v)

By assumption O(v) is increasing in v. Therefore buyer i wins if
and only if v exceeds the reservation values of all the other
buyers, that is, with probability Fiv)™ 1, wmis expected profit

Can therefore be written as



(2) (v, vi) = (v, - 0(v))F(v)""2

Differentiating with respect to v we have

1 = d n-1, _d n-1
(2) Il(v, vi) vy &w (Fv) ) v (O(WV)F(v) )
For £ = 0O(v) to be the egquilibrium strategy the profit maximizing
cheice of buyer i must be to adopt it also. That is, ni(v, vi)
must take orn its maximum at v = V;+ Then from (3), O(v) is the
solution to the first order ordinary differential eguation
(eWF(w»)™ 1) =0

(4) v& rw™ Y -

2
Q'l 0,
<

RAlso cortining (3) and (4) yields

d
(vi - wv) o

i
Rl(v, vi)

Thus the first order condition (3) indeed defines the global
maximum for buyer i.

Integrating (4) by parts yields
(5) o) F(v)™ L - 0(b)F (b1 = vr(v)™"2 - boF (hg) ™

v
-/ Fo™lax
bo



But all bids O(v) yielding a pPositive expected profit must satisfy

the inegualities

Therefcre as v - bo, O(v) = bo and the second terms on each side
cf the ecuality in (5) are equal. Dividing through by F(v)n-1
then yields the first equality of Proposition 1. Integrating by
parts yields the second equality.
The first eguality tells us directly by how much a buyer
¢ :

should shade his bid. The second equality also has a simple

n-1 is the probability distribution function

interpretation., F(x)
of the (n-1l)th order statistic of n-1 independent drawings from F.
Dividing by 1"(\7)“-l the domain of positive density is transformed

from [v, V] to [v, v]. Thus

v max{by, x}d(F(x)7"1)

0 F(v)-d

represents the expected value of the maximum of the seller's
reserve price and the highest reservation value of the n-1 buyers
given that the buyers values are below v. A risk neutral buyer

therefore follows the following bidding rule:

6Also by differentiating it is readily confirmed that the assump-
tion O'(v) > 0 is satisfied everywhere on the interval (byr V).



At reservation value v, place a Lkic bi egual to the
expected value of the maximum of the seller's reserve
price and the other buyers' reservation values on the
assumptior that each of the latter are less than v,
The last stipulation makes intuitive sense. If there exists a
vj > Vi thern, because the common bidding strategy, O(v), is
increasing buyer i will be outbid. The only relevant event then
is vi > vj for all j¥i and in this instance the rule of thumb ahove
maximizes expected profit.7

This rule is also helpful in understanding our first eguivalence

result.

Proposition 2: Suppose assumption IID holds, all buyers are risk
neutral and the seller announces a reserve price

b Then the expected profit to thé seller is the

0"
same under the high bid and second bid auctions
for arbitrary distributions F(v).

This is arn immediate implication of the general proposition in

Section 2. However, the following informal derivation is reveal-

ing. 1In the second bid auction the winner pays the higher of the

second bid and the reserve price bO' Therefore, if buyer i is the

winner his expected profit is

(6) E(ni | i submits winning bid) = v, - E(max{bo, vj})
j#i

7Robert Wilson (1977) analysing a slightly different auction model
notes a similar interpretation of the optimal buyer strategy.
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Moreover, from the optimal bidding rule described above it follows
immediately that (6) also describes the expected profit to buyer i
in the high-bid auction, That is, the expected profit conditional
upon bi being the highest bigd is the same in the two auctions,
Since both auctions are efficient in the sense that the successful
bidéer is always the buyer with the highest reservation value, the
unconcitiornal expected profit to the buyers taken as a group is
the same in the two auctions. Also the expected reservation value

of the successful bidder in each case is

E(max{v_})
3 J
Since the expected payment to the seller is just the difference
between the expected reservation value of the successful buyer and
the buyers'expected profits, it follows immediately that the seller
is indifferent between the two auctions.

The natural next guestion is what reserve price maximizes

seller expected profit.

Proposition 3: If assumption IID holds and all buyers are risk
neutral, then under either auction rule the
seller maximizes expected profit by announcing
a reserve price b0 satisfying

1 - F(b,)
by = vg + P ib,)

independent of the number of buyers.
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Again, formal derivation is left until Section 2. However the
extreme case of only one potential buyer is easily analyzed. Far
fror being an example of "corpetitive" bidding, this case belongs
to the category of bilateral monopoly -- for which a bargaining
solution is customarily sought. The bargaininc procedure (if one
wishes to think of it as such) is particularly simple. By announc-
ing a reserve price the seller is, in effect, making a first and
final cffer. The buyer accepts this offer by makinc a matching
bid and rejects it by rakinc any smaller bid. The expected profit
to the seller is just the difference between the announced reserve
price b0 and his own reservation value Vo multiplied by the proba-
bility of a sale (1 - F(bo)). Therefore the seller chooses b0 to

maximize
(1 - F(bo))(}:0 - vo)
Differentiating this expression with respect to the reserve price,
bo, yields the condition in Proposition 3.
Note that it is always optimal for the seller to set a reserve
price, bo, in excess of his own reservation value, Voe More
important, this optimal markup is independent of the number of

potential buyers.
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2. GENERAL BIDDING RULES

In the previous section we comparec the two most common types
of auctions. Here we shall consider a broad class of auction
rules in which payments are made by both the successful and
unsuccessful bidders. Perhaps the simplest example of such a
rule, anc one quite commonly used, is the English auction plus
the acdditioral feature that all potential buyers wishing to bid
must first pay an entry fee.8 As this example makes clear, one
decision buyers must make under general auction rules is whether
Or not to enter a bid. We therefore allow the payment by each
buyer to depend not only upon the rank, r, of his bid and the
vector of bids entered but also the number of such bids. Fxpressing
this formally, if b(r) is the rth ranked bid, the buyer bidding b(r)
pays an amount
mr _ phr

(7) P r=1, 2, ... m.

By Pye oo By
m=1, ,.. n.
To illustrate, in the high-bid auction with a fixed entry fee, c,

we have:

c + b(l)' r=1]

(8) Pmr =

c e T > 1

8The interpretation here is that all such fees accrue to the seller.
A second possible interpretation is that each buyer irrevocably
commits resources in an attempt to win a good or (more likely) a
contract. However, the latter situation is more aptly modelled by
making such precommitments endogenous. For an introductory dis-
cussion of these issues see Hirshleifer and Riley (1978).
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Similarly, in the second-bid auction with fixed entry fee we have:

c + b(2)' r = ]
(9) P =

c s > 1

In what follows we shall refer to these rules as the family of
symmetric auction rules.

We now seek to characterize the equilibrium bidding strategy
for a general member of this family. Suppose all but buyer i enter
the auction for those reservation values v in some interval
V C [v, V], and make bids b = 0(v) where O(-) is strictly increasing
over V. The profit maximizing response of buyer i will be either
to remain ocut of the auction or to make a bid bi in the range of
the function O(v). Thus if buyer i enters the auction there is

some v € V such that

bi = O(v)

In seeking the optimal bid bi we may therefore express the expected
payment Pi as a function of v. Buyer i is the successful bidder
if and only if vj < v for all j ¥ i, that is, with probability

Fv)™ 1, mis expected profit is therefore

(10) ni(v, vi) = vilf‘(v)n.l - Pi(v) .
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Since expected gross benefit is increasing in Vs and expected
payment is independent of Vi' a simple revealed preference argu-
ment establishes that the higher the reservation value Vi the
higher the profit maximizing level of v (and hence the higher the
optimal kig bi). Therefore the equilibrium bid function must have

the simrle form

E. = O(vi), Vi 2 Ve .

We shall refer to v,, the lowest reservation value for which buyers

will enter the auction, as the "entry value".

For a symmetric equilibrium the optimal bid by buyer i bi z 0O(v)
must equal O(v,). Thus ni(v, v;) must take on its maximum at
vV = V.. Assuming that the payment functions Pmr(b(l), cos b(m))
are continuous, P’ (v) is differentiable and we may differentiate

(10) to ottain

(11) Hi(V. v,) = v a% (F(v))?=1 Pi'(v)

Then the equilibrium bid function O(v) must yield a payment function

P(v) satisfying the first order ordinary differential equation.

(12) o, v =v o™ o p vy =0 v,
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Finally we note that, since expected profit is zero for any buyer
remaining out of the auction, we also have the bouncary condition:9
i
(13) I7(ve, vy) =0

For any set of apyment functions it is, in principle, possible to
solve for the equilibrium bid function O(v) by integrating (12)
and using condition (13) to determine the constant of integration.
We shall consider some examples below. However first we demon-

strate the following general equivalence result.

Proposition 4: Suppose the IID assumption holds and all buyers
are risk neutral. The equilibrium bid function
for the family of symmetric auction rules yields
an expected profit to the seller, E(Ho), a
function only of the entry value v,, satisfying

v n-1
=n [ [(va=- VoIF'(v) + F(v) = 1]F(v)" “av.
Ve

The proof follows rather easily from the characterization of the
equiiibrium bidding rule. First we note that the rate of change
of expected profit of the ith buyer with respect to the reservation

value v can be written as

d

I ni(v, v) = Hi(v, v) + H;(v, v)

9In appealing to this boundary condition we are ruling out auctions
in which all participants earn a positive profit. As we shall
later see, such auctions are never optimal for the seller.
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Frorm (12) ﬁ;(v, v) = 0 and from (10) ng(v, v) = F(v)n-l. ¥We there-
fore have:

d
av

(v, v) = F(v)P~L

(14)
Next taking the expectation over the prior distribution F(v), the

unconditional expected profit for buyer i is given by

. v .
ety = [ (v, var(v)
V*

Integrating by parts we have

. . - v .
B = =[A-Foontt v,y + [ Q-Fiv)gintw,vay
Ve v, v

Substituting from the boundary condition (13) and utilizing con-
dition (14) this reduces to

i v n=-1
(15) E(I7) = [ (1-F(v))F (V)" *av

V*

- Furthermore from the definition of expected profit, (10), the uncon-
ditional expected payment by buyer i satisfies

M v n-1 i
E(P;) = [ P (V)I&F(v) = [ vF'(WIF(v) " tav - ()
i i
Va Vi

Then substituting from (15)
v

(16) E(P;) = [ (VF'(v) + F(v) - DF(v)" lav.
Ve
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In turn the expected payment to the seller is just n times the

expected payment by a typical buyer -- that is,
E(Po) = nE(Pi).

The probability that the otject will remain unsold is F(v*)n.
Therefore with probability 1 =- F(v,,)n the seller relinquishes an
obLject which he values at Voe Expected profit to the seller is
therefcre the sur of the expected payments, less the reservation

value multiplied by the probability of a sale, that is,

- - - - n
E(g) = RE(P,) = v, (1 - F(v,)™)

=0 | [(v=v))F'(v) = F(v) = 1]F(v)" Lay,
v*

which completes the proof. Differentiating to solve for the profit

maximizing entry value we then have the following further result.

Proposition 5: 1If assumption IID holds and buyers are risk
neutral, the members of the family of symmetric
auction rules which maximize expected profit are

those for which the entry value, v,, satisfies

1 - F(v,)
V*8V0+—-—-—-__.
F'(v,)
The optimal entry value may therefore be written as Ve = v,(vo),
a function only of the sellers reservation value.
An immediate implication of Proposition 5 is that the sealed
high bid and second bid auctions, cum reserve price, are both
optimal. By announcing a reserve price bo = v, the seller attracts

all those buyers with a reservation value v in excess of v, ---

hence Proposition 3.
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However, the reserve price is only one of many ways in which
an optimal entry value can be generated. Suppose in the absence
of a reserve price, the seller announces a fixed entry fee c. For
all buyers with valuations less than sorme number Ve it will be

optimal to remain out of the auction. Consider a buyer with the

borderline reservation value V- In the second bid auction he
enters and, since the entry fee is now sunk, bids his true value
V.. He wins if and only if there are no other bidders, in which
case there is no additional payment. Since this occurs with proba-

bility F(vc)n-l his expected profit is
n-1
(17) VCF(VC) - C

But for Ve to be the borderline reservation value, the expected

profit must be zero. The seller then chooses an entry fee C,
satisfying,

(18) ¢, = v,F(v,)"" L,

A similar argument holds for the hich bid auction. If a buyer has
the borderline reservation value Ve he wins if and oply if there
are no bidders. The optimal bid in such circumstances is zero,
therefore, the expected profit is again given by (17) and the
optimal entry fee by (18).

Our general results are also helpful in analyzing the expected
payoff to multiple rounds of bidding. Suppose, for example, that

a seller with a minimum reservation value (vo = x)'adopts the
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seccnc Lid auction rules and charges the profit maximizing entry
fee c,. Since for this fee there is a corresponding entry value
Ver it is possille that all reservation values, vis» are so low

that no one subrmits a bid. But for all i

Thus there rerain potential gains from trade, that is, the auction

is inefficient ex POSt. Thus one might argue that the seller
could increase expected profit by announcing a second round of
biddinc with no entry fee.

Hovever, suppose buyers are sophisticated enough to anticipate

the seconé round. 1In this case only those buyers with reservation
values in excess of some v,, > V. Will enter the first round.

Each cf the other buyers can be thought of as bidding his true
value and rarkinc his bid "second round only". But this, in
effect, is a sincle round auction with the following payment

SChere.

E(2) Pi1) < Ves

ml -

FrB gy eeeeibimy) = Cu P(2) € Vas < By,
C, *+ b(2) Vex < b(2)
0 Pir) < Vas

nr

P (b(l)lon-,b(m))
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Since all buyers will enter such an auction it follows from Propo-
sition 4 that the expected seller profit is exactly the same as

in the ordinary second bid auction with no entry fee or reserve
price. Then, from Proposition 5 the second round, if anticipated,
lowers expected seller profit.

A final point concerns the decision of the seller whether or
not to announce a reserve price. In the second bid auction the
strategy of bidding one's reservation value is a dominant strategy.
Therefore the seller cannot influence bids by concealing his reserve
price. It follows that the optimal silent reserve price is the
same as the optimal announced reserve price and that expected seller
revenue is identical.

Comparison of the high bid auction with and without an announced
reserve price appears in the appendix, where the following result
is established.

Proposition 6: If assumption IID holds and all buyers are risk
neutral, then for either the high bié or second
bid auction rule an announced reserve price is
at least as good in terms of expected seller

profit as a silent price.

3. ALTERNATIVE AUCTIONS

To illustrate the general equivalence result of the previous
section we now present an unusual pair of auction designs which
happen to belong to the class of optimal auctions. 1In contrast,

a seemingly natural (and commonly employed) auction procedure is

shown to be suboptimal.
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Example 1:

Suppose there are just two buyers and the seller announces
the following auction ruleé.

i) Each buyer deciding to subrit a sealed bid must pay
an entry fee c.

ii) The high bidder receives the good but retains his bid.

iii) The low bidder (if there is one) loses his bigd.
It is tempting to conjecture that there is no equilibriur biddino
stratecy for this set of rules. However not only is such a con-
jecture false, but the derivation of the equilibrium bid function
is relatively straightforward. Suppose buyer 2 adopts the strategy
of bidding according to bz = O(vz), for all V, 2 V,, where O(-) is

a strictly increasing function. Then if buyer 1 bids b, = O(v)

1l
he wins if and only if V, < v, that is, with probability F(v).

Eis expected profit is therefore
nhv, vi) = viF(v) = 0(w) (1 = F(v)) - ¢

Differentiating with respect to v, expected profit is maximized

by choosing v so that
1 ’ _ _d - =
(19) N1 (v, vy) = viF (v) I (O(V) (1 = F(v))) 0
But for O(v) to be the equilibrium strategy we reguire bl = O(vl),
that is, v = vy Substituting for vy in (19) we therefore have

the first order ordinary differential eqguation

VE'(v) = 28 (0(V) (1 = F(v)))
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Integrating then yields

v
[ xF'(x) + a

(20) O(v) = ¥x

1l - F(v)

But if vV, = V. buyer 1 is successful if and only if he is the
only bidder. 1In this case he has no incentive to submit a
positive bié., Then O(v,) = 0 implying that the constant of inte-
gration is zero. Finally, c is determined bty the requirement

that the marcinal buyer should make zero profit, that is,

nl(v*, Ve) = V,F(V,) = c =0

Note that the numerator of expression (20) is positive and
increasing in v, Moreover, as v approaches its upper bound, Vv,
the denominator approaches zero. Therefore the equilibrium bid
b = O(v) increases without bound as v approaches V! Nevertheless,
it is easy to confirm that expected seller profit under this scheme
matches that of the familiar high bid and second bid auctions, cum

optimal reserve price.

Example 2:

Under the high bid and second bid auctions only the recipient
of the good profits. 1In contrast, the following auction distributes
positive profits to all participants and is equivalent in terms of
expected seller price to the high bid and second bid auctions.

i) Any buyer who submits a bid, b 2 v, receives from the
seller an amount

b
R(b) = | F(v)™lay
Va
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ii) The high kidder obtains the good for his big price so

that his net payment is b - R(b

(1) SORE

Tc confirm that the egquilibrium strategy of each buyer is to bid
truthfully, suppose that all buyers but the first are $O bidding,
that is, bi = Vi, i=2 ... n. Then if buyer 1 bids b1 his expected

prcfit is given by
. . N = n-1 . _
Pr {bl is high bia} (vl bl) + R(bl) F(bl) (v1 hl) + R(bl).

It is straightforward to check that this expression is raximized
at bl = vl.
The expected payment to the seller (net of his payments made

to losing buyers) is

E(PO) = E(b(l)) = NE(R(v))

M -1 vy n-1
=n [ vFW)™'F'(v)av - n ] [ Fe)P taxr (v)av
Vi Va Vi
Noting that F'(v) = gV(F(V) - 1), the second term can be inte-

grated by parts allowing it to be rewritten as

v
n [ (1-FE))Fw iy
v*

Thus

v | n-1
E(Py) =n [ [VF'(v) + F(v) - 1]F(v)* lav
vt
which is precisely equation (16) in Section 2. Choosing v, to
satisfy the condition in Proposition 5 this auction becomes a member

of the class of optimal auctions.



It is interesting to note that this auction procedure can be
generalized and applieé in situations where buyer reservation
prices are drawn from different probability distributions. By
using n different payment schedules the seller can induce each
potential buyer to Lkid truthfully and thus ensure an efficient
allocation of the good ex post. Of course the formidable informa-
tion requirements of such a procedure limits its practical use-
fulness.

Since the implication of Proposition 4 is that many seemingly
different auction technigques lead to the same ultimate results, it

is important to illustrate the range of exceptions.

Exarple 3:
Suppose there are just two buyers and the seller employs the
following auction rules.
i) There will be m (a finite number) rounds of bidding,
each round beginning with buyer 1 quoting a price.
ii) 1In each round buyer 2 can obtain the current right to
the good simply by matching the first buyer's bid.
Though this auction procedure is quite common (e.g., in house
sales, a renter occupant is frequently given the right to match
the offer of any potential buyer), it is inefficient, not only
from the point of view of the seller, but also ex post. To
illustrate this point, suppose that the reservation prices of the
individuals are drawn from a uniform distribution on [0, 1] ==
that is, F(v) = v,
The strategy of buyer 2 is straightforward. With k rounds

still to go he matches his opponents bid, bk if and only if
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Buyer 1, of course, anticipates this response and

determines his optimal strategy by solving a standard dynaric

procramming problem over m stages.

We let E(bk, vl) denote the

expected profit of buyer 1 holding reservation price vy when his

current kicg, bk' has just been matched by his opponent, on the

assurption that his remaining k-1 bids are optimal,

By definition

E(bk, vl) satisfies the functional equation

E(bk, vl) =

and E(bo, vl) = 0,

(by _y; = b))
max [(vl-bk_l) k=1 k
by by x21 1-b
(1 - b _,)
+ kol E(b, 4+ vy)
1-Db

The optimal bidding stratecy of buyer 1 can

be determined from this functional equation starting from the

last stage and applying the technique of backward induction.

For

the uniform case the optimal bidding strategy can be simply stated.

If the buyer's last bid, bk' has been matched, then he should

place his k remaining bids to partition the interval [bk, vll

- into k+1 equal parts,

In particular, when r rounds of tidding

are allowed, the buyer's optimal bidding strategy is

P-1 " 57T V1r b,

2

m
* 5T vl see b0 = mel v1

For instance, if m = 1 then the expected profit of buyer one is

by

0

f (v; = byldv which achieves a maximum at b,

= 1/2 Vye
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Similarly, it is straightforward to check the solution in the
case of m rounds,

It is evident that this auction procedure is inefficient ex
post. When Egi Vi 2V, 2 Vi the good will be awarded to the
second buyer who values it less hichly than the first. The
expected croup prcfit that is lost amounts to

1 "1
= 1
L=/ [ vy - vpiavy avy = g op”

A second guestion concerns the distributional impact of the matching
bid auction. It is easy to confirm that the first and second biad
auctions imply the following expected price and profits to the

parties.

Wi~

- = 4

For simplicity suppose the seller has a zero reservation value so

that E(PO) = E(Ho). Then

win

E(S) = E(Ho + nl + nz) =

The matching bid auction on the other hand implies

1l m(m+2) 1 1 1
E(P,) = —= E(f,) = (1 - + )

1 me2 2 1 2

1l
E(le) =€ (m) r E(S) = T2 (m)

The obvious advantage that goes with the opportunity to match an

opponent's bid is reflected in these profit expressions. Not only



does the profit of the second buyer exceed that of the first, it
also surpasses what he could expect under a symmetric auction.

The first buyer, on the other hand, is at a disadvantace in the
matchinc auction relative to a symmetric auction. More important,
the seller also sacrifices profit by extending the ratching
privilege to a buyer. For instance, employing a one big matching
auction causes a 25% loss in profit to the seller on averace
(relative to a symmetric auction). Buyer one also suffers a 25%
average loss, while buyer two enjoys a 50% gain in profit. 2s
common sense suggests, the outcome of the matching auction approaches
that of the sealed bid auctions as the number of rounds increases.
The profit expressions above confirm this convergence ané also
indicate that, as in the sealed bid auctions, the matching auction

attains ex post efficiency.

4. BUYER RISK AVLRSION

When potential buyers are risk averse, the fundamental
equivalence result outlined in Section 2 is no longer valigd,
Retaining the assumption of buyer symmetry we now show that the
high bid auction dominates the second bid auction under buyer risk

aversion.

Proposition 7: Suppose assumption IID holds and all buyers share
a common utility function displaying risk aversion.
Then

i) Under the second bid auction, buyers continue

to bid truthfully, that is bi =V,

ii) Under the high bid auction, the risk averse
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buyer makes uniformly higher offers than
his risk neutral counterpart.

iii) Consequently, the seller enjoys a greater
expected profit under the high bid auction

than under the second bid auction.

It is evicdent that the introduction of risk aversion does not
affect the strategy dorinance of truthful bidding under the second
tig éuction.

Let b(v) be the common equilibrium strategy of n risk averse
buyers, each of whom has the same von Neumann-Morgenstern utility
function u(x). We assume that u(x) is a strictly increasing, con-
cave function of x and normalize so that u(0)=0. With all other
buyers usinc the equilibrium bidding strategy and buyer j bidding
b(x), j's expectecd utility is

(A1) F“’l(x)u(vj-b(x))

For b(x) to be the equilibrium strategy (Al)must have its maximum
at x=v,. Differentiating with respect to x and setting the deriva-

tive equal to zero at x=vj, we have the necessary condition

-2 . n-1 v ok db _
(n-1)F" (vj)F (vj)u(vj-b(%))-F (vj)u (\j b(\j) 3, 0

Rearranging yields the following differential equation for b(v)

F'(v) u{v-b)
F i) u' (v-h)

(A2) b'(v) = (n-1)

- A . Aitio:
W. % reservce rrice b0=v* we alsc have the bouncdary condition

(A3)  blv,)=v,
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We wish to compare the solution for two different utility

functions, ul(-) and u2(°) where the latter exhibits a higher

Gegroee o) risk oaversion, that is,

(A4) -ug(x)/u&(x)>-ui(x)/ui(x)20

By inspection of (A2), if we can establish that

P

(AS) C(x)=u2(x)/U§(x)-ul(x)/u(x)>0, for x>0,

thern bj(v)>bj(v) and hence b,(v})>b,(v) for all v>v,. To demonstrate

(A5) we note first that, since u(0)=0 and u(x) is strictly increasing,

u(x) ., u(o0)

o' (x) u' (0) =0 for all x>0

(n6)

Ineguality (A5) holds if we can establish that for all x such that

¢(x)=0, ¢(x) is strictly increasing. Differentiating (A5) we have

-u " u _u ” u
2) (2o (—2) ()

(.:\7) ¢"(x)= ( T T 1
U U Y 4

From (A4) - (A6), x>0 and ¢(x)=0 implies that ¢'(x)>0. Moreover,

differentiating (A7) and setting x=0 we also have
¢" (0) >¢'(0)=0
Thus ¢(x) is strictly increasing at x=0.
Q.E.D.

The intuition behind these results is that with risk aversion
the marginal increment in wealth associated with a successful
slightly lower bid is weighted less heavily than the possible

loss of profit (vi - bi) if, as a result of lowering the bid, the
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buyer is no longer the high bidder. This leads risk averse bidders
always to shade their bids less than risk neutral bidders.

Under risk aversion, the general equivalence result obtained
in Proposition 5 no longer holds. For instance, an auction employ-
ing a seller reserve price will not, in general, be equivalent to

one that specifies a buyer entry fee -- even when the same buyer

minimum entry value is irplied. Still it is natural to explore
the effect that buyer risk aversion has on the optimal seller

reserve price,

Propositicn B: Suppose assumption IID holds and all buyers
share a common cardinal utility function. Then
the optimal seller reserve price is a declining

function of the degree of risk aversion.

The proposition is intuitively plausible in view of the fact
that as buyers become risk averse in the extreme, their bids approach
the truth, bi = V. Naturally, the seller can do no better than to
announce his true reservation value as his reserve price, bo = Vgpe
To quote a higher price cannot "push up" buyer offers and risks
the loss of keneficial sales. Of course when bo = Vv, and bi = Vi
the high bid auction is also efficient ex post.

The method of proof is to comnaggrthe effect of a change in the
peserve price vy oon the equilibrium bid function b-b(v,v,) for dif-

fereat desrecs of risk aversion.  Dxpected seller revenue, R(v,), is
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the expected value of the highest ranked bid, that is,

v
R(v,)= J b(v,v,)dF

Va

n-l(v)

Then the net advantage to the seller if utility is u2(') rather than

u, () can be expressed as
¥ n-1

Ry(va! = Ry(v,) = b L, (Vv )=b) (v, v,) 1aF™ L (y)
Vi

Differentiating with respect to v, we have

ob ab

v
. . Vi _ 2 _ n-1
(A7) RZ(\*)-RI(\*) = J[av* gvz]dF (v)
v

*

It suiiices to show that the bracketed expression in (A7) is

negative, for then Ré(v*) is negative when Ri(v*) is zero.

Th2 equilikrium bid function b(v,v,) is the solution to,

. TP _ F'(v) u(v-b)
(28 vV =~y giteon)

with the boundary condition,
(A9) Dblv,,v.)=v,.

Assuming u{*) is twice differentiable we can differentiate (AB)
with respect to the reserve price v, and so obtain the following

differential equation for 39b/dv,

10 Z8) =~ ERL nan & ge)

av av,
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From (A4) and (A5) the bracket in (Al0) is larger for the
utility function uz(x) exhibiting greater risk aversion. Then if
we can establish that abz/av* = abl/av*>0 at v=v,, it will follow

fren. (Al2) that

. ob 3ab
3 2 3 1 .
—3\’(5;;:) > —a;(m), for vrv, ,

and hence that sz/av*=>dbl/av* for v>v,.

From (A9) we have,

3b{v,v,)
IV, t
v=v, v=v,

sb(v,v,) +
“iur

(A1)
Since b(v,,v,)=v, and u(0)=0, it follows from (A2) that for any con-
cave utility function and any v,>0, the first term in (All) is zero.
Then the second term in (All) is equal to unity for both ul(x) and

u,(x).

2
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5. CONCLUDING REMARKS

While a general result concerning the design of optimal
auctions under uncertainty has been presented, it is important to
poirt out the limitations and special assumptions of the present
model. We have assumed that:

2) A single indivisikle good is the object of sale.

E) ©Buyers are risk neutral.

€) Buyer roles are symmetrical (i.e., buyer values are

drawn from a common distribution).

-

¢) These values are independent.

Additional difficulties are raised when multiple goods are
auctioned or when a divisible good must be allocated. Unless buyer
valuations are additive and incorme independent, auctioning the

goods in seguence will be inefficient (ex post and ex ante). When

multiple goods are auctioned, each buyer shouléd logically submit
2 bid for each subset of goods. Roughly speaking, the seller
will allocate goods to maximize revenue under one of a number of
auction schemes. In the case of a divisible good, each buyer will
submit a "demand schedule" indicating the price he is willing to
pay for any given guantity of the good. The seller must formulate
an auction rule which specifies the allocation of the good and
appropriate payments of buyers. In either instance the determina-
tion of optimal auctions for these more general environments lies
beyond the bounds of the present analysis.

Reviewing the proofs of Section 2, it is evident that the
central result of this paper -- the equivalence in terms of seller

profit of a number of seemingly different auctions -- depends
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critically on the assumption of buyer risk neutrality. Given the
latter, the only possible effect of a change in the distribution
of payments is a change in the valuation below which entry into
the auction is unprofitable. As a result the seller can do no
better than acdopt the second bid auction in which bidding truth-
fully is a dominant strategy and hence buyers need not know the
form of the distribution function F(v). As pointed out in Section
4, the situation changes drastically when this assumption is cropped.
Against risk averse buyers, the high bid auction domrinates the
second Lid auction. Under the hich bid auction, the seller should
lower his announcel reserve price as buyers become more risk
averse. These propositions are indicative of the partial results
availaktle in this more general environment.

Dropping the assumption of buyer symmetry causes similar com-
plications in the analysis. The derivation of the class of optimal
auctions relied explicitly on the existence of a common eguilibrium
bidding strategy. Without this, these propositions no lonéer hold.
The asymmetric model, though far more complex, is, nevertheless,
amenable to the basic approach developed herein. Suppose the
reservation prices of the buyers are drawn from the independent
distributions, Fl' Fz, cos Fn. Some partial results from this
setting suggest a basic conclusion. An optimal auction extends
the asymmetry of the buyer roles to the allocation rule itself.
The assignment of the good and the appropriate buyer payment will
depend not only on the list of offers, but also on the identities

of the buyers who submit the bids. 1In short, an optimal auction



under asymmetric conditions violates the Principle of buyer
anonymity.l3

Finally, one must consider the appropriateness of the model's
most basic assumption, value independence. The analysis has
assumed that each buyer is informed of his own reservation price
and, more important, that this price conveys no information about
any other buyer's value. By way of contrast, consider the auction
mocel usually applied to off-shore oil leases. Here, a tract
being auctioned is assumed to have a common value for all parties.
Moreover, the tract value is unknown, though buyers may possess
(differing) sample information allowing inferences about this value.
In this setting, each buyer must determine a strategy for acquiring
information concerning the value of the tract and for submitting a

bid based on a correct estimate of this value.14 These features

l3As an extreme illustration of this proposition, consider a seller

with Vg = 0, and a buyer whose reservation price is distributed
uniformly on the unit interval. The optimal seller reserve price
is bg = 1/2 in this case. Now suppose a second buyer enters the
competition with a reservation price distributed uniformly on

[0, 1/2].

Suppose that the seller adopts the following rule. He awards the
good to the first buyer if and only if b, > bp) and to the second
buyer if and only if by < byy and by > byy. It is easy to check
that the profit maximizing c%oice of these reserve prices is bgy =
9/16 and bgy = 1/4, showing that symmetric treatment (bg; = boz} is
suboptimal, _

14Concerning the issue of value estimation and bidding strategy, a
number of authors have noted the phenomena of the "winner's curse."
A buyer errs in using a naive estimate of the tract's value based
on his sample information alone. A sophisticated assessment
determines the expected value, conditional on winning the tract.
Since the buyer wins only if his opponent's sample information is
less favorable than his own, a sophisticated buyer discounts his
own sample information in making a bid. For discussions of the
informational issues in this model, see Mathews (1979) and Reece
(1978).
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have a direct influence on the determination of an optimal auction
and raise additional policy issues. (Should the seller maintain

a stake in an awarded tract for the purpose of risk sharing?
Should the seller undertake measures to facilitate information
acquisition or to allow information pooling?)

The choice of an appropriate auction model can be illustrated
by a practical exarple. The largest auction houses (e.g., Southety
Park Bernet, Inc. and Christie's) employ the English auction to
sell rare and valuakle items (art, antigues, and jewelry). A
buyer can bié personally for an iter on the day of the auction
or can submit a prior written offer, designating a representative
from the auction house to bid in his behalf. This same procedure
establishes a silent seller reserve price, since a house repre-
sentative is instructed to buy back the good if the sale price is
insufficient. 1In addition, an estimated value (prepared by a
house expert) is listed for each sale iter.

Under value independence, our results concerning optimal
auctions suggest two immediate conclusions. First, the estimated
values should be irrelevant., A buyer who holds purely personal
values for items should not be influenced by the estimated prices.
He should use the pre-auction viewing period to establish his
reservation prices, resisting the temptation to examine first the
listed prices. The same self-restraint should be exercised when

he participates in the open auction. Holding firm to his
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reservation value, he should not be influenced by competitors’
bigs. 1>

Second, the confidentiality of the seller reserve pPrice is
an illusory benefit for the owner of the good. As discussed in
the conclusion of Section 2, the seller should be indifferent
between announcing an optimal reserve price or keeping it confi-
dential. Since the desire for confidentiality seems to be a
practical fact, it is perhaps best to recognize this as another
psychological element present in a "live" auction.

What if some degree of value dependence is present, as is the
case when the worth of the good is determined in part by its
potential resale value? In this instance, an estimated price has
an obvious bearing. Such an estimate will convey paftial informa-
tion about the value of the good and ideally serve to elevate
buyer bids. An optimal seller strategy might authorize appraisal
of an item which the seller believes to be worth more than its
face value and prohibit appraisal in the opposite circumstances.
In the interest of "fair" auctions, however, the house does not
permit this kind of buyer discretion. Concerning the appropriate
reserve price policy under value dependence, it appears that an
announcement dominates a silent price -- for the same reasons that

apply under value independence. The optimal announcement (a mark

15It is a common observation that the competitive features of the

open ascending auction serve to elevate buyer offers (above their
prior values). If value independence is taken as the appropriate
model, buyers are behaving irrationally. This implies that the
open ascending auction enjoys a practical advantage over the sealed
bid auction. The "mixed" auction currently employed allows

written bids to promote the greatest possible participation while
maintaining the "uplifting" features of the open ascending auction.
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up above vo) directly elevates buyer offers and, consequently,
permits increased seller profit.

It is easy to imagine (though not to solve) a hyrrid model
specifying both dependent and independent components of buyer
reservation prices. A formal analysis of optimal auction design

in this more general environment remains to be undertaken.



40

APPENDIX

Proposition 6: If assumption IID holds and all buyers are risk
neutral, then for either the high or second bid
auction rule an announced reserve price is at least
as good in terms of expected seller revenue as a

silent price.

Proof:

In section 2 we arqued that, for the second bid auction ex-
pected seller revenue is independent of whether or not the reserve
price is announced in advance. To analyze the high bid auction we
must take account of the fact that with a silent reserve price the
probability of winning,conditional upon having the highest valuation,
will be of the general form G(v). We wish to show that the seller
can do no better than announce a reserve price of v, so0 that G(v)
becomes

* 0, v < v,
(Al) G (v) = {

l, v 2 v,

To obtain an expression for expected seller revenue we follow exactly
the derivation of Proposition 1. Expression (10) for the expected

buyer gain becomes
i _ n-1
(A2) I (x,vi) = viG(x)F (x) - Pi(x)
Then, since ni(x,vi) =0 at x = vi we have
n-1

i .
(A3) %%7 (v,v) = n;(v,v) = G(V)F (v)

From the seller's viewpoing buyer i's expected gain is
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v .
(a4) [ TV (v,v)@F(v)

Since the seller has a reservation value in IX,VJ he will never
sell to a buyer with valuation v. Then G(v) = 0. 1Integrating

(A4) by parts and making use of (A3) we have

v . v
15) f Trvwdrm = [ 6w v) (1 - Fv))av

Finally, setting x = vy in (A2) and taking the expectation over

vi we have

. v v
(A6) PB* = [ P.(v.)AF(v.) = [ G(v)(VF'(v) + F(v) ~- DF L (v)av
y_ 1 3 < v

In the high bid auction, for any silent reserve price strategy of
bidding b, ='¢(v0), there is an implied conditional probability
function G(v). From (A6) the expected payment by i, for any given
G(v), is the same in the high and second bid auctions. But we have
already argued that, in the latter, ?i is maximized if G(v) satis-
fies (Al). Then the same is true for the high bid auction. Actually,
in practice there is an additional problem of verification in the
high bid auction. For whatever the strategies of the buyers, the
seller can do no better ex post than to "quote" his true reservation
value V- Raising bo above Vo does not affect the sale price but
can cause the loss of a profitable sale if bo is raised above the
high bid. Thus the seller will have difficulty convincing buyers
that his strategy will be to submit a silent bid other than b0 = Vo
Indeed, if buyers believe that the true strategy of the seller is

b, = Vo the best the seller can do is to adopt this strategy. But

0
then, as we have already argued, the silent bid strategy yields the

seller a strictly lower expected revenue.

Q.E.D.
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