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AN EFFECTIVE SCORING RULE FOR PROBABILITY DISTRIBUTIONS

I. Introduction

The work presented in this paper was originally motivated by the following
problem in communications. Suppose one or more experts have knowledge not
generally available about some random variable, observable only ex post,
and one or more decision makers must make ex ante choices whose outcome
depends in part on the random variable. Further, suppose that the choices
and outcomes are sufficiently complicated that more information about the
random variable than just its expected value is required, but the decision
makers have limits to their ability and desire to absorb detail. In such
a situation, it may be reasonable for the experts to convey their knowledge
by means of simplified probability distributions. The decision makers will
then need some means 6f evaluating after the fact the quality of the informa-
tion they received. They also need assurance that it is in the best
interest of the experts to direct their own efforts into producing the
most accurate1 probability distribution possible given limitations of time,
money and format. '

The problem, then, is chiefly one of elicitihg personal probability distribu-
tions. There is by now a rather substantial literature on elicitation; Savage
(1971) in many ways sets the tone. That article emphasizes the use of

scoring rules to encourage accurate elicitation, the behavioral assumption

being that an expert attempts to maximize his expected score. The scoring

lln the absence of a well-chosen incentive structure, the experts may

indulge in game playing which distorts their stated probability distributions.
For instance, casual observation of economic forecasters suggests that experts
who feel they have a reputation to protect will tend to produce a forecast near
the consensus, and experts who feel they have a reputation to build will tend
to overstate the probabilities of events they feel are understated in consensus.



rule, in turn, can be any function of the elicited information and the realiza-
tion of the random variable ex post, but of course cannot depend on unobserv-
ables such as the subjective (or "true") ex ante distribution. .Savage con-
centrates on proper scoring rules; that is, rules that give a maximum expected
score to a perfect elicitation. He also introduces, but does not name, the
monotonicity property that the better the elicitationm, the higher the expected
score. Scoring rules with such a monotonicity property, hereafter called
effective scoring rules, are particularly appropriate to the communication
problem sketched above, because the experts, constrained to simplicity, may
not be able to communicate precisely their true probability distributioms.

Unfortunately, Savage's methods are designed to elicit only the mean
of a probability distribution. Matheson and Winkler (1976) extend many of
Savage's results to our problem of eliciting an entire personal probability
distribution, but they deal basically with proper scoring rules, not all of
which will be effective,

The next section will provide more precise definitions of these
ideas as well as some examples. Section III will demonstrate the effective~
ness of two well-known scoring rules and discuss their relative merits.
The following section is intended to highlight the main ideas by means of
a practical application, and the last section touches on some related ques-
tions that may be of interest. Appendix A contains some technical notes.

The notation follows Savage where possible and generally accepted mathe-

matical practice otherwise. Rudin (1966) is a handy reference for Section III.



II. Scoring Rules

Let X be a random variable with distribution F. For the most part, we
will think of F as the (expert's) subjective probability distribtuion, and
assume that it has some density function £.

Let us first consider the case of eliciting only EX, the expectation of X.

In this context, a scoring rule is a real valued function s(y,x), where y is

the value given by the expert and x is the value of X actually observed.

The rule s is said to be (strictly) proper if its f-expected value,

Ss(x,y)£(x)dx is (strictly) maximized at y=EX, the "true" expectation

EfS(y)

of X. We will say that s is effective if its f-expected value 1is monotonic in

the following sense:
1. E;s(y) > Es(z) < | y-EX | < | z-EX |y
that is, the expected score is higher, the closer in absolute value is the
elicited value to the "true'" (but unobservable) expected value. Clearly s
will be strictly proper if it is effective. An example of an effective
scoring rule is s(y,x) = -(y-x)z.

Modifications of these definitions are required if we wish to elicit the
entire density function f of X rather than just the expectation. In this
context a scoring rule is a real valued functional S(g,x) defined for all g in

some set D of density functions.2 S is (strictly) proper if its f-expected

value, E.5(g) = SS(g,x)f(x)dx, is (strictly) maximized on D at g=f. It is

effective 1if

2p represents, in the communications problem discussed in the introduction, the
set of admissible (simplified) distributions from which the expert selects his
message. If f ¢ D, then no proper scoring rule is possible.



2. E;S(g) > EfS(h) <=> d(f,g) < d(f,h),

where d is a metric (i.e., distance function) on D, In words, the expected
score is a monotone decreasing function of the distance between the true
and elicited distributions. Note that if S is effective, and 1f f € D,
then S is also strictly proper. Im this definiéion, some metric 4 on D is
assumed. The set of effective scoring rules would in general be different
if some other metric were used, so the choice of metric is important.
Some examples should help clarify ideas.
a. The naive scoring rule S(g,x) = g(x) simply uses the height
of the density function at the realized outcome as the score.
Despite its intuitive appeal, this rule is not proper, and
and therefore not effective, as can be seen in the following
example. Let
1/4 £ 0 < x <1 ' 14f1<x<2
f(x) =(3/41f 1 <x <2 . g(x) =40 otherwise.

0 other%;se; 2

Then E_S(f) =ff2(x)dx = 5/8, but E_S(g) -ff(x)dx = 3/4,
0 1

b. Scoring rules are commonly derived from a decision maker's loss
function. For instance, if the loss function is f(a,x) = (a—x)z,
where a is the "action" taken (i.e., the value assigned to the random
variable) and x is the ex post value, then it is easy to see that
one minimizes g-expected loss by setting a = g, the mean of the
elicited distribution. Thus, an appropriate scoring rule in this
case would be S(g,x) --{E-x)z. Such a rule is proper but not strictly
proper, since any g whose mean coincides with the "true" mean f

receives the maximum f-expected score. Similar results hold for

more complex loss functions, but the topic will not be pursued



further here since we are primarily concerned with & communica-
tion problem and assume no specific knowledge of decision problems.
The logarithmic scoring rule S(g,x) = log g(x) arises from informa-
tion theory and can be shown to be strictly proper. However, it
gives a very stiff penality to underestimating low probabilities
and in fact gives an expected score of - ® to any g which is zero
on a subset of support (f) of positive measure. If support (f)
= Tx[f(x) > 0} is not known a priori, practical difficulties arise,
which the reader can illustrate by taking f and g as above and choosing
various h's "between" f and g. Appendix A indicates that the logarith-
mic scoring rule probably is ineffective in a very general sense.
The quadratic scoring rule S(g,x) = 2(g(x) - ”gi[],where
”g]li = [|g(x)|%dx, arises as analogue of the simple but
effective scoring rule for expectations mentioned near the
beginning of this section. This scoring rule is well-known to
be strictly proper. As to its effectiveness, consider the densities

£(x) = (10 1f 0 < x < 0.10 g(x) = (10 if 0.06 < x < 0.16,
0 otherwise; : 0 otherwise;

and h(x) = {0.01 if 100 < x < 200
0 otherwise.

According to most intuitive notions of distance, g is much closer
to £ than is h, but Efs(g) = -2.00 while Efs(h) = -0,01. However,
we will soon see that there is a simple metric which makesthis rule
effective.

The spherical scoring rule S(g,x) = g(x)/ ||g Hz arises as

a correction to the naive scoring rule and is effective with
respect to a natural metric on virtually any set D of probability

distributions, as the next section will show.



III. An Effective Scoring Rule

This section will employ some basic techniques from functional analysis,
so a few definitions are in order. Let ) be some measurable subset of R,

perhaps R itself, and let £: Q =+ R. Then the p-norm of f is
1/p

I} - ﬁflpdx 1 <pcen .
9]

The space of p-integrable functions is Lp= {f | ||f“p<®} . The usual

metric on Lp is dp(f,g) = "f—g||p. The unit sphere in Lp is

Bp = {f ¢ Lpl nfllp = 1}, and in the case p = 2 we have the inner product

(f,8)

let D

IQ f(x)g(x)dx, which will always be finite for £, g € Lz' Finally,

{bounded continuous density functions on R}, and note that D c Bln Lz.

Proposition 1. The quadratic scoring rule Q(g,x) is effective on D with respect

to the Lz-metric dz'
Proof: First note that for any £, g € L, (dz(i:',g))zn= (f-g, f-g), and
EfQ(g) = 2(f,g8) - (g,8). Therefore, for any f € L2 and g, h € D,
d,(f,8) < q{f,h) <=>(f-g, f-g) < (f-h, £-h)

<=>(f,f) + (g,8) - 2(£,8) < (£,£) + (h,h) - 2(£,h)

<=>2(f,g) - (g,8) > 2(£,h) - (h,h)

<>EQ(g) > E.Q(h). QED-

The Lz-metric 1s widely used and is quite natural in the sense that

it is a direct extension of ordinary Euclidean distance to an infinite dimen-
sional function space. However, it seems not quite approprigte for use on a
space D of density functions; the normalization employed in forming D (integral
= 1) does not blend well with the Lz—norm underlying this metric. Thus, in
example c¢ of the previous section, the L,~distance between f and g is exaggerated
relative to that between f and h by the‘fact that the Lz- norms of £ and g

are much larger than that of h.



Proposition 2. For any f € B , the naive scoring rule S(g,x) = g(x) achieves

a unique maximum in f-expected wvalue on 32 at g = f. Furthermore,

E;S(g) > ES(h) <= dz(f,g) < dz(f,h) for all g, h ¢ n: (f) = {ges | (f,g) > 0}.
(See Figure 1 for illustration.)

Proof: Efs(g)s(f,g)fﬂfuéng"2= 1, by the well known Schwarz inequality, with

equality holding iff f=g, thus establishing the first part of the proposition.

For the second part, fix feB, and let T:L,+L, be defined by mg =g- (f,g)f
(orthogonal projection onto <f>!). Pick g,heB:kf) and note that
1= "8":‘ "“’8"i+ (f,g)”fni’ so ”“dr =1 - (f,g). Note also that f-g =
-mg + [1-(f,g)]f, and therefore ||f-g||2 = ||-ng||: +1- (f,8) = 2-2 (£f,8).
Similarly, |f - h||z = 2 - 2(f,h). The equivalences E.S(g) > E;S(h)<=>(f,g) >

(f,h) <= Ilf—g||2< Hf-hll2 <> d (£,8) < d_(£f,h) are now immediate. QED.

Proposition 1 shows that the naive scoring rule would be effective (with respect

to dz) if D¢ B,, which is unfortunately not the case. All is not lost, however;

D is contained in L;\{0}, which can be projected onto B, by the map p, where

pg=g/ ||g]|2 (See figure 1). This map induces a metric d on D, where

d(f,g) = | of - Dgnz, as the following proposition shows:

Proposition 3: The function d above is ametricon D; i.e., for all f, g, h e D,

d satisfies the following three conditions:
(a) d(f,g) > 0; d(f,g) = 0 <= £ = g.
(b) d(£f,g) = d(g,f) (symmetry)
(c) d(f,g) < d(f,h) + d(g,h) (triangle inequality).



Proof: d(f,g)>0 is immediate from the definition. Suppose d(f,g) = 0.
Then by definition of 2-norm pf = pg almost everywhere; i.e., f£f(x) =
c-g(x) for almost every x, where the constant ¢ is |k"z/"g"2. Since £

and g £ D, we can integrate both sides and conclude c¢c = 1 and therefore
f = g. The symmetry of d is obvious, so there remains to establish
only the triangle inquality d(f,g) < d(f,h)+d(h,g). But this is an immediate

consequence of the well-known Minkowsky inequality for the 2-norm. QED.

One can check with examples that the metric d accords well with most
intuitive notions of similarityof density functions. This should come as
no surprise, because d is the result of an appropriate "renormalization" of
L2 metric. Another advantage of d is that, unlike dz’ it is unaffected by
a change of scale in Q.

If the mapping p is applied to the naive scoring rule, the spherical

scoring rule results. Since p always maps D into B:(f), we have the desired

result:

Proposition 4. The spherical scoring rule S(g,x) = g(x)/ ”g]Izis effective
with respect to the metric d on all of D.

Propositions 1 and 4 may easily be generalized in several ways. The
density functions in D can be defined on any measurable subset Q of virtually
any vector space. At the cost of some technical complication, D can represent
probability distributions which do not necessarily have bounded and continuous
density functions. The methods used above would seem valid as long as LZ(Q)
is dense in D. Therefore the spherical and quadratic scoring rules are effective
even if the random variable to be forecast is discrete, or bounded, or vector-

valued, etc.
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IV. An Application

The senior management of a multinational corporation requires forecasts of
foreign exchange rates from its currency experts. The forecasts are input to a
large and varied set of decisions, some of which require more detail than "point"
(i.e., expected value) forecasts. The format requested for the forecasts
is that of a "histogram" (i.e., piecewise constant density function) with

five or fewer steps (see Figure 2). The general form of the forecast is:

h(x) = hk if erk, k=1l,...,5

0 otherwise,

with_i: Py = 1.00, where Pi = wihi and wi = width Ii’ the intervals I:l
bein: d;sjoint. The set D of the previous sections thus consists here of all
densities of this form.

Under the naive scoring rule, the forecaster receives the score
S(h,x) = h(x) = h = pk/wk if the actual FX rate falls into the forecast
interval Ik' Thus he is rewarded both for a tight forecast (narrow interval)
and an accurate one (high probability interval). To the extent that the fore-
caster attempts to maximize his expected score, however, this rule will provide
him incentive to overstate the probabilities of the perceived modal (most likely)
outcomes and thus understate his perceived uncertainty, as a careful examination
of example a of Section II will show. Such bias can be eliminated if management

employs the spherical scoring rule

1/2

s

If, for some reason, the metric'd2 were thought to better represent closeness

of approximation for densities, management could use the quadratic scoring
5

rule S(h,x) = 2hk- Zh

P,
{m1 i1
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Use of either of these effective scoring rules in most cases will not greatly
change the relative scores from those arising from the naive rule, but as we have
seen there will over the long run be differences in incentives. Only experience
in using the various rqles can determine if the naive rule induces sufficient

bias3 to justify the use of the more complicated effective rules.

As a numerical illustration, suppose forecaster A, a member of the
"kitchen sink" school, after careful introspection produced the following

forecast of the year-end pengo/US$ spot rate (graphed as h in Figure 2):

interval probability
10-11 pengos/$ 10%
11-13 " 30%
13-13.5 " 20%
13.5-15 " 30%
15-18 " 10%2 .

Forecaster B, an econometric model, after its keeper fed in assumptions
about exogenous variables, produced the following alternative forecase (g

in Figure 2):

interval probability
9~-11 pengos/US$ 1%
11-13 " 152
13-15 " 68%
15-17 " 152
17-19 " 1%

3

A simple way of detecting such bias is to look at the proportion of
forecasts for which the actual FX rate ends up within the central 50% and 90%
intervals of the histograms.
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At the end of the year, the scorekeeper observes a spot rate of 12.21 pengos/$.
Under the naive rule, A is assigned the score 15 (= .30 + (13-11), times an
arbitrary 100 to make for easier reading) and B the score 7.5. Since thlz ® .45
the ||gl| 2 % 50, the correction involved in the spherical scoring rule changes
the relative scores only slightly: 33.7 for A, 14.8 for B. Likewise, the
use of the quadratic rule (score 29.8 for A, 14.7 for B) also leaves the rela-
tive scores about the same in this case.

Little can be concluded on the basis of a single forecast. Although
we couldn't observe the forecasters' "true" subjective probability distribu-
tions,4 we can safely assume that they were well-approximated by the histo-
gram forecasts, as long as the forecasters take their scores seriously. On
the basis of a reasonably long "track record" of scored forecasts, management

will be able to assess the merits of the two forecasters.

V. Discussion

There are other effective scoring rules besides those discussed here;
Appendix A provides a characterization of those rules which are effective in
some general sense. The virtue of the quadratic and spherical rules is not
uniqueness, but simplicity: in a sense that Section III makes clear, these
are the simplest scoring rules effective with respect to reasonable metrics
(the metric d and the spherical rule being especially appealing in the author's
opinion). 1In practical applications, simplicity is vital, and perhaps even
more important than effectiveness, becagse a score provides little incentive

to a forecaster who doesn't understand where it comes from.

4
Note that even in the case of an econometric model forecaster, the forecast

distribution depends on a subjective assessment of the distribution of the
exogenous variables, and therefore can be regarded as subjective.
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Another practical issue is that a forecaster may not actually attempt
to maximize his expected score because he is risk averse. A practical
solution to this problem is to use a rule such as the naive one, whose bias
acts in a direction opposite to that of risk aversion by the forecaster. A
theoretical resolution of this problem awaits further work.

So far we have cast the elicitation problem in a subjectivist mold: a
scoring rule is supposed to give an expert incentive to introspect carefully,
to make his beliefs explicit, and to accurately summarize them in a probability
distribution F. There is also a more objectivist interpretation: Suppose
there is essential uncertainty in the world, so that even a "perfect" expert
(who employs accurate theory and has access to all current information and
unlimited computing power) would provide a probability distribution F of
positive variance for some event of interest. Suppose further that actual
experts can approximate F to varying degrees, with better approximations
generally costing more.

In this case, an effective scoring rule would motivate the expert to
gather information and refine his approximate probability distrib;tion G
up to the point where his marginal expected gain due to improved score
matches his marginal cost. If this marginal gain coincides with the marginal
benefit to the decision makers, the rule is better than effective; it is,
let us say, efficient. This notion of efficiency rejoins the communication
problem to the decision problem from which it was separated in the introduc-
tion: efficiency is nothing more than effectiveness with respect to a metric
based on the decision maker's loss functidn. It appears that glight generaliza-
tions of the spherical scoring rule will be efficient if the information

gathering costs and the returns to informed decision making have sufficiently
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simple structure. The existence of efficient scoring rules in more general

situations remains a very interesting open question.



16

Appendix A. Technical Notes

1. Generalized Versions of Known Scoring Rules.

The choice of scale for the score clearly does not affect the effective~
ness of a scoring rule. If S(g,x) is effective, then so is aS(g,x) + b

for any a > 0 and b € R; this fact was used in the numerical example of
Section IV. More generally, if ¢ is any strictly monotone increasing
function, then ¢ © S is effective if S is, since effectiveness is an
ordinal concept.

In many cases, one can use weighting functions to define generalizations
of a given effective scoring rule. Recall that Q ©R is the set of possible
outcomes (i.e., range) of the random variable, and let W= {w:Q -+ R|w(x) > 0}
be some set of weighting functions. For any w € Wand g £ D (a set of

density functions on §1), define w.g:{) > R by w.g(x) = {Z(x)g(x)/éWf if0< fﬁf < @
otherwise.

If -- as will often be the case -- W.De¢ D, then one can define the family

{sy} of scoring rules, where S_(g,x) = w(x)S(g,x). Assuming S = S

wewW 1

is effective, with respect to some metric 4, Sw will be effective with respect
to the metric dw on w.D ¢ D, where dw(f,g) = d(w.f, w.g). Such constructions
may be useful in turning an effective scoring rule into an efficient scoring
rule for certain types of loss functions. The idea of weighting scores is

borrowed from Matheson-Winkler (1976).

2. Effectiveness in Matheson-Winkler.

Although their primary emphasis is propriety, Matheson and Winkler
(1976) at two points touch on ideas related to effectiveness. Their

discussion at the end of Section 2, in which they note a monotonicity

property possessed by some of their scoring rules, has a spirit similar
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in our introductory remarks on effectiveness. Unfortunately, they define
monotonicity relative only to a weak partial ordering, rather than a metric,
and the ordering is outcome-dependent.

On the other hand, earlier in the same section, they show that a
certain scoring rule is "effective" in the following sense: Let C €L,
be a set of cumulative distribution functions (rather than density functions);
call the rule S:C x @ *R Mweffective if EFS(G) > EFS(H)é:dZ(F,G) < dz(F,H),
for all F, G, H € C. Then their equation (24) shows that the rule S(G,x) =
-{ZGz(t)dt - {w(l - G(t»?dt is MW-effective. Although the MW concept of
distance is weaker than ours (densities close implies CDF's close, but not
conversely), it is quite compatible with our point of view, and provides a

viable alternative definition of effectiveness.

3. A Characterization of Effectiveness.

We have usually discussed effectiveness with respect to some given metric.
However, people may disagree over which metric best corresponds to intuitive
ideas of distance between densities. Also, metrics that do not correspond
to anyone's intuition may arise from considerations of the "efficiency" of
scoring rules. Therefore, it makes sense to ask whether a scoring rule is
effective with respect to any metric at all. Given some non-trivial set
D of densities, call a rule G-effective ("generalized effective") if there

is some metric d on D with respect to which it is effective.

Proposition 5 A scoring rule S:D x Q + R is G-effective iff it is strictly

proper and there is a function ¢:D x R -+ R satisfying:
(a) for all f € D, ¢(f,*) = ¢f is strictly monotone decreasing on

(mf, Mf], where m = inf EfS(g) and M; = EfS(f);
ged
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(b) For all £ € D, ¢f is non-negative and ¢f(Mf) = 0;
(c) For all f, g €D, ¢f(EfS(g)) = ¢8(Egs(f)); and

(d) For all £, g, h €D,
¢f(EfS(8)) §_¢h(EhS(f)) + ¢h(EhS(g))-

proof: First suppose S is G-effective. Then, for some metric d on D, and

all f, g, h e D,

(*) EfS(g) > EfS(h)4?7d(f,8) < d(f,h). ‘
Clearly, (*) implies that § 1s strictly proper. To derive ¢, fix £ € D,
and consider the functionals A, = d(f,*) and B, = EfS(') on D. Suppose
Af(g) = Af(h). Then (*) implies that Bf(g) - Bf(h) and conversely; i.e.,
Af and Bf have the same level sets in D. Therefore, there is some invertible
real function ¢f: ime > :I.mAf such that Af = ¢f° Bf. From (*), we conclude
that cbf is strictly monotone decreasing on im ‘.Bf: (mf ,Mf] . Such a d>f can
be constructed for every f € D and (a) will be automatically satisfied.
Since by construction ¢f(EfS(g)) is a metric, (b) - (d) will also be satisfied.
For the converse, assume S is strictly proper and ¢ satisfying (a) - (d)
is given. Set d(f,g) = ¢f(EfS(g)). Then (b) - (d) imply that d is a metric,
and (a) implies that S is effective with respect to d. QED
Proposition S can also be used to characterize those scoriné rules effective
with respect to a given metric d; one requires that the rule is proper and
that there is some ¢ such that d(f,g) - ¢f(EfS(g)). For instance, if § is
the quadratic scoring rule and ¢f(t) = ((£,f) - t)llz, then ¢f(EfS(g)) = dz(f,g).
Likewise, ¥ (t) = (2 - 2t/ £1] 2)1/2 links the spherical scoring rule to the

"renormalized" L2—metric.

4. The logarithmic scoring rule. Proposition S suggests that most proper

scoring rules will not be effective with respect to any metric, no matter how
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artificial, since a function ¢ with the required properties is usually hard

to come by. Unfortunately, the characterization is not analytically very
tractable. For instance, one would like to know if the logarithmic scoring

rule S(g,x) = log g(x) is G-effective. To avoid the difficulties alluded

to in Section II, let © = [0,1] and let D contain only densities on 2 bounded
away from 0. I conjecture that there is no metric d on D with respect to

which S is effective. Otherwise, by Proposition 5(€), for any f£,g € D, there
would be strictly monotone functions ¢f, ¢g such that [flog g = ¢f-l ¢g(fg logf),
which hardly seems possible. (The discrete version of this statement indicates

for any p, ¢ € I =_{(p1,...,pn)|pi > 0, Zpi = 1}, there is a way to transform
n

n .
inlpglintoin iin two very simple steps, involving only the product, not the
=]1"1 =

P
1%
multiplicanas.)

Ed Leamer points out that if this conjecture is true, it is a blow against
maximum likelihood methods. The reasoning is as follows: Suppose D is a
finite-dimensional set of densities, indexed by a vector 6 of parameters,
so D= {g(x;8)| 6 ¢ @ CR"}. For example, D might be the histogram family
of Section IV or the family of normal densities. Suppose one draws random
samples from a distribution wi;hvgome %Eknown density f. The log likelihood
of the sample {xl,...,xnjyis_LN(e) = 1§1 log g(xi;e); as N » o, %-LN(Q) + I(8) =
JE(x) log g(x3;6)dx. To estimate f by a density d € D by the method of maximum
likelihood, one picks the g(x;0) & D which maximizes I(6). But I(6) =
EfS(g(x;e)), where S is the logarithmic scoring rule. If f € D, the procedure
is sound, since S is strictly proper. However, if -- as will often be the case --
f ¢ D and if the logarithmic scoring rule is not G-effective, then the g

selected by the maximum likelihood procedure will not generally be the closest

approximation to f in D in any (metric) sense of closeness.
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5. Unresolved Mathematical Questiomns.

a. 1Is the logarithmic scoring rule G-effective?

b. 1Is there a more analytically useful characterization of G-effective

scoring rules?
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