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I. Introduction

This paper examines a very interesting set of time series data:
8ix recent years of daily Foreign Exchange spot rate movements for nine
major currencies. For those involved in international business or economics,
the data are of immediate practical significance. Econometricians and
statisticians may also find the data fascinating for methodological reasons.
Our analysis indicates that many of the standard statistical procedures
based upon assumptions of stationarity and normality are inapplicable to
these data. On the other hand, the time series are very long, containing
over 1600 observations for each currency. As a result, the data present
an unusual opportunity for using non-standard techniques to uncover the
underlying patterns.

As we examine the data, we have in mind several questions. To what
extent do the currency movements exhibit trends? How can one assess the
volatility (i.e., departures from trend) of the various currencies? What
underlying economic or institutional processes are consistent with the
data? What sortsof behavior by various participants in the FX markets are
appropriate in light of the observed fluctuations? This paper does not
provide definitive answers to any of these questions, but we believe that
it sheds considerable light on the first two, and will provide useful in-
formation for anyone seeking answers to the second two.

We have attempted to organize the paper in such a way as to make it
accessible to a diverse audience. The reader who has completed a good
course in basic statistics should be able to at least get the gist of the
mair part of the paper. Those whose interest in FX rate fluctuations is

mostly practical will probably wish to skim the text and spend most of



I1. The Data

Our raw data consists of daily Foreign Exchange (FX) spot rates, quoted
in terms of the U.S. dollar, for the currencies listed in Table I, covering
the period 1 June 1973 to 14 September 1979; these spot rates are graphed in
Figures Al-A9. We are primarily concerned with the day-to-day fluctuations in

the spot rates, defined by r, = log (S /St)’ the continuously compounded

t+l
rate of change of the spot rate on the UEE trading day, St, to that on the

(t+1)£h trading day, S For technical reasons discussed in the Appendix,

t+l1°

we prefer to work with r_ rather than the simple rate of change (S

t t+l—st)/st;

in any case the two ways of defining daily changes are ordinarily virtually
indistinguishable.

Table I lists summary statistics for the rt's of the various currencies.
Although the mean rates of change are all quite small, ranging from about
0.04% per trading day appreciation for the Swiss Franc to 0.02% deprecia-
tion for the Italian Lira, very substantial daily changes do sometimes occur,
e.g., a 6.7% appreciation of the French Franc on 3/4/73 and a 6.7% deprecia-
tion of the Deutsche Mark on 11/1/78. As a first indication of the magnitude
of typical fluctuations, we list standard deviations. By this criterion
most of our currencies appear to have about the same volatility, roughly
1/2% per trading day, the main exception being the Canadian dollar which
seems more stable at 0.21%. In later sections, we will introduce more
sophisticated measures of currency volatility.

The coefficients of skewness and kurtosis listed in the last two
columms of the table pertain té the shape of the distribution of the FX
rate fluctuations. A preliminary, more qualitative look at these distribu-

tions is provided in Figures Bl-B9. These histograms indicate the probability



densities of the observed fluctuations. The curve superimposed on each
histogram indicates the Normal density of the same mean and standard devia-
tion. All the currencies appear to give rise to essentially unimodal,
approximately symmetric (i.e., "bell shaped") distributions, but with some
anomalies to which we now turn.

The coefficient of skewness (defined as SK = E(rt-u)3/o3, the third
moment around the mean divided by the cube of the standard deviation)
detects asymmetries; a glénce at Table I indicates moderately negative SK
for all currencies with the exception of the essentially unskewed French
Franc. Such negative skewness suggests that the lower tails of the d;stribu-
tion are longer than the upper, i.e., the largest downward fluctuations
outweigh the largest upward fluctuations, a suggestion confirmed by compar-
ing columns 2 and 3 of the Table and also by direct inspection of the
histograms. Skewness will be discussed again in Section V; for now we will
just comment that much of the observed skewness can be attributed to the
events of a single trading day (11/1/78 for most currencies), so it is not

unreasonable for most purposes to regard the distributions as symmetric.



are only .0000026% and <1().20 respectively, confirming that the tails are
indeed more massive than Normal., See the Appendix for a more precise
description of this test.

For detecting abnormally long tails, Fama and Roll (1971) recommend
highly the Studentized Range statistic, SR = (largest observation - smallest
observation)/s, where s = sample standard deviation. Casual interpolation
of the SR tables in David, Hartley and Pearson (1954) reveals for a sample
of our size that any value of SR in excess of 8.5 indicates longer-than-
Normal tails at the .005 confidence level. From Table I, one can readily
compute that SR ranges from 13 for the Canadian Dollar to 21 for the French

Franc, once again abundantly confirming leptokurtosis.
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same. In the second - call it Hz - we draw observations from a Normal

distribution whose parameters are time-dependent.

The explanations Ho - H2 of leptokurtosis are not exhaustive, but
appear to be the most attractive and the most commonly mentioned in the
literature. The Appendix contains a more elaborate typology of models
which produce leptokurtotic samples.

Several criteria have been suggested for chosing among the explanations
of leptokurtosis. Perhaps the first to come to mind is to take increasing
samples Rk = {rl,tz,...,rk}, k f_N(-NOBS) and to plot the sample variances
Si against k; if the si appear to diverge, Ho would be suppérted. The
trouble with this procedure is that one can not really say if a series
diverges by examining its initial segment. Also, some forms of H2 are
compatible with apparent divergence of si.

A more promising test is based on the observation that if independent
observations are drawn from a stable distribution with scale parameter
and exponent O, then the stability property implies that their sum has

¢
1l/a

scale paremeter Cx = clk (and exponent a). Therefore, a can be estimated

by regressing 1ln ¢, on 1n k for various values of k; the slope parameter
should be 1/a and the intercept 1n c,. See Fama and Roll (1971, pg. 334)
for background and our Appendix for details of this procedure. Table II
reports the estimates3af‘ck and o, which strongly suggest & = 2, thus
supporting Hl or Hz at the expense of HO.

The test most favored by Fama and Roll is similar in spirit, but
based on order statistics. They first show that for 1 < a < 2 the scale
parameter c(-cl) can be efficiently estimated by 2 = %{§'72 - 2.28)/.827,
where ; is the (N+l)forder statistic (i.e., the value at the 100f percentile

f
in the observed sample). Then the statistic 2 97 = x 97 = X 03)/2c = 827
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~

~ th
(x_97 '03)/(x x.zs) is an estimator of the .97 fractile (97

percentile) of the standardized (d = 0, ¢ = 1) PSS distribution

of exponent 0. There is a monstonic (decreasing) relationship between

~

z 97 and o, tabulated in Fama-Roll (1968, p. 822). Thus one can form the

statistic 2 97 and use the table to derive a from any sample. If one forms

a new sample of size = N/k by aggregating groups of k successive observations
in the original sample, the resulting estimates ak should be essentially in-
dependentA of the degree of aggregation k if Ho is correct. On the other hand,

A

if Hl is correct, & should approach 2 as k increases, since the (aggregated)

observations become more nearly "identically distributed" and the variance is
finite. H2 implies slightly different behavior: even for large k, the (aggregate)
observations may not have nearly identical distributions, so o, may remain well

below 2. However, if one aggregates randomly selected but non-overlapping groups

of k individual observations, rather than successive observations, then
H2 becomes indistinguishable from Hl and therefore implies convergence

of oy to 2.

Table III provides strong support for H2 over both Ho and Hl. The column
k=1 lists full-sample estimates of the exponent a, given that Ho is correct;
the extent to which an entry is less than 2 (two) may be taken as an index of
leptokurtosis for the observed distributions. The stability property of
PSS distributions implies that the entries of the other columns also are
estimates of the same o if Ho is correct, although the error will increase
with k since the sample size [N/k] decreases. However, for each currency
the entry for k=20 exceeds the k=1 entry, casting severe doubt on Ho.

For comparative purposes we generated 1640 independent Normally distributed

random numbers with the mean and variance of the Deutsch Mark series and
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Table III: Estimates of the Exponent o

Direct Aggregation of degree k:

10.

10.

k = 1 2 5 10 20
German Mark 1.45 1.47 1.50 1.46 1.63
Swiss Franc 1.39 1.46 1.36 1.60 1.63
British Pound 1.29 1.39 1.39 1.54 1.62
Japanese Yen 1.11 1.18 1.30 1.37 1.33
Dutch Guilder 1.48 1.47 1.47 1.57 1.49
French Franc 1.36 1.38 1.37 1.54 1.74
Canadian Dollar 1,55 1.58 1.67 1.48 1.74
Belgian Franc 1.39, 1.39 1.45 1.54 1.52
Italina Liva 1.12, 1.23 1.14 1.18 1.24
Random DM 2,12 1.96 2.12 2.44 2.00
Scrambled Aggregation of degree k
(Average of five random permutations)

k= 1 2 5 10 20
German Mark 1.45 1.58 1.72 1.74 1.92
Swiss Franc 1.39 1.48 1.65 1.77 1.72
British Pound 1.29 1.47 1.64 1.75 1.76
Japanese Yen 1.11 1.39 1.65 1.69 1.75
Dutch Guilder 1.48 1.58 1.79 1.76 1.79
French Franc 1.36 1.48 1.71 1.86 1.72
Canadian Dollar 1.55 1.70 1.84 1.88 2.06
Belgian Franc 1.39 1.5, 1.63 1.93 2.15
Italian Liva 1.12 1.37 1.47 1,54 1.67
Random DM 2.12 1.94 1,97 1.98 1.78

f=.97 NOBS = [1640/k]
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of the observations R:S. That is, one throws out largest 25% and the
smallest 252 of the observations (thus gaining "resistance” to outliers and
speeding adjustment to shifts of ut) and then takes the mean of what re-
mains (thus maintaining reasonable efficiency). One similarly defines the
Moving Upper (Lower) Semi-Mid-Means UMMt(LMMt), essentially by taking the
MMM of the upper (lower) 50% of Rgs -~ see the Appendix for details. UMMt
(LMMt) is a robust, resistant and reasonably efficient estimator of
essentially the 75th(25th) percentile point.

Figures C1-9 plot UMMt, MMMt, and LMMt, t =65, 70, 75, . . . , 1640,
for the nine currencies. The middle line (MMMt) indicates the trend,
while the outer lines (UMMt, LMMt) enclose a 50% confidence interval around
the trend. For the Deutsche Mark, for instance, one observes a trend which
reverses itself several times during 1973-5 before stabilizing near 0 during
1976-7. Meanwhile, the DM became increasingly less volatile, indicated by
the narrowing gap between UMMt and LMMt from 1973-77. 1In late 1977, the
DM began a new upward trend, associated with much higher volatility, which
(apart from a short lull in early 1978) persisted until almost the end of
1978; from then until the end of our sample period (Sept. 1979) the DM was
relatively trendless and less volatile.

The patterns displayed in the Mid-Mean graphs for the other currencies
are quite varied but equally striking. Are they perhaps just artifacts
of our statistical techniques and of no economic significance? Their signi-
ficance can be confirmed in two different ways. First, one can in effect
use an 'experimental control" by applying the mid-mean treatment to random
noise.7 We randomly drew 1640 observations from a normal distribution of

mean .00024 and standard deviation .0058, the values for the German Mark;
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suggests that the usual autocorrelation coefficients provide useful infor-
mation even in the presence of leptokurtosis. Accordingly, we computed the
autocorrelation coefficients pg = corr(rt,rt_s) for various lags s and all
currencies; the results are summarized in Table 4. Most coefficients are
insignificant, but there are more "significant" t-statistics than one would
expect from uncorrelated Normal data. Bearing in mind that the data are
leptokurtotic, not Normal, these t-statistics must be taken with a grain

of salt. 1In order to check the robustness and stability of some of these
"significant" coefficients, we examine more closely in Table 5 the four
largest: the lst and 16th order autocorrelations of the Italian Lira,

10th UK Pound and the 2nd Swiss Franc. The first of these appears to be the
largest and most significant, but evidently the observed autocorrelation
arises entirely from events in the first half of the sample period, since
the coefficient changes sign and becomes insignificant in the second half of
the sample. The second line shows that this coefficient again changes sign
and becomes insignificant when the sample is trimmed; evidently this full
sample estimate of .123 arises from a few large observations, probably
during the precipitous depreciation of the Lira in early 1976,

A similar pattern appears for the other large autocorrelation coeffi-
cients: estimates are no longer significantly different from zero in the
10% trimmed sample, and differ between the two sample periods. We conclude
that the FX rate fluctuations are probably not autocorrglated to any sig-
nificant degree, that the larger observed autocorrelation coefficients are
generally not stable, and probably arise mostly from "random" placement of

the larger fluctuations.
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TABLE V: Stability of Selected Autocorrelation Coefficients

Currency: Italian Lira Swiss Franc UK Pound
Lag: 1 16 2 10

1) Full Sample .123 .092 -.106 0.92
(4.98) (3.72) (-4.28) (3.71)

2) 10% Trimmed Sample -.045 .014 -.028 .003
(-1.64) (0.51) (-1.00) (.093)

3) First Half of Sample .176 .094 -.137 .076
(6/2/73-7/23/76) (5.04) (2.70) (-3.92) (2.165)

4) Second Half of Sample -.031 .052 -.073 .094
(7/24/76~9/14/76) (-.88) (1.482) (-2.09) (2,70)

Notes: t-stats in parentheses.
10% trimmed sample involves estimates based on the central 80" of the ordered data.
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is of great interest, and robust methods are certainly called for. Data
is available for forward as well as spot FX markets; its analysis should
alyo be of great theoretic and practical value. This work will have to
wait for another occasion.

Pinally, what is the significance of our analysis to a participant

4

in the FX markets? If he is interested in trends and volatility over only

A

the next few weeks, our estimators MMM and O could prove helpful. The
expected trend over the next k trading days would be kMMM, and the expected
volatilityswould be .&'GT, where T = today, and X < 30. If one wishes to
look further out into the future, some sort of econometric or judgemental
forecast would seem necessary. Of course, even if one has estimates of
future trends and volatility (and even perhaps covariances and forward market
behavior), the analysis of appropriate behavior of various participants in

the FX markets is far from trivial. Such analysis will also have to wait

for another occasion.
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normal. No such restrictions apply to r, or its distribution.

(c) 1f the spot rate is quoted in foreign instead of U.S. terms, the
analysis should not be affected in any significant way. This is the case
with r ; if F = l/St is the spot rate in foreign terms, then the rate of

change is r = log (F /Ft) = log (St/S ) = -1log (S /St) = -r., as ex-

t+l t+l t+l

pected. However,

Po= (Fiy

The extra factor (St/S

- FI/E =S /Sy - 1= (5 - Se41)/Se41 = Py (S¢/Seq1)-

) ensures that St and Ft can't both be martingales,

t+l

t+l

a severe theoretical diffiCulty.9

However, r_ and Pt do agree up to first order; by Taylor's expansion for

t

the log function, we have

2 3
r = log (St+1/St) = log (1 + Pt) -P - Pt/2 + Pt/3 - e

3. Notes on the Kurtosis Coefficient

By Jensen's inequality, (fx2 dF)2 < fx4 dF; therefore KURT > 1. 1If the
mass of the distribution F is concentrated equally on two points (e.g., arises
from a coin-flip experiment), then the lower bound is attained. A direct
computation shows that KURT = 9/5 for a uniform distribution on an interval,
and manipulations of the characteristic function show that KURT = 3 for a
normal distribution. For symmetric stable distributions with 1 < a < 2,

KURT is not defined; finite sample kurtosis from such distributions will -

as the sample size -,

4. The "fat tail" test

In sampling from a normal distribution with mean Y and standard deviation
o, the probability p of drawing an observation x such that lx - ul > 30 is

2 (1 -2(3)) =2 (1 - .9987) = .0026. The probability of drawing k or more



TABLE 6: The 30-test

Currency NOBS k p(k)
German Mark 1640 28 <10'16
Swiss Franc 1640 36 <10—20
British Pound 1640 29 <1070
Japanese Yen 1640 26 <10712
Dutch Guilder 1640 20 2.61 x 108
French Franc 1640 33 <10—20
Canadian Dollar 1640 24 <10'12
Belgian Franc 1640 33 <1o'20
Italian Lira 1640 34 <10~20

k = number of observations at least three sample standard deviations from

the sample mean.
p(k) = probability that k or more out of NOBS observations drawn from

a normal distribution will lie at least three standard deviations from
the mean.



long as there isn't some Ho such that P [u(d) = UO] = 1). An easy computa-
tion shows that skewness 1s zero for the rt's because it is zero for fIA.

For kurtosis, first note that since f|k is normal, Eflk (x - u()\))4 = 304(A),
and by symmetry, Eflk (x - u(d)) = Ef]k (x - u(l)3 = 0. By definition,

4 4 4

o KURT = EA Eflk (x -y = EA Ef|l [(x - u)) + (X)) - W1'; after

expanding and simplifying, we obtain:

4

(3) KURT = 0™* E, (36* (M) + 607 (1) ) - wF + @y - wh.

Two special cases suggest themselves:
(@ W) =0, all Aeh. Then KURT = 3 E,0* (A)/0* and o* = E,c°(\); 1f
OZ(A) is not essentially constant, we have (by Jensen's inequality):

10
o4 = (EAOZ(X))Z < EA04(A), so in this case the distribution is leptokurtotic.

(b) GZ(A) = Gg, all AeA. Then 02 = og + oi, where Oﬁ is the variance of

u(A), by equation (2). 1In view of the fact that cﬁ = EA (u(r) - u)2 and
EA ) - u)4 = 03 KURTu, equation (3) becomes

4 2 2 4
0. + 200 40 RT. /3
0 %y uKUp/

2 2.2
(co + ou)

KURT = 3

Evidently, the kurtosis of r, in this case depends entirely on the kurtosis
of u(d); if u(A) is lepto(platy)kurtotic, then so will be L although to a
lesser extent.

One can generate many distributions by mixing normals; e.g. Student's t
arises from assuming u(A) = Ho and OZ(A) is distributed xi. Even Paretian
stable symmetric distributions of exponent & < 2 can be so obtained -- one
assumes that the variance oz(l) has a (Levy) positive stable distribution

of exponent 0/2 (cf. Mandelbrot (1973)).
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currencies yield slope coefficients very close to (k-~1)/k, intercepts near

0, and R2 near (k-l)z/kz.) Therefore, oi = Rzoi + GZ’ 50 Gi = gi/(l-Rz),
* A~ A - A2
suggesting the estimate oi = ci/(l-(kil)z), where o, is the usual variance
k-1

estimator of the N-k observations (r ). The values reported

vl 3

kt+l = k kt

in Table 2 were obtained in this manner.

7. Moving Statistics

The precise definition of the k-period moving midmean MMMi from Cleveland

and Kleiner (1975) is as follows. For t > k, consider the set

Rk ={r, r

¢ ¢ e-1° * c ot e rt-k+1}’ and let Xt = (Xl, .« e ey Xk) be the ordered

set with the same elements as Rt, arranged in increasing order. Define Et,

the sample inverse distribution function,to be x, at i -.5/k, 1 =1, . . . , k3

i
to be Xy at 0 and Xy at 1; use linear interpolation to define Ei elsewhere.
b
k 1 k k
For 0 < a <b <1, define It(a,b) =5 é Et(s)ds. Then MMMt = It('25’°75)'

For large k, this definition of MMM: is virtually indistinguishable from
the 25%~trimmed mean, but for smaller k it is preferable since it smoothly
interpolates between borderline observations ({.e., observations nearest the
25th and 75th percentiles).

It would seem logical to define UMMt and LMMt to be I(.625,.875) and
I(.125,.475) respectively. However, such a definition would make
at(k) = MMMt and at(k) =c (UMMt - LMM:) rather strongly mutually dependent.
For instance, if ut shifts, Gt will be biased upwards for ~k/2 subsequent

periods. To avoid this, one first centers the data (rt > r; =r - MMMk)

t t

e 0 X E_", and I;k (a,b) as before using the

centered data. Then UMMt = I;§.625,.875) + MMMt and LMMt = I;k(.125,‘475) + MMMt.

and then defines R

It turns out that UMMt (LMMt) is slightly biased as an estimator of the 75th
(25th) percentile. In independent samples from a standard normal population,

the asymptotic expectation of UMMt (LMMt) is .693 (~.693), the 75.6 (24.4)
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FOOTNOTES

lNot to be confused with leptospirosis, a disease of humans and

- domesticated animals caused by spirochetes of the genus leptospira, or

leptonecrosis, decay of the phloem tissues in plants.

2If a = 2, the distribution is normal with mean d and standard devia-

tion ¢/V2. If a = 1, the distribution is Cauchy centered at d with semi-
interquartile range c. If 1 < a < 2, the stable distribution is leptokurtotic
and has no known elementary expression for its density or cumulative distri-

bution function.

3Table 2 uses the k-period standard deviation 8, to estimate scale,
Although the scale estimator Cx (described in the following paragraph of
the text) might be superior for present purposes, the 8 estimates are more

germane for issues discussed in Section VI.

4Because of the stability property. Actually, as Fama and Roll (1971)
point out, a slight bias in the tables (due to rounding off) would cause

A

the o to drift downward slightly as k increases.

5Actually, five different randqm permutations were used and the results
averaged in order to reduce errors. The informal arguments of the text are
not affected, but if one wished to perform quantitative tests on the table
entries, this averaging should be taken into account. The separate results
for each random permutation (as well as results for replacing 97 by 95 and
99 in the a-estimator) are included in the Appendix; all tell basically the

same story.
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