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ABSTRACT

A seller encountering risk-neutral buyers one at a time should, if
commitments are feasible, quote a single take-it-or-leave it Erice to
each. We demonstrate the validity of this proposition in comparison with
any other possible selling strategy, whether there is learning or the
distribution of buyer reservation prices is known, whether the buyer pop-
ulation is finite or infinite, whether there is one object for sale or
many. If the population is finite or if there is learning, but not other-
wise, it may be desirable to recall a refusing buyer for a second price
quote after being refused by other buyers.

Though haggling may offer advantages in terms of price discrimination,
these gains are more than offset by the losses it generates by encouraging
buyers to refuse purchases at high prices. Any information gains haggling
may offer can be reproduced at effective zero cost through a proposed
mechanism that elicits the reservation prices of refusing buyers.

Sellers should only haggle when the buyers they face are risk averse,
or when they can not make a commitment not to haggle--because of the lack
of a reputation, for instance, or the occasional nature of a market en-
counter. Casual observation suggests that, for the most part, real-world

sellers behave as if they understood these lessons.



Optimal Selling Strategies:
When to Haggle, When to Hold Firm

John Riley and Richard Zeckhauser

How should sellers price their goods? In the bazaar or the agricultural
market of a less developed nation, haggling is the norm. In most developed
nations, on the other hand, posted non-negotiable prices are employed for most
goods, though for a range of goods from autos to real estate there may be con-
siderable flexibility in prices.*

Why do we find posted fixed prices? Should not vendors be willing to cut
prices when a sale might otherwise be lost? A variety of explanations for the
fixed-price phenomenon might be developed. In a perfectly competitive market,
prices reflect marginal cost. A sale at a lower price would obviously not be
worthwhile. In complex organizations, such as a modern department store, fixed
prices solve problems of coordination. Without fixed prices, each salesman
would have to receive extensive and detailed instructions relating to markups
on different items, acceptable and unacceptable price cutting, how to Jjudge
customers, etc. Problems of collusion between salesmen and buyers might also arise.
In any market, fixed prices dramatically reduce information costs -- you know
immediater what price you will get in a store -- as well as costs of negotiation.
Not surprisingly, many customers prefer to shop at stores with clearly posted

prices.

Goods yielding marginal profits. gur focus in this paper is on goods

that yield a direct profit to the vendor when they are sold. Such goods includ.

*Our work in this area has heightened our sensitivity to the question of firmness
versus flexibility in prices. We have discovered that flexibility can be found

in unexpected places, such as the prices of big-city hotels. As our analysis will
show an ideal strategy for vendors who can get away with it is to proclaim
inflexibility, but permit it when a sale may otherwise be lost. Antique stores may
Post prices and suggest on casual inquiry that they are fixed. These prices may be
cut, or extras thrown in, for sophisticated buyers.



products sold on oligopolistic or monopsonistic markets. They also include

goods sold on markets that are normally thought of as competitive or near-com-
petitive, but where there is the slight imperfection that there is a cost of
offering the good for sale. Such offer costs include the rent, heat and light

of the store, and the salesclerk's salary (assuming that he is not 100% occupied);
they must be covered through price. Any good whose sales price exceeds its
marginal cost we call a marginal profit good.

The central question we shall explore in this paper is why a vendor should
ever let a sale of a marginal profit good go by. That is, when he gets a refusal,
why should he not cut the price of his good just a bit, though staying above
marginal cost, to see if he can't secure the sale? One obvious answer is that
once he develops the reputation for price cutting he will find it impossible to
make sales at prices above marginal cost. A second answer might be that the cost
of making still another offer (including the opportunity cost of his time) might
be greater than the expected benefits to be reaped. In some circumstances, it
might even pay the vendor to increase the cost he incurs to make an additional

offer; it may provide a way to make his previous “final price" more convincing.

J. Formulation
This analysis focuses on the case where vendors can make firm commitments
as to pricing strategy. A critical consideration in the model are the four costs
the vendor faces: the cost of securing another customer, the cost of making an
additional offer to the same customer, the cost (more an opportunity cost than
a financial cost) of using up one of a finite number of customers, and the cost
of securing another unit of the good to be sold. Weighing all these factors in

all their permutations at once would be prohibitively complex. We shall normally
assume that there are zerp costs in making additional offers to the same



customer, and that only one unit of the good to be sold is available (infinite
cost for restocking inventory). The model is general, however, and can be
readily extended to consider cases where there is a constant cost to secure
another item for inventory.

The cost of bringing a customer into the store is assumed to be constant.
Discounting is left aside for simplicity, though in a number of circumstances
it could be included in the cost of securing a new customer. Sellers seek
to maximize expected profits. They are risk neutral.

Purchases are assumed to be sufficiently infrequent that buyers make
no attempt to establish reputations with sellers. Instead, their payoffs
are very simple. They seek to maximize their expected consumer's surplus,
the difference between their reservation price, i.e., the maximum take-it-
or-leave-it price they would accept, and the price they pay. They are risk
neutral. It costs buyers nothing to stay for another offer.* Finally, the
reservation price of a buyer is assumed to reflect both his personal valua-
tions of the object and his expectations about the price of substitute

products offered by other sellers.

The seller's problem. A series of buyers will enter the seller's

showroom at random. If there is a finite number of potential buyers, the
seller knows how many there are. Each buyer will have a reservation value v.
Making use of information gained through general experience, including what
he Tearns from observing previous unsuccessful buyers, the seller forms a
belief about a buyer's reservation value. These beliefs are described by a
cumulative distribution function F(v). Once the selling process starts, the

seller has no source of information except the buyers who come through his Showroom.

*While it may seem odd to ignore the time costs of haggling, the
alternative assumption of equal positive time costs for each buyer simply
makes haggling less profitable in comparison to selling at a fixed price.
Our model does not, however, incorporate the possible incentives to haggle
when time costs are known to vary.



Our analysis relies on the following critical assumption:

A seller is able to make a commitment to any

contingent strategy he wishes, and he can convey

this binding commitment to each buyer,

This assumption is reasonable for a great variety of selling situations,
including any store or merchant who can establish a reputation.

In choosing his strategy, the seller compares the way buyers with different
reservation prices will respond to each strategy. Given the pairing of a buyer's

optimal strategy in response to an announced seller strategy, the probability of

sale and the expected price conditional updn sale can both be computed. If
a sale is not consummated, a new buyer enters the store and the process con-
tinues until a sale is made or until the seller withdraws the item. The

situation can be understood as the two-player sequential game diagrammed in

Figure 1.
INSERT FIGURE 1 ABOUT HERE

If the seller knows the distribution of buyer reservation prices the
game starts at move 1. If there is learning, it starts at move O when the
distribution of buyers' reservation prices is determined. The seller is not
told which distribution is chosen, but he has prior beliefs about the likelihood
of different distributions and updates those beliefs as he goes along.*

*We might think metaphorically of selecting an urn at random, with each
urn containing a different distribution of ba11s.1nd1cat1ng reservation
prices. F(v) would be derived by computing a weighted average of the com-
positions of the different urns, the weights being the !1ke1ihoods as§1gned
to the urns by the seller.--Buyers are only concerned with the seller's
committed behavior. It does not matter whether they know his prior beliefs.
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At move 1 the seller commits himself to a contingent-pricing strategy S.
The strategy details how he will behave in any situation that may arise in the
future. For example, it might say that if he is turned down at a price of a,
there is a 50% chance that he will quote a price of 8 and a 50% chance that he

will request a new buyer. In effect, once a seller commits to S he turns
ovér play to a capable computer, and then displays the computer program to
each and every buyer. The program may be sophisticated, and allow him to
change his practices as he acquires information. That is, it may commit to
the way experience with buyer 1 will affect practices with buyer 2.

Move 2 is the chance move that determines the buyer's reservation price v.
The buyer knows the result of this chance move; the seller does not. The
seller's committed strategy, of course, may enable him to draw inferences
about v from the buyer's behavior, and to act upon those inferences in quoting
and accepting offers.*

At move 3, the buyer, knowing both v and S, selects his preferred
strategy B. Now that the buyer's and seller's strategies are both determined,
the game can be played out at move 4. That is, the bargaining and negotiation
process can now be conducted. This aspect of the process might be compared to
a poker game between two computers. Move 4 results either in no sale, or in-

a sale together with a selling price, p.

*The ordering of moves 1 and 2 is arbitrary, and they could be reversed. The
seller does not learn the result of move 2 before he commits to a strategy, and

the distribution of the buyer's reservation price is unaffected by the seller's
chosen strategy.



If no sale is made, the process cycles back to move 1. The seller,
having updated his information, announces his selling strategy to the next
buyer. This may be a purely computational operation. The first time he
arrived at move 1, he may already have committed himself to a super-strategy
whicii told he- he would behave towards buyer 2 depending on his buyer 1 ex-
perience, towards 3 depending on 2 and 1, etc.

The payoffs to the seller and buyer are indicated at the tips of the
tree. The buyer will fold his payoff back to the triangle to select his pre-
ferred strategy. The seller folds back to his choice move, the square, to
select the strategy to which he should commit. In computing his expected
paynff for any strategy, the seller must also be concerned with the expected
value of the game should there be a new play.

Possible bargaining formats. Our decision tree formulation allows for

a rich array of possible bargaining formats; it captures all possibilities
where, as would often seem reasonable, the seller as the more continuing and
permanent participant can commit himself first.

Either the seller or the buyer or both can make price offers under our for-
mulation. In traditional bargaining, the sellers and buyers alternate in making
offers, with some probability of termination after each refusal. An alternate
formulation would have the buyer make price bids, with the seller committing
himse]f.to particular probabilities of acceptance depending upon the last bid
made, or possible upon the sequence of bids to date.

A third possibility would have the seller announce a price, with the
buyer deciding whether to accept or reject. The seller would also announce a
probability distribution on second-round prices (including possibly a raised
price or withdrawing the item from sale) should the first price be refused, one

on third-round prices contingent on second-round refusal, etc. The seller's



fixed, posted-price strategy, a polar case of this third approach, turns out
to be of particular interest. In this "take-it-or-leave-it" strategy, the
seller announces a single price. If refused, no future price offer is made,
the buyer leaves the store and the next buyer is called in.

Why consider haggling? Some readers, comfortable with the traditional

fixed-price practices of Western merchants, might inquire why a vendor should
ever consider haggling. There are two reasons why some alternative to a

fixed price strategy might be preferable. First, by announcing an initial price
and a probability less than one of continuing to a lower price if that price
is refused, the seller can price discriminate. Given appropriate odds, a
customer with a high valuation would find the initial asking price preferable
to the risky second offer, whereas a potential buyer with a lower valuation
would find it preferable on average to wait. Second, by adopting some form

of discriminatory pricing policy over time, the seller might be able to gain
valuable information about the distribution of reservation values. Note that
the two classes of strategies we consider both allow, indeed require, the
seller to make commitments as to future actions. In the extensions and gen-
eralizations section of our analysis, we inquire what happens when sellers can

not make such commitments.

The primary result of our analysis is that in the circumstances de-
scribed, a single "take-it-or-leave-it" price is optimal from the stand-
point of the seller. This is reassuringly consistent with the commonly
observed behavior of sellers. (Alternative explanations of fixed-price

behavior seem insufficient to explain such a prevalent phenomenon.)



The seller's choice of an optimal strategy is described in Section 1I;
we show that it reduces to a simple optimization problem. The solution
is set forth in Section III, and its major implications are derfved there.
Section IV explores the question whether a seller should ever wish to recall
a previously rejected buyer. In Section V, the question of risk aversion on
the part of buyers is developed. Section VI addresses a variety of general-
izations and extensions of our analysis. It explores in particular the class
of situations where sellers can not make binding commitments.

Relation to the literature. In some respects, this analysis follows the

tradition of the literature on optimal search. Indeed, in his seminal analysis
of information and search, Stigler [1961] alludes to the "higgling process,"
which serves as a reference point for the present analysis. Most of the en-
suing literature on search focuses on the decision of an agent whether to accept
a present offer or to seek additional quotes elsewhere. See Chow and Robbins
[1961] and the highly useful surveys by Rothschild [1973], and by Lippman and
McCall [1976]. These analyses are well suited to describing the problem of a
buyer, but not that of a seller. Some analyses, such as Arrow and Rothschild
[1975] and Pratt, Wise and Zeckhauser [1979] allow sellers to optimize in setting
fixed prices whose distribution in turn will influence buyers' search strategies.
This analysis considers a richer array of seller strategies, from fixed-price

to haggling, for cases where buyers do or do not make offers, as well as any

possible pricing strategy to which the seller can coomit himself.

I1. The Seller's Choice of an Optimal Strategy
To keep matters simple at the outset, we make the following

assumptions.

(A.1) A single object is offered for sale.

(A.2) It costs an amount ¢ to bring a new buyer into the store.
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(A.3) Recall of buyers is not permitted.
(A.4) Current information about the reservation value of the next
buyer is summarized by a continuously differentiable distri-
bution function F(v), v scaled so that F(0) = 0, and F(1) = 1.
(A.5) The distribution function F(v) is unaffected bythe seller's
choice of Etrategy. |
We have defined the seller's (possibly probabilistic) strategy as S.
Once S is announced, the buyer selects his optimal response B. This
response depends on his reservation value as well as the seller's strategy

Thus

(1) B = bS(V)'

We begin by examining the optimal response of the buyer current in

the store. To simplify the discussion somewhat we assume that money changes

hands only if the object is so]d.* Then the expected return to a response

B' can be expressed as follows

wage price

made

- 5te)l):§:$ted}’ = {g;?gaggﬁty} {reservat'ion} _ {EXPECtEd}

gain

We now obtain simple expressions for both the probability of a sale and the

expected buyer gain. Then, from (2), we are able to derive the expected
payment of the buyer.
For any selling strategy S and buyer response B' there is some

implied probability of sale HS(B') and expected price BS(B') conditional

*
This assumption is not critical. The main theorem holds even if we
allow for possible payments by the buyer during the haggling process.
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upon their being a sale. Furthermore, for any B' in the set of optimal
responses there is some v' such that B' = bs(v'). Then we may write the

implied probability of sale and expected price as follows .
H(v')
p(v')

1]

Ho(bg(v'))

(3) }
Pg(bs(v')) .

The expected buyer gain, if his response is B'(=bs(v')) when his

reservation value is v, can therefore be expressed as follows:

(4) o(v',v) = H(v')(v-p(v")) .

Since we have defined B = bs(v) to be the buyer's optimal response it must
be that ¢(v',v) takes on its maximum at v' = v. Throughout we assume only
that H(v) and p(v) are piecewise differentiable. Then except at points of

non-differentiability we have

Also, from (4)

6,(v,v) = g‘—";i(v”"L = H(v) .

Then, except at points of nondifferentiability the total derivative of the

buyer's maximized expected gain,

g%(V’V) = ¢](v,v) + ¢2(v,v) = H(v) .

While ¢(v',v) is only piecewise differentiable, ¢(v,v) = max ¢(v',v)
v

*
is both piecewise differentiable and continuous.

*For any v' and v > v'
o(v,ov) = o(v',v') < o(v,v) - ¢(v,v")
H(v)(v=v*) from (4)

vV -y

A
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Then we can reintegrate to obtain the following expression for the

buyer's maximized expected gain

(5) o(v,v) = /¥ H(x)dx + ¢(0,0)
(0]

We are now ready to consider the haggling game from the seller's view-
point. The expected payment by a buyer with reservation value v is Just
the probability of a sale times the expected price conditional upon their
being a sale (=H(v)p(v)). Then substituting from (5) into (2) the expected

payment is
(6) H(v)B(v) = H(v)v - /¥ H(x)dx - ¢(0,0)
0

But, as far as the seller is concerned, v and hence H(v)p(v) is a random
variable with density f(v). Then the expected revenue of the seller is
VRV B = 1 HOVE(DdY - 71 f(v) Y H(x)dxdv - 6(0,0)

0 0 0 0

Integrating the second term by parts we have finally

expected

(7) seller = /' H(v)j(v)f(v)dv - (0,0)
revenue 0

where

(8) J(v) = v - (1-F(v))/f(v)

Since buyers are free to exit from the store without purchase ¢(v,v) >0
for all v. In particular for a buyer with reservation value equal to zero
we require ¢(0,0) > 0. Then, since expected revenue is decreasing in ¢(0,0)

the seller will choose ¢(0,0) = 0. In economic terms he will never sell to

a buyer who is not willing to pay anything for the object.
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It remains to incorporate the expected gains to the seller in the absence
of a sale to the current buyer. Once a buyer has been told he will not
be sold the object, he has no incentive to conceal his true valuation. We
therefore assume that if the buyer is not sold the object, he reveals its
true value to the seller. (We shall show in section III that the seller
can elicit such information from a self-interested buyer for essentially
zero cost.) This assumption about full revelation merely simplifies our

presentation. (A significant polar case of our analysis assumes that the

seller learns nothing as he goes along, that in effect he has extensive
information about the distribution of buyers' reservation values at the
outset.) Using information accumulated to date, the seller computes the
expected profit mn(v) from attempts to sell to future customers. Since

1 - H(v) is the probability of not selling to the current customer if his
reservation value is v, overall expected future profit at this juncture
is |

1

(9) JO=H(v))m(v) f(v)dv
0

Combining (7) and (9) and rearranging, expected total profit is therefore

(10) fi= [(f)‘ m(v)F(v)dv - c] + é‘ H(V) (3(v)-m(v))F(v)dv

The bracketed term is the expected profit if the current customer is told
that under no circumstances will he be sold the product. Therefore the
final term is the increment in expected profit associated with the attempt
to sell to this customer. Writing this as Am it follows that a necessary

condition for the maximization of expected seller profit is that H(v)
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be chosen to maximize

1
(17) AT = é H(v) (§(v)-m(W)dv .

Before proceeding to discuss the nature of the optimal solution, we
should stop to say a word about the nature of our assumptions. In any
specific application the future expected profits function, m(v), will
depend upon information gained from previously rejected buyers and the number
of buyers remaining to be sampled. This function could also take account of
the possibility that the early buyers coming into the store might be more
eager and hence have higher reservation values.

If there were many objects that were to be offered for sale, with a
constant cost, say x, as opposed to just one in our formulation, the analysis
would simplify. We would replace m(v) with x in all the equations.

The lost future profits are simply the replacement cost of the asset.*

*Matters might be more complicated if refusing buyers did not reveal
their reservation prices. In that case it might be worthwhile to employ
a different class of optimal strategy in order to elicit more information
than would otherwise become freely available. As suggested above, complete
revelation is consistent with the model of self-interested behavior, though
uncharacteristic of many real world sftuations.

B i T mmeremiy - s vm i v e e s e e 5 . e e e e
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I1I. The Nature of the Optimal Selling Strategy

We now ask what distribution function H*(v) maximizes (11), the
contribution to expected profit associated with the attempt to sell to
the current buyer, and then seek the selling strategy which implies such
a distribution function.

We can summarize our answer to the first part of this question as
follows.
Proposition 1*: The optimal selling strategy has an implied probability

of sale function H*(v) of the form

0, v < v*

where v* is a root of j(v) = v - (1-F(v))/f(v) = n(v).

To simplify notation we begin the proof by defining

k(v) = (3(v) - 7(v))f(v)

Expression (11) for expected current profit then becomes

1
(12) Ml = é H(v)k(v)dv

Given assumption (A.4), j(v) is negative at v = 0. Moreover, the seller
always has the option of giving up his search for a buyer. Therefore the
expected profit from future attempts to sell the product m(v), must be
non-negative. It follows that k(v) is negative at v = 0 as depicted in

Figure 2. However there are no further obvious restrictions on the form

*We are grateful to Barry Nalebuff whose comments on an earlier draft
led to the following constructive proof.
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Figure 2: The Optimal Distribution Function
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of k(v) and in particular it may change sign any number of times.

As a first step in solving for the optimal distribution function, H*(v),
consider all the right-hand endpoints of subintervals over which k(v) is
positive. Since H*(v) is necessarily an increasing function, if it is zero
at every such point the integral Al must be non-positive. Then if search
is worthwhile there must be some smallest right-hand end-point ¢ such that

H*(c) is positive. This is depicted in Figure 2.

Insert Fig. 2 about here

Given the definition of ¢ we know that H*(a) = 0. Then we can rewrite Al as
the following sum of integrals.
b c 1
(13) AT = S H(v)k(v)dv + S H(V)K(v)dv + S H(v)k(v)dv .
a b c
Since k(v) is negative on (a,b), AT is maximized by setting H*(v) = 0 on
this subinterval. Similarly, since k(v) is positive on (b,c) it is optimal
to make H(v) as large as possible on this subinterval. But for H(v) to be
a distribution function it must be non-decreasing. Then H*(v) = H*(c) on
(b,c).
Now 1let H*(e) be the optimal value of H at e; the right-hand end-point
of (d,e), the next subinterval over which k(v) is positive. Arguing as above
it follows that we should make H(v) as small as possible over (c,d) and as

large as possible over (d,e).
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Combining results, we have,

0, v<b
H*(v) = H*(c), b<v<d
H*(e), d<vce
Then we can rewrite (13) as
| d e 1
LT = H*(c)é k(v)dv + H*(e)é k(v)dv + é H(v)k(v)dv

If the first integral is negative AT is maximized by setting H*(c) = 0.
Since this contradicts the definition of ¢ the integral must be non-negative.
Then ATl is maximized by setting H*(c) as large as possible, that is be setting
H*(c) = H*(e). The optimal distribution function thus has a single step
over the subinterval [0,e).
Finally we note that the same kinds of argument can be applied for
each additional subinterval over which k(v) is single signed. Therefore
there is but a single step at v = ¢ and (13) can be rewritten as

1
ATl = H*(c) s k(v)dv
b

It follows that if searching for a buyer is optimal (AT > 0) H*(c) must

be equal to 1, hence Proposition 1.



[N

17

Proposition 1 tells us that an optimal strategy is one in which a sale is
made if and only if the current buyer has a reservation valuye v > v*, Of
Course this is none other than the "take-it-or-leave-jt" strategy of

3 iouncing a fixed price of v*. We have therefore shown that under the
assumptions of our basic model it never pays to randomize or "haggle" over

price.

Numbers of buyers. If the pool of potential buyers is finite, the

expected profit from future attempts to sell the product, n(v), will depend
upon the number of unsampled buyers. Adding to this number cannot decrease
and will generally strictly increase profit opportunities. That is, for all
v, m(v) is increasing with the size of the pool of unsampled buyers. We

have therefore proved:

Proposition 2: The optimal selling strategy is to announce a single

"take-it-or-leave-it" price v* satisfying the condi-
tions of Proposition 1. Other things equal, this
price will be higher if there are more buyers remaining

to be sampled.

Price behavior with F(v) known. If the reservation values are known by

the seller to come from the distribution F (v), so that there is no learning
from customers, Jlv) is independent of the number of rejected buyers. More-
over, expected future profit after r buyers have been rejected, n (v)
independent of the (r+1)th buyer's reservation value, that {s .

nr(v) = ﬁr .
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*
From Proposition 1 the r-th buyer will be offered a price V. satisfying

(1) j(v:) -7 = 0.

Furthermore, expected future profit prior to bringing this buyer into the

store is

(15) ER U AT PR AT T

Substituting (14) into (15) yields a first-order difference equation for

v*. Since L 0 we can solve for v; from (17) and hence, working backwards,

r
solve for the complete sequence of asking prices {v:).

This result is illustrated in Figure 3,employing the assumption that v
is distributed uniformly (Fo(v) = v). If the last buyer is before the seller
the optimal price is 0.5. However, if there are many buyers remaining, the

optimal price is close to 1 - ¢,

Price behavior with F(v) unknown. Suppose that the seller begins with

beliefs given by the distribution Fo(v) but, after rejecting r buyers his
beliefs are given by Fr(v). While the actual distribution will depend upon
the information obtained from the rejected buyers, suppose it is always the

case that
(16) Fr(v) > Fr_1(v) » forallvandr .

This assumption captures the notion that with every failure to sell the good

probability mass is moved to Tower values of v. Given (16), it follows that
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for all v and r, expected future profit, nr(v), is less thia‘nr_](v).
Moreover, for all v and r, 1.(v) is less than %r’ the profit 1f beliefs
remain fixed at Fo(v).
While generalizations are possible,we consider here only the special

case:
8
(17) Fo(v) Vo FAv) = v T

To satisfy (16) we require

(18) 1 =8 >0, > 4l 0 T =1,2,..
Given (18) it can be confirmed that
(19) Jran (V) > 5 (v) > Jolv) = 2v-1 | r=1,2,... .

Combining results it follows that

(20) V) = m ) > 5 (v) - T(v) ,
and
(21) I vy - m (v) > Jolv) - 7

Let {v:} and {v:*} be the optimal price sequences without and with learning.

From (20) we have

(22) v

and from (21)

(23) Ve <oV
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Then the optimal price sequence with learning is as depicted in Figure 2,
increasing in r and everywhere below the price sequence without learning.
(Under some circumstances with learning, if matters turn out unfavorably
the seller may stop qQuoting prices even with buyers remaining.)

While the assumptions utilized to compare pricing behavior with and
without learning are relatively mild*it should be noted that they are not
innocuous. Indeed with F(v) unknown the seller may wish to increase his
price after rejecting some customers. Suppose, for examp]gf'that the seller
starts out by believing that with probability p the distribution of reserva-

tion values is given by

0 , 0<v<.l

1

A

Filv) = N R d <y

1 R lT<v,
and with probability (1-p) the distribution of reservation values is

0 . 0O<vc<.5
F2(V) =

. S<v.,

If p is sufficiently small relative to the search cost, c, and ¢ is not so
large as to make search uﬁprofitable--fbr example, if p = 0.1 and ¢ = 0.4--
the optimal first-round strategy is to announce a reserve price of just

Tess than 0.5. If this is rejected by the first buyer the seller knows that
the buyer is not drawn from Fz(v). He therefore revises p upwards to unity
and announces a second-round price of Just less than unity. This leads to:

*These assumptions are especially mild if the only information the seller
receives is that the buyer either accepted or rejected his offer.

**The example is adapted from one suggested by Rothschild [1973].

T e i g - - -, e
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Proposition 3: The optimal selling price, v*, may rise with the

number of rejected buyers, unless the seller's beliefs
about the distribution of reservation values are

unaffected by sample informai.on.

Eliciting reservation values. We have assumed that self-interested,

‘rejected buyers will reveal their true reservation values. To Justify this
assumption, we must demonstrate that the seller can provide an incentive for
truthful revelation from such buyers at arbitrarily low cost to himself.
Consider a buyer whg has just rejected the optimal take-it-or-leave-it price
of v*. The seller aow asks the buyer to make an offer, m. The seller commits

to accept the offer on a probabilistic basis according to the following rules:

Prob[buyer's offer of m is accepted] = am.
For a bid of m, the expected gain to the buyer is

(24) am(v-m)

This value is maximized by setting m = v/2. Therefore, by observing m, the
seller can readily infer v. Substituting this optimal value in (24), the
expected gain to a buyer with reservation value v is cv2/4.

We have found a way to elicit true information. Now we must show that
the cost of this method can be made arbitrarily small, and that this scheme
as a follow on to the original take-it-or-leave-it offer will not affect the
buyer's original acceptance. Both objectives are achieved by making o arbi-
trarily small. As o shrinks towards 0, the expected buyer gain from the
follow on elicitation goes to 0. The buyer should therefore accept the seller's

initial offer unless v is very close to v*. Moreover, as q approaches 0, the
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probability of selling at a price below v* approaches 0. Therefore, the

expected loss in revenue to the seller also goes to 0. We have shown:

Proposition 4: At arbitrarily low cost, the seller can induce all

buyers who are not willing to pay the optimal price,

v*, to reveal their trye reservation values.

The strict nature of the optimal seller strateqy. Strictly speaking,

the optimal strategy for the seller is to commit himself to a two-round game.
On the first round he will quote a price. If this price is rejected, he will
ask the buyer to quote a price, with a probability schedule for acceptance.
If the seller rejects this price, the negotiations cease. In practice, the
scheme turns out to be of the take-it-or-leave-it variety, with the additional
twist that if the object is left, the self-interested buyer is induced to
reveal his true reservation price.

We should be cautious not to exaggerate the virtues of this elicita-
tion mechanism, which is predominantiy a theoretical niéety. It is of low
cost to the seller precisely because it is of Tow value to the buyer. There-
fore, it seems plausible that information received by the seller would be sub-

Ject to considerable noise. Many buyers may even refuse to play the game.

Optimal seller strategy when buyers only accept or reject. Recognizing

the possible difficulty of implementing our elicitation scheme, we turn next
to the question of optimal seller strategy when buyers only accept or reject
price quotas, and therefore make no price quotes of their own. Seller strate-

gies can be of two forms. With a probabilistic declining offer strategy, the

seller announces an asking price together with a probability distribution on

R ikt
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next price (possibly withdrawing the itme from sale) should that price be
rejected, and a probability distribution after second-round rejection, etc.

The alternative is a fixed-price, take-it-or-leave-it strategy. Interestingly,
the take-it-or-leave-it strategy remains optimal in these circumstances.

With a probabilistic declining offer strategy, let E(p) be the proba-
bility that the seller will stop at an asking price of p or less. Also, let
b(v) be the highest price that a buyer with valuation v will accept. We
assume that p(-) is a non-decreasing function. Suppose that for the current
buyer the seller has determined that he will withdraw his asking price at

~

p = p(v). His expected current profit is therefore

1
[ p(v)f(v)dv - ¢
v

If the product is not sold then the seller knows that the current buyer's
valuation is less than v. Let y(v) be the expected profit from future
attempts to sell the object given the information that the current buyers

valuation is less than v. The seller's overall expected profit is therefore

1 R
[~ p(v)f(v)dv + y(v) - ¢
v
Define
6(v) = G(p(v))

= Prob{sale is made to an individga1
with valuation of at most v)}.

The expected profit from the declining offer strategy is therefore
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1

] ~ ~ ~
(25) T o= fo Li. p(v)f(v)dv + y(v)1g(v)dv - c .
v

Obviously it is suboptimal to sell to someone with a zZero reservation value.
Then G(0) = 0. Furthermore there is no advantage in refusing to name any
asking price. Then G(1) = 1. Integrating (25) by parts and making use of

these endpoint conditions we therefore have

1 ~ ~ 1 1 A A oa
( 26) T IO P(V)G(v)f(v)dv + [w(V)G(V)]0 - Io ¥ (v)G(v)dv - ¢

]
fo [p(v)f(v) - ' (v)I6(v)dv + w(1) - ¢ .

Comparing equations (26) and (7) it follows directly that the seller's opti-
mization problem has exactly the same structure as before. Thus once again
the optimal selling strategy is to announce a “take-it-or-leave-it" price
rather than attempt to discriminate by "haggling" with potential buyers.

To summarize we have derived:

Proposition 5: If the only information available to the seller is

whether or not a buyer will accept or reject his
asking price, the "take-it-or-leave-it" pricing
strategy dominates any probabilistically declining

asking price strategy.

Since m(v) was defined as the expected revenue from attempts to sell to future
buyers, given that the current buyer has a reservation value of v, and y(v)
is the expected revenue from attempts to sell to future buyers, given that the

Current buyer has a reservation value of v or less, it must be the case that
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v

(27) wv) < jo n{v)f(v)dv
A sufficient condition for (30) is
(28) v'(v) < a(v)f(v) .

The latter inequality would imply that, under the conditions of Proposition 5,
the seller's optimal take-it-or-leave-it price would be lower than when the
rejected buyer reveals his true reservation value. However, (28) is cer-
tainly not necessary for (27) so we are unable to draw such an inference.
Indeed we conjecture that if the seller is a Bayesian, updating his beliefs
about the distribution of reservation values, the optimal price might turn
out to be higher when buyers only accept or reject rather than when they

reveal their reservation values after rejecting.
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IV. The Possible Gains to Recall

Thus far we have assumed that there is no opportunity to recall indi-
viduals who leave the store. If the cost of locating such individuals, call
it k, is sufficiently high, recall will never be undertaken. (It is quite
possible that k could be higher than c, the cost of Securing a new buyer.)
Here we consider the éircumstances under which the recall option might be used.
Results potentially differ depending on whether Populations are finite
or infinite, and whether there is learning about the distribution of buyers'

reservation values. There are thus eight cases of interest.

Recall Potentially Beneficial

k ¢ k < ¢
Finite Infinite Finite Infinite
No Learning | (A) yes | (B) no (C) yes | (D) no
Learning (E) yes | (F) no (G) yes | (H) yes

Any positive result that applies for k 2 ¢ applies for k < c. Moreover,
since no learning is a polar case of learning, any positive result that applies
for no learning applies to learning as well. We shall first demonstrate the
positive result for (A) using the easiest situation where k = c=0. This
implies positive results for (C), (E) and (6). Next we will derive a negative
result for (F), which implies a negative result for (B). Then we will examine
the negative resylt for (D) (which also implies a negative result for (B)).

Finally, we present a Successful example for (H).
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No learning, finite population (A). A simple example §llustrates the

potential value of the recall option. There are two buyers. The common but

independent distribution of their reservation prices is:

Probiv = 1/2} = 1/4
Prob{v = 3/4} = 1,2
Probiv = 1} = 1/4 .

The buyers enter sequentially. The cost of securing them, c, and the cost

of recall, k, are both zero. With no recall the seller will always announce
prices just below 6ﬁe of the possible values of v. The five alternative price
Sequences are as follows: {1,1}, {1,374}, {1,172}, {3/8,3/4}, 13/4,172}. It

is easy to compute,fhe expected profit for each sequence. We have,

7{1,1} = 28/64
n{1,3/4} = 43/64
{1,172} = 40/64

n{3/4,3/8) = 27/64

m3/4,1/2} = 44/64 .

The preferred price sequence is 13/4,1/2} yielding an expected profit of 44/64.
Contrast this with the sequence employing recall of {7/8, 3/4, 1/2}. If

the first buyer rejects the price of 7/8 and the second buyer rejects the

price of 3/4, then the first buyer is offered the object at a price of 1/2.

Suppose the first buyer has a reservation value of 1. If he rejects the

price of 7/8 he knows that with probability 3/4 the second buyer will purchase

at the price of 3/4. He can therefore obtain the object at a price of 1/2

with probability 1/4. This action thus yields an expected gain of
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(174)(1 - 172) = 1/8. By setting the initial price no greater than 7/8 the

seller thus provides an incentive for immediate Purchase. The expected

Frofit from this scheme is then

1{7/8,3/4,1/2} (1/4)(7/8) + (3/4)(3/4) + (3/8)(1/4)(172)

47/64 .

Therefore the recall option is valuable offering a gain of 47/64 - 44/64 = 3/64.
A continuity argument establishes that the recall option remains valuable if

search and recall costs are positive but small.

Optimality of the recall option in case (A). Is the

pricing strategy described above optimal from the seller's viewpoint? The
theory of optimal auctions proves helpful in answefing this question. Maskin
and Riley [1980] show that for discrete distribution functions the best the
auctioneer can do is announce a finite set of prices aﬁd have each buyer
submit a sealed bid consisting of one of these prices (or not submit a bid
at all). The high bidder péys his bid and is awarded the object. In the
Case of a tie the winner is selected randomly.

For the simple example described here this set of prices is’ {23/28,11/16,1/2}.
At these prices (or strictly speaking at prices which are Just Tower than
these) a buyer with reservation value of 1 bids 23/28 while a buyer with

reservation value of 3/4 bids 11/16. Expected profit is then

Prob{ max (v1.v2) =1} (23/28)
™ o= + Prob{ max (v],vz) = 3/4} (11/16) = 47/64
+ Prob{ max (v].vz) = 1/2} (1/2)
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Since the sequential scheme described above matches the optimal auction
scheme,it is itself optima].*

A positive result in case (A) obviously implies a positive result as
well in (f), wnere recall would if anything be a more attractive option.
Moreover, satisfaction of (C) implies satisfaction of (G) as well. Strictly
‘ speaking, this is trye trivially since (C) is a special case of (G). More
important, a continuity argument assures that recall may be beneficial under

(G) even if strict learning is required.

Learning, infinite population, (F). Since we get a negative result, con-

sider the most favorable case where the cost of recalling a buyer who refused
earlier equals the cost of securing a new buyer. At initia) glance we might
think that knowing an individual refused a higher price might tell us that

he actually had greater (conditiona]) reservation price density at or above
some present price quote. That advantage might outweigh the disadvantage
that the possibility of recall could make individuals less willing to accept

first offers.

A simple thpught experiment reveals that recall can not be optimal in
such circumstances. A number of buyers have been offered prices and refused.
The choice is now between buyer X, an earlier refuser, and buyer Y, who has
not yet been asked. To make the comparison we look at two situations. Would
Y have accepted our earlier price when X refused, or would he have refused ?
If he would have accepted, then Y is to be preferred to X now, for he will

surely accep:.. If he would have refused, then our knowledge of Y is the same

*
We are grateful to T. Nicolaus Tideman for pointing out the equivalence
between the sequential policy strategy and the optimal auction strategy.

qu
Unfortunately the equivalence appears to hold only for two and three point
distributions.
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as our knowledge of X. Given that we are indifferent in one case and pre-
fer Y in the other, buyer Y should be our choice. Recall is never benefi-
cial. This negative result for (F) implies a negative result for (B) as well,

for (B) is a speci., case of (F).

No learning, infinite population, k < ¢, (D). We have a negative result

for (B), but what of (D), the situation where recall may be substantially
less expensive than securing a new buyer? Consider first expected total
profits EN with no recall. Since the distribution of buyers is known,
eéxpected future profits in the absence of a sale to the current buyer, n(v),
must also be %N. Thus, making use of Proposition 1, the seller sets a price

v* in each period satisfying

(2¢) Jv*) -7 = 0.

Given this strategy, the éxpected profit of the seller is the price v* less

the expected number of buyers times the cost c per buyer:
(30) iN = y* o Tf%; » Where F* = F(y¥*) |

Together these equations determine y*,

Consider now the effect on expected profit of allowing the first buyer
to be recalled at some later time at no additional cost. For simplicity we
assume that the seller can recall him after the departure of the second
buyer. For any announced strategy by the seller the response B = b(v) by

the first buyer results in scue probability

Hy(v) = H(b(v))



31

of an immediate sale, and, in the absence of an immediate sale, a further

probability
Hy(v) = H,(b(v))

of a later sale to the first buyer. Given the assumptions of no learning
and an infinite population, the optimal reserve price for all other buyers
remains v*,

Then if Bi(v) = pi(b(v)) is the expected price paid by the first buyer
condi;ional upon making a successful offer on the ith contact (i = 1,2),

expected seller profit at the outset with recall is

(B0 T = BTN (B () + (1=, (), ()5, ()] + (1-F)E, (1-H, (V)7

+ Ev(1-H](v))(1—H2(v))§N -c.
Furthermore, repeating the argument of Section II we can rewrite the first
term in (31) as
1

(32) jO [H] + F*“‘H])Hzlj(v)f(v)dv
Making substitutions using (25), (30), and (31) we have finally

- ] - N -

"R = Jro [H] + F*“'H] )Hzl[J(V) - J(V*)]f(V)dV + ‘II’N -C .
Following the argument of Section III it can be confirmed that ;R is maximized

by setting

o , vV < y*

H](v) = . Hz(v) = 0.
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That is, in the infinite population Case the seller's optimal strategy is
to sell to the first buyer immediately or not at all. The optimal strategy

has no recall.

Learning, infinite population, k < c, (H). Might the presence of

learning turn the negative (D) result positive? Interestingly, the answer
is yes, as a simple example makes clear. Assume that the seller and the
buyers knew that al] buyers had identical reservation prices, and that
there were three equally Tikely situations, that that price was 1, that it
was .6 and that it was .2. The cost of securing a buyer is positive, say .1,
The cost of recall is 0.

The optimal strategy without recall is to quote a price of 1 minus a
hair to the first buyer; .6 minus a hair to the second,should the first
refuse. and a hair less than .2 to the third,should the second refuse as

well. The expected payoff is
1/3(1 - .1) + 1/3(.6 - .1) + 1/73(.2 - .1) = .5,

leaving split hairs aside.

With recall possible, a number of superior strategies are available. One
would be to make the same first two quotes, but then recall the first buyer
for quote 3. Note in this case that if the first buyer's reservation price is 1
he will certainly buy at the first trial, for he knows that the second buyer's
reservation price is also 1 and he will surely buy if given the chance. Better
a certainty of a smidgen than a 2ero probabiiity prospect of a large gain.

It may seem puzzling at first that learning turns a negative result posi-

tive. At first our intuition might suggest that it is because it is worthwhile
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to use a different strategy under learning so as to acquire more information.
That, “however, is not the case here. The reason that learning can make
recall worthwhile is that the recalled buyer is pufchasing a commodity that
is less valuable to the seller than it was when first he refused. There is
no such diminution in prospective value in the case without learning.

To sum up our results on recall, with finite populations recall must
always be considered a possibility. With infinite populations, recall can only
be advantageoqs when there is learning and the cost of recall is less than
the cost of obtaining a new buyer. Might it be less expensive to recall than
to secure a new buyer? It seems reasonable. The salesman can record the

phone number of the refusing buyer, "just in case."
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V. Randomized Strategies for Risk Averse Buyers

ff buyers are risk neutral, the optimal strategy of the seller is to
announce a single "take-it-or-leave-it" price. Here we demonstrate th..
this is not generally true when buyers are risk averse. Instead the seller
can increase expected profits by utilizing a "probabilistically geclining
offer" strategy.

A simple example provides the proof. Suppose that there is Just one
buyer with reservation value v, 8 random draw from the uniform distribution
on the unit interval 0 to 1. The best single -price strategy is to choose a

price p to maximize
P Prob{v exceeds p} = p(1-p) .

Then p* = 1/2 and the expected revenue is 1/4. From Section Il we know that

if the consumer is risk neutral this strategy is optimal. However suppose
u(v-p) = (v-p)® , 0<pc<.

While introducing the risk aversion does not alter the optimal single price
strategy it does change a buyer's response to other selling strategies.
Suppose the seller announces that the object will be withdrawn from sale at

a8 price of p or lower according to the probability function G(p), where

(33) &(p) = p.

The buyer is asked to make a bid knowing that the lower the bid the lower the
probability of being allowed to purchase the object. The buyer then chooses

his bid p(v) to maximize his expected utility



(38) u(v-p)&(p) = (v-p)%
It can be readily confirmed that the optimal bid is
(35) P(v) = wv/(14g) .

For a buyer with reservation value v the probability of sale is G(p(v)) and
the revenue of the seller conditional upon such a sale is p(v). Utilizing

(33) and (35) expected seller revenue is therefore

1, I DL S

fop (v)f(v) = mjovdv = “—73(1'*8)

Since expected revenue from the single price scheme is 1/4 it follows that
the alternative scheme dominates if the buyer is sufficiently risk averse,
that is,if 3 is sufficiently small.

The alternate scheme outlined here was called earlier a "probabilistically
declining offer" strategy. Such a strategy has not been shown to be optimal,
Just superior to the fixed price, take-it-or-leave-it scheme in some circum-
stances. If the buyers' risk aversion levels were known, it would be possible

to devise an optimal scheme.
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VI. Extensions and Generalizations

Extensions and generalizations of this work could come in many areas.
They could allow for:(1) multiple items for sale, (2) the seller's strategy
to affect the distribution of buyers, (3) consideration of cases where sellers
are unable to make commitments in advance, (4) alternative market structures
where there may be competitive elements, (5) buyers moving first or simul-
taneous moves, and (6) examination of anecdotal and statistical evidence on
the actual pricing behavior of firms. We shall just comment on the first three
of these areas here.

Multiple items for sale. The models we have outlined above apply, albeit

with a bit more complexity, when there is any number of items for sale. Con-
sider the easiest case, no learning. Then expected profits with X items is
simply X times the expected profit with 1; the identical fixed-price should
be emp]oyed.*

An important special case would allow the store to sell as many items as
it wished, but to pay a fixed cost per item. This formulation would actually
simplify a number of calculations. Each buyer could in effect be treated

separately. The store would simply set the fixed price that maximized:
Probability of Sale x (Price - Fixed Cost) .

The cost of bringing a customer into the store would become a sunk cost. It
would not affect the optimal price; it might, however, induce the store to go
out of business.

Situations in which there were increasing supply costs--of which a
special case is any finite supply--would turn out to have properties 1ike many

depletable resource models. Attached to each item sold would be not only its

*If there is discounting with multiple items, then with an infinite
population of buyers the optimal fixed price will rise as items are sold.
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own immediate marginal cost, but a shadow price as well that fadicates the

(possibly discounted) increased cost in 211 future items sold due to its sale.

Learning creates no difficulties in the fixed-cost case. With rising
supply prices, however, learning can make matters considerably more complex.
In essence, experience with sales and attempted sales helps the seller assess
more accurately the shadow price to be attached to low-cost supplies. Models
of learning with increasing supply price are a challenging subject for future
work.

Seller's strategy affects the distribution of buyers. Individuals

with Tow reservation prices rarely wander into Gucci's; discount stores by
contrast are disproportionately populated by bargain shoppers. If a store's
committed pricing strategy can be communicated to the outside world, that will
also have an effect on who comes to shop there.

To deal with situations such as these requires a more elaborate model
that incorporates the cost of securing and dealing with buyers. If buyers were
perfect at self selection, and if the cost of bringing a buyer into a store
remained constant at ¢, then a store would simply commit itself to charge the
highest reservation price of any buyer. Such a model is nonsensical. Buyers
would enter the store only after very long intervals.

A more realistic model would make the cost of securing a buyer a function
of the seller's strategy. The world implicit in the model might have buyers
walk by the store, with only those who are interested entering. If all costs
were merely waiting time, for example, rent and heat, then costs would be pro-
portional to the number of individuals passing by, and all the previous models

would apply.
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Alterations would be required, however, if there were also costs
of servicing. Intuitively it is clear that the possible avoidance of
service costs would provide an additional argument for a fixed-price policy;
such a policy would still be optimal. With service costs, however, the
fixed price should be raised. Consider a situation where buyer reservation
prices are distributed uniformly on the interval 0 to 1. Until the item is
sold, each potential buyer imposes a cost of a. If the store sets a price of
P, it will on average take 1/(1-p) trials to sell the object. The store sets
P to maximize p - o/(1-p). The optimal P=1- a. If, on the other hand o
were all service cost, the store would charge a price of 1. Realistically,
there will be some service cost and some cost of waiting for a buyer, and the
optimal price will lie between the two extremes, i.e. above the optimal price
when the seller's strategy does not affect the mix of buyers.

Commitment impossible, the inevitability of haggling. Our initial

interest in this problem was sparked by consideration of the differences between
markets where haggling was the order of the day, and others where fixed and
posted prices seemed to rule. On a purely observational level, it seems that
large stores with established reputations are most likely to employ fixed-price
strategies. Though a variety of alternative explanations is possible, it
struck us that this observation was consistent with the fact that established
stores are much better able to make firm commitments to fixed prices.

Suppose a motorist walks into a country antique store on a back road and
he refuses the owner's first price; it is difficult for the owner to maintain
that by lowering his price he will ruin his reputation for the future. The

seller's inability to commit himself tc a strategy in advance almost makes
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haggling the order of the day, unless, of course, the buyer finds such

a process extremely unattractive. With just anecdota] evidence to support
our theoretically guided insights, we conjecture that haggling will be dis-
covered to be much more common when sellers encounter particular buyers

infrequently and do not have reputations to maintain or establish.

This raises the possibility of another advantage of brand-naming or
resale price maintenance. It may make it possible in certain circumstances
for a seller to commit himself to a strategy which he otherwise would not be
able to commit to. In particular circumstances where offer costs push average
costs above marginal costs, buyers may welcome the availability to sellers of
firm price commitment§. Without such commitments, a weak variant of ruinous
competition may make %t difficult to find the product in the marketplace.
No seller would take on the fixed costs that are required to make the‘product
more conveniently available.

To model the haggling process is a most intriguing problem, a problem
that will have to await a subsequent paper. A preliminary model based on our
probabilistically declining offer model seems promising. The major difference
from our previous model is that the seller's strategy must follow the optimality
principle of dynamic programming. It must always be optimal from any point
forward. Alas for the seller, this is not an optimality principle for two-
person, non-zero-sum games. The inability to make binding commitments about
future strategies, that is the inability to commit himself to behave non-
optimally in the future, hurts the seller. One natural result of this forever-
fo-ward-optimality constraint is that the seller can not withdraw the item
rrom sale until his reservation price is reached. (When there are costs of

securing buyers, this reservation price may be a function of what he learns.)
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VII. Summary and Conclusion

We have provided a strong theoretical justification'fqr the pricing
strategy found in a wide variety of stores. Prices are established and buyers
can accepi them or seek to buy elsewhere. So long as the seller can make
a firm commitment in advance on his strategy, and so long as buyers are risk
neutral, expected-value maximizers, this result is robust. The strategy is
optimal in comparison to any other, including all forms of buyer involvement,
price quoting behavior, etc. (The strict result requires that the seller
induce the rejected buyer to reveal his reservation price by offering a
microscopic probability of purchasing the item at a bargain price.)

Assuming that the buyer can only accept or reject price offers, which
implies he cannot fully reveal his reservation price, the take-it-or-leave-it
pricing strategy remains optimal.

A variety of special cases yield interesting optima] selling strategies.
When there is Tearning or buying populations are finite, recall of rejected
buyers may be desirable. When buyers are risk averse, take-it-or-leave-it
strategies may not be optimal; haggling may be superior. Almost by indirection,
we have answered the question in our title. You should haggle when buyers are
risk averse.

What if buyers are risk neutral? You should haggle only when Yyou can
not make a convincing commitment not to. Stores without established reputa-
tions, or market encounters that are highly occasional must be expected to
give rise to haggling behavior, although such behavior is not optimal for the
sell:r. He just can not commit himself to something better.ygin general,

sellers should seek ways to commit themselves to firm prices.
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