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Over the last few years the optimal selling strategy of a monopolist
who has imperfect information about buyers has been the focus of a number
of papers. Specific applications range from the design of an optimal
auction for the sale of a unique object to the monopoly pricing of product
quality. While these problems appear at first to be very different, they
have several basic elements in common. First, the seller brings to market
some predetermined quantity of goods, possibly of varying quality. Second,
buyers are risk neutral and their preferences are parameterized by a scalar
v. Third, the underlying distribution of v, F(v), is assumed known to the
seller and all the buyers. Fourth, the seller is also assumed to be risk
neutral so that his objective is to choose a pricing scheme which maxi-
mizes expected profit.

Despite these common elements the published and unpublished literature
divides naturally into three distinct parts with essentially no cross-
referencing. In the earliest relatively complete analysis of the optimal
pricing problem, Mussa and Rosen [1978] consider a commodity class from
which each consumer, if he purchases at all, will purchase a single unit.
The parameter v reflects differences in tastes for quality q. The monopolist
announces what price R(q) must be paid for each quality level, q, and each
consumer responds by selecting his optimal quality level qR(v). To focus
on the demand side of the market the cost of producing a unit of quality
level q, c(q) is assumed to be independent of the level of aggregate demand
for this or any other quality level.

The constant-marginal-cost assumption is also central to
fecent reexamination of the Pigouvian question of optimal second

degree price discrimination. In this analysis v is



analysis v is a parameter which reflects differences in consumers' demand
functions for a product, q becomes the number of units purchased and R(q)
the total tariff function,

While there is a considerable literature on the special case in which
R(q) is of the form o + Bq (see, for example Oi [1971] and Feldstein [1972]),
it is only very recently that general non-linear revenue functions have
been analyzed. Spence [1978] provides the first characterization of an
optimal tariff function. However, as Goldman, Leland and Sibley [1980]
have since shown, Spence's conclusions must be modified unless the
distribution function F(v) and the family of demand curves p(q;v) together
satisfy a monotonicity restriction. Goldman, Leland and Sibley obtain an
explicit solution when the restriction is satisfied and illustrate the problems
that arise when it is violated. Their central point is that it is not gen-
erally desirable to price discriminate in such a way as to separate out
each different type of demander. An analogous point has been made in the
optimal income tax literature (see, for example, the survey by Mirrlees
[1981]). Only in special cases is it optimal to separate out all skill
classes with a smoothly increasing tax schedule.

The third strand of the literature focuses upon monopoly selling strate-
gies making the extreme opposite assumption about the cost of production.
Instead of constant marginal costs, aggregate supply is treated as fixed,
at least in the short rum. The paradigm case is that of the sale of an
object d'art or estate. Then there is a single indivisible unit for sale
and the parameter value, Vo is to be interpreted as buyer i's dollar valua-
tion of this unit. Allowing for the possibility that the outcome of the
selling scheme may be random, q is now to be reinterpreted as the expected

number of objects purchased. Then each buyer can be thought of as having



a demand curve of the special form

vi, q 5_1
(1) pi(q) ={ . )
’ q >

In the original theoretical examination of auctions, Vickrey [1961] compared
two common auctions; the sealed or 'high bid' auction and the open or 'second
bid' auction. He showed that both are efficient in the ex-post sense that
the agent with the highest valuation always ends up with the item for sale.
Moreover the two auctions yield exactly the same expected revenue to the
seller.

More recent work by Harris and Raviv [1979], Myerson [1981], Riley and
Samuelson [1981] and Maskin and Riley [1980] considers the choice of auction
from the seller's viewpoint.

A central result of this work is that for a wide class of continuously
differentiable distribution functions, the optimal selling strategy involves
the use of either of the auction schemes considered by Vickrey. However
each is modified by the introduction of a minimum price which is strictly
greater than the seller's personal valuation.

For the special case of a uniform distribution, Harris and Raviv
[1981] have shown that this result continues to hold if there are multiple
units for sale and each buyer has the simple demand curve given by (1).

In the open auction version the seller simply announces the optimal minimum
price. Then, if the number of bidders exceeds supply, the asking price
is raised continuously until just enough bidders drop out.

In providing this brief overview of the literature we have emphasized
‘ the close links between the different models. Indeed a major conclusion
of this paper is that, from a mathematical viewpoint,the models are es-
sentially equivalent. Each can be solved as a special case of an optimal

control problem. In the following section we show how the problem of selecting



an optimal selling strategy can be reduced to a relatively straightforward
class of optimization problems. Then, in section II, we present a general
method for solving such problems.

The approach is related to one recently used in the public decision
literature (see, for example, d'Aspremont and Gerard~Varet [1979] and Laffont
and Maskin [1979]). That there should be a strong connection between these
literatures is not surprising. In both cases the goal is to maximize some
objective function that depends on the action of other agents (buyers in the
monopoly problem, consumers in the public goods framework) subject to the
constraint that these other agents in turn pursue their own private ends.
The only substantive difference between the two classes of problems is that
in the one the objective function is an index of social welfare while in
the other it is simply profit.

In addition to clarifying the relationship between the different
strands of literature our approach makes several generalizations possible.
In section III we are able to provide a complete solution to the Pigouvian
price discrimination problem for a wide class of demand functions, even
when the simplifying "monotonity restriction" is violated. In general the
optimal total tariff function, R(q), has an initial slope exceeding the
marginal cost of production so the proportion of buyers purchasing is less
than with marginal cost pricing (or perfectly discriminating monopoly). A
second general property is that pricing is efficient for the biggest
demanders, that is, the slope of the tariff function declines towards the
marginal cost of production. Third, the tariff function may have one or
gore kinks so that marginal price %% declines discontinuously.

Section IV reconsiders the problem when there are only a small number

of buyers and the seller knows the distribution, F(v), from which each buyer's



parameter A is drawn, but not the population histogram. For the special
case in which each buyer wishes to purchase only one unit, expected profit is
maximized in an open auction. With reservation values distributed uniformly,
Harris and Raviv [1981] have shown that in the optimal auction the initial
asking price is positive even if the seller places no personal value on

the objects for sale. The asking price is then raised continuously until

the number of buyers remaining equals the number of objects available.

In general, however, it may also be necessary to prohibit bids, not
just below some minimum, but also over other predetermined intervals. If
after jumping the asking price the auctioneer finds that demand is less
than supply he returns to the previous price and asks who would like to buy
a unit at that price. Successful bidders are then determined randomly.

The case of downward sloping demands is somewhat more complicated.

An optimal strategy of the seller is to begin by asking buyers to pick a
point on a tariff function R(q). If aggregate demand is less than supply

the monopolist fills each order. If, however, preliminary orders exceed
supply the monopolist scales down eachbuyer's demand, in a predetermined

way, until the capacity constraint is met. At the same time the total tariff
is reduced below R(q), and any buyer squeezed out of the market completely
has his tariff reduced to zero.

Finally, in section V we extend the Mussa and Rosen analysis by
examining a one parameter model in which differences in preferences result
in differences in demand for both quality and quantity. In this case the
optimal strategy of the monopolist is to sell multiple units in bundles.
Higher quality units are sold in packages of different sizes. For a simple
parametrization of preferences we again provide a complete characterization

of the optimal bundling strategy.



I. Formulation of the Seller's Optimization Problem

We begin by considering the alternative selling strategies of a monopolist
with q units of a commodity for sale. Later we shall see how to incorporate
variable product quality and consider the monopolist's choice of q.

Each buyer is characterized by a parameter value vy drawn from some
continuously differentiable distribution function F(v). For mere convenience
we also assume that F'(v) is positive everywhere in the unit interval and

zero elsewhere. Buyer i's demand price for q units of the product is assumed

to be a non-increasing function of the form

(2) pi(q:vi) = via(q) - b(q).

It is assumed that there is some q such that, for all vy and

allq >gq, pi(q;vi) = 0. It is also assumed that a(q) and b(q) satisfy
(3) a(q) >0, and b(q) > 0, for all q >0

Condition (3) implies that the demand price, for any level of q, is nonde-
creasing in v, . Therefore a buyer with a high v is a "high demander."l

The functional form (2) incorporates a wide range of interesting special
cases. First of all, with b(q) equal to zero and a(q) equal tounity for q <1

and zero for q > 1, (2) reduces to

2" pi(q;vi) = .

1This assumption can be significantly weakened with only minor changes in
the analysis. All we require is that

p(q;vi) = a(vi)a(q) - B(vi)b(q)

and that o(x)/B(x) should be a monotonic function. With a(x) and B(x) both

positive and increasing the demand curves for any two levels of vy

necessarily intersect.



With aggregate supply, q, equal to unity this is the optimal auction problem.
with q greater than unity we have the generalization to multi-object auctions
considered by Harris and Raviv [1981].

Second, with a(q) = 1, the family of demand curves are vertically parallel.
Without loss of generality we may assume b(0) = 0 so that the parameter A
becomes the intercept with the vertical axis.

A third example is provided by the assumptions that b(q) =0 and
a(q) > 0 if and only if q < g. Then all the demand curves intersect the
horizontal axis at q = q and a higher value of the parameter v, indicates
a steeper demand curve.

Buyers are assumed to respond independently to the monopolist's selling
strategy. Any such strategy is then a set of rules for a non-cooperative
game among the buyers. Associated with a particular set of rules is some
strategy space Si for each buyer. On the basis of the strategies chosen
(sl, cees sn), the rules assign some quantity ai(sl,...,sn) to buyer i and
require him to make an expected payment fi(sl,...,sn).

The seller must choose rules which satisfy the feasibility constraint

(4)

n~B

a.(s) j_a .
11

i
It is also natural to assume that the seller cannot force a buyer to partici-
pate. Formally this option can be expressed by including in each strategy
space a null strategy, which ensures the buyer a zero quantity of the good
and a zero payment, independent of what other buyers do.
We now consider the response of the buyers to some particular set of
rules, <ai(s), fi(s)> i =1, ..., n. Each buyer knows his own parameter

value vy but knows only that the other valuations are drawn independently

from the distribution F(*). (F is common knowledge among the sellers and



buyers.) Thus buyers play a game of incomplete information. A natural ex-
tension of Nash equilibrium to non-cooperative games is the Bayesian equili-
brium of Harsanyi [1967-68].

To define a Bayesian equilibrium, we introduce the notion of a strategy
rule for buyer i: a function s;(’) that, for each possible parameter value
vy assigns a strategy s;(vi). With buyers behaving non-cooperatively the
vector of strategy rules (s{('), cees s;(-)) is an equilibrium if, when
adopted by all buyers but one, the latter's best response is to adopt it
also. Consider then the return to buyer 1 when he adopts some alternative
strategy. In particular suppose that when his parameter value is vy he
adopts the strategy s{(x). If assigned 31 units for a total tariff of fl
his net gain is just the area under the demand curve less the tariff,
that is,

~ ~

4 4 R
(5) vlé a(z)dz - é b(z)dz - T, = le(ql) - B(ql) -T .

Then, with all other buyers using their equilibrium strategy rules, the

. 2
first buyer's expected gain can be expressed as

(6) I (x,v,) =VE {le(qu(Sf(X), s*, (v_1))) - B(§ (s3(x), s*, (v_1)))
-1

- T, (s5(0) 8% (v_y )}

that is

2 - *
sk, (v ;) = (s3(v), «vvs s;_l(vi_l),s;+1(vi+l), eees 8%(v ) and

E is the expectation taken over (Vi’ cees Vi Viglr ot vn).

-i



expected expected area
buyer under -
gain demand curve

expected
tariff

Below, we obtain simple expressions for both the expected area under the
demand curve and for the expected buyer gain. Then, from (6) we are able
to derive the expected tariff paid by buyer 1.

Since si(') is defined as this buyer's equilibrium strategy rule it
must be the case that buyer 1 can do no better than adopt si(vl), that is,

choose x = Vv Then a necessary condition for a Bayesian equilibrium is

1
Hl(x,vl) < Hi(vl,vl), for all x and vy-
In particular we have
1 ' ) 1
Hl(vl,vl)‘i Hl(vl,vl) and Hl(vl’vl) 5-“1‘”1’V1)'

Adding these two inequalities, rearranging and substituting from (5) and (6)

we then have the following necessary condition
L "y _
(v vl)(Gl(vl) G, (v{)) 20,

where
M6 = E A (S3(V)) s vens 83, ey 85(V)))
-i
0f course we can make exactly the same kind of argument for each buyer. Thus
in choosing his optimal selling strategy the monopolist must also satisfy
the constraint that each buyer's associated Gi function must be non-decreasing.
Since a non-decreasing function is differentiable, almost everywhere, we

may write this constraint as
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dGi(x)

dx

(8) > 0, almost everywhere.

Moreover, from (3), A(-) is non-negative. Therefore the maximized net
gain to buyer 1, Hl(vl,vl), is non-decreasing on [0,1]. It is therefore
differentiable almost everywhere.

Then almost everywhere, we may write

dHl(vl,v 8H1(x,v1) N Efl(x,v
Bvl

D »

331 T

X=v

Since Hl(x,vl) must take on its maximum at x = v, the first term is zero,

1
almost everywhere. From (6) and (8) we therefore have
dHl(vl,v

l)

9 = Glgvl), almost everywhere.

dvl

In the appendix this result is formally derived. It is also shown that
Hl(vl,vl) is absolutely continuous on [0,1]. Then Hl(vl,vl) is an indefinite

integral and we have

v

v
1 dnl( 1

x)
(10) Hl(vl,vl) - Hl(0,0) = é = dx»=g Gl(x)dx

We are now ready to consider the game from the seller's viewpoint.

From (6) the expected tariff paid by buyer 1 can be expressed as

an Tep = vie o - E B(a, (5v))) - T, (v;,v))
-1

As far as the seller is concerned, v, and hence the expected revenue, T(vl),

1
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is a random variable. The seller's expected revenue from buyer 1 is there-
fore the expectation of Tl(vl). Since the seller knows that Vi has
distribution F(vl) his expected revenue is

- l..

R, = g T,dF
Substituting from (9) and (10) and integrating by parts, tﬁe seller's ex-

pected revenue can be rewritten as follows

1
(12) R = J IG)684F(x) - EB(Q, (8(v)) - T,(0,0)
0 v

where
(13) J(x) = x+ (F(x) - D/F'(®).

Finally summing over all n buyers the expected revenue of the seller is
_ 1 n n N n
(14) R = é J(xi)izlGi(xi)dF(xi) " E ifln(qi(é*(v))) - 2100
At this point it is convenient to subsume the vector of buyers' strategy
rules, g?v), and write the monopolist's selling strategy as a set of
rules <qi(V), Ti(v)> = <ai(s*(v)), fi(s*(v))> i=1, ..., n. We may then sum-
marize the results of this section by describing the monopolist's problem as

follows.3

3Constraint (R) is a necessary condition for buyer i's reward function

Hi(x,vi) to have its maximum at x = V,. In lemma 2 of the appendix it is

demonstrated that this condition is also sufficient.
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Choose qi(v), i=1, .. . , n to maximize

n ,
s z { fJ(vi)Gi(vi)dF(vi) - J 7 B(qi(v))dF(vl)...dF(vn) - Hi(Q,O)}
i=1 v VyeooV
i 1 n
where J(x) 2 x + (F(x) - 1)/F'(x)

subject to the constraints

(a) Gi =VE A(qi(vl, sees Xy Vias een Vn))
-i

n -
® I qi(v) <q

i=1

) Gi(x) is non-decreasing

(8 T (0,0) >0

Constraint (a) defines Gi' Constraints (B) and (Y) simply repeat conditions
(4) and (8). Constraint (§) is the requirement that no buyer can be forced
to make a purchase.

A formal solution to this problem is provided in the following section.
Since there is a large family of distributions, F, for which the derivation
is relatively straightforward we consider this case first. To obtain the

general result we make use of the standard techniques of control theory.
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I1. The Optimal Selling Strategy

In the previous section we showed how the monopolist's optimal choice
reduces to solving a constrained optimization problem. Here we provide
the solution. Constraint (&) may be taken into account
immediately. Since Hi(0,0) > 0 and this enters negatively in the objec-
tive function, it is optimal to set Hi(0,0) equal to zero. This is simply
the requirement that a buyer who is unwilling to pay a positive price, even
for a small amount of the good, should not have an expected gain.

Substituting (&) into the objective function we may rewrite the maxi-

mum as

(15) J J Z[J(vi)A(qi(v)) - B(qi(V))]dF(vl) e dF(vn).

v1 . s vn i
Moreover, since
q,(y,v )-q,(x,v )
G.(y) -G (x) = E S TV AT 0y,
i i
v_g 0

a sufficient condition for comstraint (y) to be satisfied is

(16) qi(v) is non-decreasing inv,, i =1, ...,n

i’
Before treating the general case we consider the solution for distribu-
tion functions, F, in the following class.
Definition: J-monotone Distribution Functions
The distribution function F(x), continuously differentiable
on [0,1] is J-monotone if, for any x € (0,1) such that

J(x) = x + (F(x)-1)/F'(x) is non-negative, J(X) is increasing.
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It is readily confirmed that any convex distribution function is J-monotone,

as is the family F(v) = vf c >0,

Proposition 1: If F(v) is J-monotone there exists an optimal selling
strategy <q;,T;>:=1 such that
%) - *
( J(v)a(q}) - b(g}) <
€2 l (strict inequality implying that q = 0)
u(g-Zq¥) = 0

Vi

) T = vA@D - Bla) - Ay )ax

Proof:

We consider first the maximization of the integrand of (15)
I(v,q) = iJ(vi)A(qi) - B(q,)

subject to the aggregate supply constraint, and then show that the solution,
q*(v), satisfies (16).

From the definition of J, J(0) < 0 and J(1) > 0. Then, since F is J-
monotonic there is a unique X*, greater than zero, such that J(x) changes
sign at x = x*. Since A(qi) and B(qi) are non-negative, it follows by

*

examination of I(v,q) that qi(v) = 0 for vy < x”. By assumption p(v,qi)

= via(qi) - b(qi) is a non-increasing function of 9y for all vy > 0. Then
the integrand is a concave function of qy for all vy > x*. It follows

that the first-order conditions define the global optimum. To obtain

these conditions we form the Lagrangian
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L = L3(v)A(q) - blay) + u(q - iqi)

We have
an L - sw)ag) - blg) ~H< 0
qu i i i -
with the strict inequality implying that q; = 0.
oL _ -
(18) Eri Zq; 2 0,

with the strict inequality implying that u = O.
Together these conditions imply (#). Making use of equations (10) and (11)
of the previous section, we know that the expected tariff paid by buyers
must be of the form

v

19) T,(v) = v,6,(v,) - E Blay() - /¢, (x)ax
v_y 0
vy
= vE {ViA(qi(v)) - B(qi(v)) - Of A(qi(x,v_i)dx}
-i

Comparing (19) and (##) it follows immediately that the latter indeed defines
the optimal tariff function.
Finally we wish to show that qj(v) is a non-decreasing function of Vj'

Consider qg(v) > 0 and

' = '
v (vl, vees V .o vn) where vj > vj.

1
j’
The necessary condition (17) becomes

' - _ ' - =
(20) J(vi)a(qi) b(qi) 1 0, for qy >0 i=1, ..., N
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Suppose first that u' < . Since J(vi) Z.J(vi), for all i, and the left-
hand side of (20) is non-increasing in q, it follows that q;(v') Z.qi(v),

for all i. Moreover J(vi) > J(vj g(v). But if

¢ is strictly positive this is impossible for then Zq;(v) > q, and the
i
new allocation violates the aggregate supply constraint. Therefore, if

) > 0 so that q;(v') >q

>0, u' >y and from (20), q;(v') < q;(v), i# j. But y' >y >0 implies
that Ig¥(v') = Ig¥(v) = q. Then qg(v') > qx(v).

i i J
Q.E.D.

In addition to providing a proof of Proposition 1, the above analysis
provides a clear indication of the problems that arise in the absence of
J-monotonicity. The first-order conditions (17) and (18) then yield a
solution ai(v), i=1, ..., n, which is no longer mbnotonically increasing
and the sufficient condition, (16), is violated. We shall see below that
the optimum in such cases no longer has the property that

* > q* >
qi(v) qj(v) 0 if and only if A > Vj'

In economic terms, it is no longer optimal for the monopolist to separate
out all the different types of buyers. The intuition behind this result
is spelled out in section 3. We conclude this section by
solving for the optimum when F is not J—monotonic.“

Since the constraint (y) is binding, at least over some subinterval,

we incorporate it as follows

4Some readers may wish to skip the derivation and move immediately to
Section 3.
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(21) preasiiall PR Y > 0, almost everywhere.

Because the distribution function F(°) is differentiable, as are the func-
tions J(-), A(*), and B(*), there is, for any Gi(v) differentiable almost
everywhere, some piecewise differentiable function GI(vi) for which the
value of the integral in (14) is the same. Thus there is no restriction
implied in seeking a solution, G;(v), from among the class of piecewise
differentiable functions. We may therefore apply the standard techniques
of control theory to prove the following result.

Proposition 2: Characterization Theorem

Define the increasing function

I(x) = v+ FW-1)/F' (), x ¢ [x23,x23%), j=0,....m

K(x) = .
(J(XZJ 1), %X € [xzj-l,xzj], i=l,...,m

where xo, cees x2m+1 with 0 = xo < xl < ... < x2m+1 =1
satisfy
(A) J(x) is non-decreasing on [xzj,x2j+l], j=0, ..., m

and J(xzj-l) = J(xzj), j=1, ..., m

x 25-1

B S (=2 - 3&PT)1dR() > 0

L23-1 -

and the constraint is binding at x = xzj.
*
Also define x to be the largest value of x such that

K(x*) = 0.
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Then there exists an optimal selling strategy
n
* *
<q¥(v), T¥(v)>,_, such that

(#) q*(v), i=1, . . . , n is the solution of

n n
Max { L K(v,)A(q,) - B(g))| Z q, < q}
ql,---,q&=l i i i =1 i-—
Vi
(##) T; = viA(q;) - B(q;) - J A(q;(x,v_i))dx

0

Proof: See appendix.
Comparing our two propositions it ghould be clear that (#) of Proposition
1 may be rewritten as
(#") q;(v), i=1, ..., n is the solution of
n

n
Max { LJ(v,)A(q,) - B(q,)| Zq, < q}
areeid, 1ol 1/849y | o3

Then the method of solution is exactly the same for a general distribu-
tion function, F(v), as for a J-monotonic distribution function. The only
additional step is the derivation of the monotonic function K(x). This is
illustrated for an example in Figure 1. The segment [xl,xZ] is chosen so
that the average value of J over this interval is equal to the value of J

at each endpoint.



F(v) = —‘21(7-9v+4v2)

1 2
X* l X 4 Ax l
1 \ A f M
1 5 3
2 8 A 1

Figure 1: Determination of K(V)
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III. Second Degree Price Discrimination
In this section we consider the special case in which monopolist,
with constant marginal cost of production c, faces a family of strictly

downward sloping continuously differentiable demand curves
plq3vy) = vyalq) - b(q)

Since we shall establish that the optimal selling strategy involves
charging different marginal prices for different total purchases, it
will be helpful to review the Pigouvian price discrimination problem.

If the total amount paid for q units is R the net gain to the consumer is

just the area under his demand curve less R, that is,

q
(22) wu,(q,R) = U(q,R;v,) = J p(z3v, )dz - R
i i 0 i
Several indifference curves for this family of indirect utility functions
are depicted in Figure 2. Through any point <q,R> the steepness of buyer

i's indifference curve is

U

drR| _ __9q9 _ )

dq - B_U p(qsvi)
Yy 3R

Since the demand price function p(q;vi) is increasing in Vi it
follows that "high demanders" have indifference maps that are everywhere
steeper than low demanders.

The non-discriminating monopolist charges a fixed unit price P so
that each buyer faces the linear schedule R(q) = pq. Any discriminating

‘pricing scheme is then a non-linear tariff function R(q), such as the one



payment

y

R(q)
U(q,R;v3)
S~ U(q,R;v,)
j
Ve SV <V,
t } —» q
qi(vi) q(vi) quantity

Figure 2: Second Degree Price Discrimination
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depicted. We shall see that, for a broad class of distribution functionmns,
the optimal pricing scheme separates out all those buyers actually making
purchases so that q*(v) is strictly increasing in v whenever it is strictly
positive. However, complete separation is not always optimal. To under-
stand this consider the simple situation in which there are just two types,
as illustrated in Figure 3.

A buyer of type Vi with vy < Vs will accept any offer on or below
his indifference curve through the origin. Suppose then that the seller
offers each buyer a choice between <qf,Rt> and <q5,R§>. It should be
clear that revenue from type 2 is maximized by selecting <q3,R§> at B
the maximum of type 2's indifference curve through <qi,Ri>. It should
also be clear that <q*,Ri> must lie on the upward sloping section of type
1's indifference curve through the origin.5

Now suppose that a very small fraction of the population has a para-
meter value v' where v, < v' < v,. Given our assumptions a typical indif-
ference curve for this third type (dashed in the figure) is of intermediate
steepness. Reinterpret <qi,Ri> as being optimal for type 1 with all three
types. Then a typical schedule of separating offers is the triple {a,c,D}.
Alternatively the seller can continue to offer the pair {A,B} in which
case type 3 choose A. With the separating schedule the seller extracts
more revenue from type 3 but at the cost of extracting less from type 2,

With only a small proportion of type 3 buyers the cost of separation exceeds

the benefit so that only incomplete separation is optimal.

5To see this note that for any pair {A',B'}, where A' is on the down-
ward sloping section of type 1l's indifference curve, there exists an alterna-
tive pair {A,B} generating greater revenue .
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We now turn to the general analysis. First we shall prove
Proposition 3: Consider the family of demand curves
plasv,) = v,a(q) - b(a)
such that p is a strictly decreasing continuous function
of q. Then if the marginal cost of production is c, the
optimal selling strategy of the monopolist is to annouce
a tariff function

b(z)+c
—;zzj-ﬁ - b(z)]ldz

where K(x) is defined in Proposition 2.

d -1
R*(q) = J [a(2)K (
0

Proof:

In the previous section we were able to characterize the optimal
selling strategy which maximizes expected revenue R(q) given some fixed
supply a. From Proposition 2 there is, for each realization of parameter
values v = (vl, cess vn), a shadow price u(v) reflecting the opportunity
cost of the fixed supply constraint. But with a constant marginal cost
equal to c the optimal selling strategy is to choose total output 8O that
the shadow price is always equal to c. Then from Proposition 2 there exists

an optimal selling strategy <q;(v), T;(v)>:=1 such that

(23) K(vi)a(q;) - b(q;) <c

(strict inequality implying that q*(vi) = 0)

v
(20) T4 = viAp - Blap -/ 1 A@re)ax .
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The importance of the simplifying assumption of a constant marginal
cost of production should now be apparent. From (23) we can solve for q;
as a function of v, alone. Then, from (##) TI is a function of v, alone
and can be gxpressed as (24). Given the symmetry of the solution we
shall henceforth write the optimal selling strategy as'<q*(vi), T*(vi)>2=l.
From Proposition 2 K(v) is zero for v = ¥ and monotonically increasing
for v > x*. Then, from (23), there is a unique x > x* such that q*(vi) >0
if and only if x > Xx.

Then we may rewrite (24) as

v

T*(vi) = viA(q*) - ﬁ(q*) -/ iA(q*(X)dx
X

Since q*(x) is a continuous piecwise differentiable function we may inte-

grate the final term by parts to obtain
v
Y oandet
(25) T*(v,) = viA(q¥) - B(q) - Alq¥)v, + J a(q¥) g — + xdx
X

For x > X we may invert (23) and rewrite (25) as

T (g)
-1 b(g)+c
(26) THvp) = S a@k Catgy Yda - Bla*(vy)).

Finally we may define
* = Tk
R*(q(v,)) = T*(v,)
Then, from (26) the expected payment by a buyer purchasing q units is

q -
R¥(q) = [ a(2)K 1(‘-’%—1}‘:—)& - B(q)
0

Q.E.D.
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For any particular family of demand curves and distribution of preferences,
Proposition 3 yields immediately the optimal tariff function.
Example 1: p(q;vi) =v;-4q

F(vi) =V,

For this simple case a(q) = 1, b(q) = q and J(x) = 2x - 1. Then J(x) is
a strictly increasing function so, from Proposition 2, K(x) = J(x).

Substituting into (23) we have

0 , A <x= %(1+c)

~1- <
ZVi].C ’ v, 2%

(27) q*(vi) =

From the statement of Proposition 3 we have

1-l-t:+z)dz _ 12
z 7

q
(28) R*(q) = J (
0

1+c 1
= a5 - 30

Thus, for this example, the average unit price, p*(q) = %(1+c) - %q

declines linearly with q: the optimal selling strategy is a quantity dis-
count strategy.
From (27) the highest demanders (vi=l) purchase q*(1) = 1 - ¢ units.

Then, from (28) the marginal price paid,

dR*(q) _ 1 1
dq = 3{1+¢) - 39
, dRE(D) _

Thus the marginal price paid by all buyers except the very highest demanders

exceeds marginal cost.



24

Applying exactly the same argument for the general case we have
the following result

Proposition 4: For the optimal selling strategy the marginal price,
dR*(q*(vi))
dq
except for the very highest demanders (vi =1).

paid by each buyer exceeds marginal cost

To obtain a simple partial ordering of the tariff functions for different
distributions we utilize a ranking of distributions which implies (but is
not implied by) first-order stochastic dominance. Let pF(x) be the

"decay rate" of the distribution F(x), that is

F'(x)
(29) px(®) = T Fm

Since higher values of x are associated with higher demanders, a distribution
with a low decay rate is obviously preferable from the seller's viewpoint.

By maintaining the same tariff function the seller provides buyers the same
incentives and the greater demsity of the higher demanders results in greater
revenue. What is less evident, however, is that if one distribution function
has a decay rate which is everywhere lower, the optimal tariff is

strictly larger for all positive q.

Proposition 5: If the distribution Fa(x) has an everywhere lower decay

rate than FB(x), then for all q > 0

* (q) > R* (q)
RFB RFa
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Proof:

(1-F(x))
F'(x)

rate it follows immediately that for all x <1

Consider J(x) = x - If Fa has an everywhere lower decay
<
Ja(x) JB(x)
Then, from the definition of K(x) in Proposition 2

Ky(x) >0 =~ Ka(x) > KB(x),

B

and hence

z2>0 - K'él(z) < K;l(z).

It follows immediately that the integrand in the statement of Proposition

3 is larger for the distribution Fa than for the distribution FB.

Q.E.D.

Finally, it should be noted that, while Proposition 3 assumes a non-
stochastic allocation (ql(s), cees qn(s)), there are no gains to
making qi(s) stochastic. To see this suppose the contrary so that
ﬁi(s) is a random variable with expectation Ei(s). The expected gain to
buyer i is ~

y qi
EU(q, (s), R, ()5 vy) = of p(z,v,)dz - R, (s)
Since the demand price p(z,vi) is decreasing in z, Uy is a concave function

of q. and -R.. Then, for some § > O
93 i -
Eu(ai(s)’ Ri(s); Ui) = U(ai(S)’ R(S)+5,Vi)

Thus for any stochastic allocation rule ii(s), there is an alternative
rule which provides the consumer with the same expected quantity and which

generates greater expected revenue to the seller.
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IV. Auction mechanisms

In section III we studied the monopolist's optimal selling strategy
under the assumption of constant marginal cost. This greatly simplified
the analysis since it was possible to consider each buyer in isolation.
However, with rising marginal cost, the opportunity cost of selling an
additional unit to one buyer depends on the demands of all other buyers.
In this section we turn to the polar case of a rising marginal cost sche-
dule: the case of fixed aggregate supply.

We begin by considering the special case in which each buyer wishes
to purchase a single unit. The unknown parameter, vi, is then his reserva-
tion value. As before we assume that each vy is an independent random
draw from F(v). When the seller has a single unit for sale the problem
reduces to the choice of a set of rules for the auctioning of a unique
object. More generally, suppose that there are q units for sale where q
is some positive integer. This is precisely the problem considered by
Harris and Raviv [1981] although these authors make the important simpli-
fying assumption that reservation values are distributed uniformly.

As in the previous section we appeal directly to Proposition 2 in order
to characterize the optimal selling strategy. With

v q<1

i,
p(q‘,vi) =
o, q>1,

condition (#) of Proposition 2 reveals that qg(v) is the solution of

n n
(30) Max { I R(va;la; <1, E q; <q} .

qqse+5q,1=1 i=1

6. . . . .
This appears to be an important assumption in their very different
approach to the problem.
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By inspection it is clear that the objective function is maximized by setting
93 equal to unity for those individuals having high values of K(Vi) and

hence v, (Remember that K(x) is a non-decreasing function.) Formally,

for any vector of reservation values (vl, caay vn) let v be the ath highest
reservation value. Also let q be the number of buyers for whom K(vi) > K(Vv)
and let r be the number of buyers for whom K(vi) = K(V).

Then the q;(v) which maximizes (30) is given by

1, K(vy) > K(v) and v > x*
(31) q;(v) = 9—§—§, K(vi) =k(v) and v > x*

o , otherwise

If the distribution function, F, is J-monotonic, K(x) is equal to J(x) for
x > x* and is therefore increasing for all x > x*. Then (31) indicates
that expected revenue is maximized by any scheme which assigns one unit

to a reservation value which is both greater than x* and is among the

Eth highest.

One simple way of achieving this is an open auction. The auctioneer
opens the bidding at x* and continues raising the asking price until only q
buyers remain. Since this takes place when the asking price is equal
to the q + lth buyer's reservation value, each of the bidders then pays
this reservation value. Of course if there are no more than q bidders at
the opening price all sales are made at that price.

If F(x) is not J-monotonic then with finite probability several buyers
have the same value of K. If these buyers are pivotal in the sense that
one has the a-+1th reservation value, (31) indicates that at least one unit

is allocated randomly. All this is summarized in the following proposition.
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Proposition 6: Optimal multi-unit auctions with unit demand
Let each buyer have a reservation value for a single unit
which is an independent random draw from F(x). Let
x*, xl, e xzm be defined as in Proposition 2. Then

(A) If F(x) is J-monotonic the seller can do no better than
announce a minimum price x*, and, if there are more than
q buyers at this price, raise the asking price continu-
ously until only q buyers remain.

(B) 1If F(x) is not J-monotonic and J(x) = x + (F(x)-1)/F/(x)
is decreasing for some x > x*, there is at least one
interval [x21-1,x211 over which the asking price is
raised discontinuously. Let the number of buyers remain-
ing, after the asking price is raised to xZi be q. Then
if q is less than a there are two selling prices. Those
remaining pay xzi while those dropping out are given an
equal chance of obtaining the q = q units at a price of
X2i-l.

The first point to be made about Proposition 6 is that it is only one
of a host of possible auction mechanisms which would satisfy (31) and hence
yield the greatest expected revenue. The obvious alternative is a sealed
bid auction. If F(x) is J-monotonic the seller simply announces the mini-
mum price x* and assigns a unit to each buyer submitting one of the ath high-
est bids. FEach successful bidder pays his actual bid bi(vi)' When F(x)
is not J-monotonic the seller also prohibits bids over certain intervals

corresponding to intervals [XZi_l,x21], i=1, ..., m.



29

For a discussion of some unusual optimal auctions when there is just a
single unit for sale see Riley and Samuelson [1981]. Their results are readily
extended to cover the multi-unit case.

However the auction mechanism described in Proposition 6 has the
advantage that the equilibrium strategies of the buyers are dominant strate-
gies of a very simple form. The computational requirements of determining
the equilibrium bidding strategy are therefore smaller and doubts about
whether other bidders are actually adopting their equilibrium strategies
do not affect behavior.

A third point is that if F is not J-monotonic so that the outcome
may be stochastic for some buyers, there is a finite probability that the
buyer with the a+lth highest reservation value is assignéd one unit. The proof
of Proposition 6 therefore assumes that the seller can enforce a no-resale
provision. In the absence of such a provision the prospect of resale
changes buyers' behavior. While the seller's expected revenue declines,
Maskin and Riley [1980] have shown that the conditions under which it
is optimal for the seller to utilize a stochastic auction are the same with
and without a no-resale provision.

We now consider the general problem in which demand curves slope
downward. Perhaps the most common auction of this type is the U.S.
Treasury bill auction. Buyers may submit orders at one or more prices.
Thus, in principle a buyer can approximate any demand curve arbitrarily
closely. Current practice is for the Treasury to fill orders at the prices
submitted until total orders equal the size of the offering. However the
treasury has also experimented with a sealed bid auction in which all buyers

pay the bid price of the nearest unsuccessful bidder.
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As we shall see below neither of these auctions are optimal, even
with an announced minimum price. Moreover, there is no obvious
reason why the expected revenue from the two auctions should be the same.7

To simplify the exposition a little, we assume that the family of demand
curves

pasvy) = v;alq) - bla)

has a negative slope and that no one buyer would wish to purchase all q
units, even at a zero price. Formally, the optimal selling strategy is
already characterized in Proposition 2. What remains is to interpret
this characterization and then to translate it into something
which is economically more familiar. From (#) of Proposition 2 the
seller can solve for (qi(v), cees q:(v)). Substituting into (##)
the seller can then announce the tariff function and allocation rule

Vi

T*(V,,...,v.) = V,A(q*(v)) - B(q¥(v)) - J A(q¥(x,v_,)dx
(32) [ 5ty n’ T Vihteg i o) TV

( qg(vl,---,vn)

Each buyer is then asked to submit his parameter value v, What we have
established is that if every buyer but the ith submits his true parameter
value, truthtelling is optimal for buyer i as well.

Since buyers are risk neutral an alternative scheme is for the seller

to announce the tariff function

(33) Tg(vi) =E TH¥)

Voi

Also note that when the aggregate supply comnstraint is not binding,

the allocation rule (#) becomes

7The treasury has not yet announced the results of its experiment with the
one-price auction. In further work we plan to use the results of this paper
to make comparisons of the two forms of Treasury bill auction with the theoreti-
cal optimum. For a discussion of the use of the one-price auction when buyers
bid for a share of an indivisible object see Wilson (1979).
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q* = 0 v, < x*

(33) i i
%) - *) = *
K(vi)a(qi) b(qi) 0, v, > x

Given our assumptions there exists a unique qi.< q satisfying (33).
Then, instead of asking for each buyer to submit his parameter value
the seller can ask each to choose a point on the schedule

b(qi)

(34) R*(q,) = TI(K' (a(q )))
i

1f total orders are less than supply, orders are filled and buyer i, with order
q;, Pays R*(qi). If total orders exceed supply the final allocations are

chosen so that, for some p > 0,

n -—
Zq¥=gq
i=1 *

(35) K(vy)alqd)-blad) 2w

with the strict inequality implying qi =0

Comparing (34) and (35) it is clear that each buyer's final allocation is
reduced. Thus we may ignore those buyers who do not submit an initial
order (vi < x*). Substituting from (34) the final allocation rule is

b(q,)

i
qi[a(qi) a(q¥) - b(g}) - ul =0

L e I =)
Hot

]

a0

i=1

To summarize we have proved the following result.
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Proposition 7: An optimal selling strategy of the monopolist is to
announce the tariff schedule

b(qi)
a(qi)

RR(q,) = E THE(
v
-4

))

where K(*) and T;(') are defined in Proposal 2.

Each buyer submits an initial order, q;- If total
orders exceed supply, final allocations are reduced
according to the following rationing scheme

b(q,)
* [ ——— *) - x) - =
qi[a(qi) a(qi) b(qi) =0
()

* = q
qi q

For the special case in which the demand curves have the simple form
plq;vy) = v; - ab
the allocation rule is especially straightforward. From (t) we have
*x > -1%) = = -k =
qa} 0~ b(qi qi) w=0~+gq; -af p/b

Thus the monopolist simply reduces orders by an equal absolute amount.
Once any particular order reaches zero the remainder are reduced by an equal

absolute amount until aggregate demand equals supply.
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V. The Pricing of Product Quality and Optimal Bundling

Our general model can easily be utilized to determine the optimal
selling strategy of a monopolist selling products of differing quality
levels. We assume that each consumer wishes to purchase only one
quality level. Furthermore, following Mussa and Rosen [1978], we begin
by assuming that consumers either do not buy or purchase just one unit.

Consider the Marshallian utility function8
Gi(x,q,z) =x + z(viA(q) - B(q)

where x is spending on other goods, ¢ is the quality level of the single
unit purchased and z is a dichotomous variable equal to unity with a
purchase and zero otherwise. If a consumer with income level Ii pays

T for a unit of quality level q we can rewrite his indirect utility as

As long as A(q) is a positive increasing function the marginal utility of
higher quality is, ceteris paribus, higher for consumers with higher levels
of v.

With little loss of generality we define units of quality in such a
way that the marginal cost of a unit of quality level q is cq. Then the
monopolist's problem is identical to the problem considered in section I11

except that q is now interpreted as quality rather than quantity.

81f A(q) = q and B(q) = O this reduces to the problem considered by
Mussa and Rosen.
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The natural generalization of this problem is to incorporate the

choice of both quality, q and the number of units purchased, z. Replacing

z in (36) by the concave increasing function h(z) we have the indirect utility

function.

(37) ui(q,T,z) = h(z)(viA(q) - B(q)) - T+ Ii

where T is the total cost to the consumer of the z units of quality level

q. Adapting only slightly the proof of Proposition 2 we have the following

result.

Proposition 8:

Example 2:

Suppose h(z) = z

If each buyer parameter value, v, is an independent

i
random draw from F(+), expected revenue of the monopolist
is maximized by the sale of z*(x) units of quality q*(x)
to any buyer with parameter value x, where z* and q* are
the solution of

Max {h(z)[K(x)A(q) - B(q)] - czq}l,

z,q
and K(x) is defined in Proposition 2. The total tariff

for this bundle of goods is

X
T*(x) = h(z*(x)) (xA(q*(x)) - B(q*(x))) - J h(q*(y))A(g*(y))dy
0

Y2 a(q) = q, B(q) = 1/3¢%, F(x) = x.

Using Proposition 8 we can solve for q*(x) and z*(x) to obtain

0 , X <1/2

(38) q*(x) =

J(x) = 2x -1, x > 1/2
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0 , X < 1/2
(39) 2z*(x) = 2
PEUON.
gcz-(3c ) ’xz_llz

Substitution these into the expression for T*(x) we have

* qf(X)a
(Go) T () = 8c

Note that, from (39) and (40),we may write
z*(x) = 2(q*(x)) and T*(x) = R(q*(x))

Thus the monopolist can do no better than announce that he will sell
~ 4
z(q) = (%292 units of quality level q for a total tariff of R(q) = %E H

an optimal bundling strategy.
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VIi. Concluding Remarks

In this paper we have presented a general method for solving a broad
class of problems in which one agent announces the rules of the game while
the others, acting non-cooperatively, choose their optimal responses. We
conclude with a few remarks about the crucial assumptions.

First of all agents are assumed to be risk neutral. With risk averse
buyers, the analysis is much more complicated. For the relatively simple
case in which a single item is up for auction several papers have compared
specific auction rules (See, for example, Matthews [1979], Holt [1980], and
Riley and Samuelson [1981]). Under the assumptions of Section IV it has
been shown that, for any minimum price, the high bid auction yields a
higher expected revenue than the second bid auction. Furthermore, Maskin
and Riley [1980] have established that the seller can raise expected revenue
still higher by utilizing both a minimum price and an entry fee. However
there are no results on the nature of the expected revenue maximizing auc-
tion.

The second crucial assumption is that of parameter value independence.
Any pair of buyers, with possibly very different parameter values, have
the same beliefs about the parameter value of a third buyer. While this
is the natural first approximation there are situations in which it is clearly
deficient. Again it is helpful to comsider the auction application. Suppose,
as in the auctioning of mineral rights, the true value of the item is unknown.
Each buyer has an estimate based on research. In this case it is natural
to assume that a buyer with a low estimate will have more conservative
beliefs about the estimates of other buyers than a buyer with a high estimate.

Recently, in an elegant paper, Milgrom and Weber [1980] have developed the concept
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of positive association to formalize this idea, and have used it to compare
sealed auctions (both high and second bid) and the open ascending bid auction.
A central result is that information revealed as the open auction progresses,
raises the expected selling price. With risk neutral buyers there is no
equivalent effect in either of the sealed bid auctions so the open auction
dominates in terms of expected revenue.9

This conclusion suggests that the seller might be able to exploit the
positive associatedness of buyer's reservation values with an auction very
different from either of the usual auctions. Some examples of Myerson [1981]
tend to strengthen this inference. 1Indeed, he provides a dramatic illustra-
tion of an auction in which the seller is able to extract essentially all
of the consumer surplus.

The final crucial assumption is that the underlying family of demand
curves can be approximated by a one parameter family. Preliminary work
suggests that it will not be easy to extend the method utilized here to
incorporate additional unknown parameters.

Despite these limitations, we believe that the methods presented will
prove useful in examining broad class of principal-agent problems. Moreover,
while our paper focusses on the case in which the agent chooses the rules
of the game to maximize his own expected gain, our methods are very easily
modified to incorporate a social objective. For example, instead of a
monopolist price discriminating to maximize expected profit, the rules
of the game might be chosen to maximize consumer surplus subject to a con-

straint on the expected profit of the regulated firm.

9 . .
Since risk aversion has the effect of raising expected revenue from
the high bid auction, there is no simple ranking of the three auctions ex-
cept under the assumption of risk neutral buyers.
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Agpendix.

Lemma 1: The maximized payoff to buyer i, Hi(vi,vi) is absolutely
continuous on [0,1]. Moreover

v
I (v, ,v,) - 1,(0,0) =/ iGi(x)dx

0
Proof:
Suppose vy > vy Since
ni(vi’vi) z viGi(vi) -E (B(q;(0)) + T,(v)) and

Vot
Gi(vi) > 0 it follows that

v, >
ﬂi(vi,vi) —-Hi(vi’vi)'
Moreover, since Hi(vi,vi) is the maximized payoff to buyer i we also have
~ o~ n ~ -
Hi(vi,vi) Z-“i(vi’vi) and Hi(vi’vi) Z_ﬂi(vi,vi).
Combining these inequalities we have

(A1) O j_Hi(vi,vi) - Hi(vi,vi) 5-“1‘”1*”1) - Hi(vi’vi)

=G, ) (Gi—vi)

<A@ G-vy),

since q; < q and Gi(Gi) = E A(qi(5)).
-i

<«

Therefore for any € > 0 and every m disjoint open subintervals (vj,Gj) of

(0,11, n =1, 2, ..., the sum of whose lengths is less than e/a(q),

m
j§1 ni(Vj,Vj) it Hi(vj ’Vj)l < €.
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Thus Hi(vi,vi) is absolutely continuous on [0,1]. It follows that Hi(vi,vi)
is an indefinite integral and we may write

\ dHi(x,x)
(A2) I (v,vy) - Hi(0,0) = é Te

dx

It remains to confirm that where the derivative of Hi(x,x) exists it is

equal to Gi(X)' We have

vV, - Vv, V-V V, -V
i i i i

i

Hi(vi’vi) - Hi(vi,vi)

= Gi(vi) + P
i i

Since Gi(x) is a non-decreasing function it is continuous almost everywhere.

Moreover, since Hi(vi’vi) is differentiable almost everywhere we have

dll,  g5n L9 - I (vyg,vy) L Gvy) = Ilvy,vy)
‘a— = . = Gi(vi) + 1lim
Vi V3TV v, -v 3. J.-v
174 1°Y

i i

But Hi(vi’vi) achieves its maximum for all vy € [0,1] at v, =y There-

fore the final term is zero and we have

dHi(vi,vi)
—_— = Gi(vi)’ almost everywhere.

dVi

Q.E.D.

Lemma 2: If Gi(x) is a non-decreasing function Hi(y,x) is pseudo concave,
that is, for all x and y € [0,1]

Hi(y,x) f_Hi(X,x)
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Proof:

Utilizing equations (6) and (7) we may write buyer i's reward function
as

I (y,vy) = M (y,y) + (vi-v)g, (¥)
From Lemma 1 we can rewrite this as

y
(a3 I, (y,vy) = of G; (x)dx + (vi-y)G, (y) + I, (0,0)

Consider y, z such that y < z < vy Making use of (A3) we have
z
(a4) T (z,v,) - I (y,vy) = i) (G,i(x)- G, (y))dx + (vy-2) (G_i(Z)-G,i(y))

Since Gi(x) is non-decreasing the right-hand side is non-negative. Thus
Hi(x,vi) is a non-decreasing function of x on [O,Vi].

An almost identical argument establishes that Hi(x,vi) is a non-
increasing function of x on [vi,l].

Q.E.D.

Proposition 2: Characterization Theorem
Define the increasing function

25 23+

‘ J(x) = v #(F(v)-1)/F'(v), x € [x ], 3=0,...,m

K(x) = .
l J(sz—l), x € [xzj-l,xzj], j=1,...,m

where xo, ceey x2m+1 with 0 = xo < xl < 446 < xzm+l =1
satisfy
(A) J(x) is non-decreasing on [xzj,x2j+l], j=0, ..., m
and J(xzj_l) = J(xzj), j=1, ..., m
x

® 1 (3= - 363 hiar@ >0

xZJ—l

and the constraint is binding at x = sz.
*
Also define x to be the largest value of x such that

K(x*) = 0.
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Then there exists an optimal selling strategy

n
<q;(V), ?;(v)?!l such that

(") q*(v) 1is the solution of

n n
Max { I K(v,)A(q,) - B(q,)| £ q, < q}
0 ie1 i 1 17 gt
vy
(H) T = v AG@}) - B(a}) - [ Alg*(x,v_,))dx
0

Proof:
Consider the general statement of the problem at the end of section 1.

Tt is useful to incorporate the first two constraints by forming the Lagrangian

L= i i e S lJ(vi)Gi - B(qi(v))]dF(vl) e dF(vn)
i n
+ N S... S AiA(qi(v))dF(vl) e dF(vn) - flicidF(vi)
i v] vn vi

+ f... Jlq - Zqi(v)]udF(vl) .eo dF(vn)

1 vn 1

This is more conveniently rewritten as

L= au +/ ... S XlJ(vi)G1 - Aici - qu +A1A(qi) - B(qi)]dF(vl)...dF(vn)
v1 vn i

To incorporate the constraint that Gi(vi) is a non-decreasing function

we then form the following Hamiltonian

- _ _ _ . .
H = FiIIJ(vi)Gi AjGi uq, + AiA(qi) B(qi)]F (v]) ... F (vn) + ¢jui
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Except at points of discontinuity we have the necessary conditionms,

9G,

i oH
(a2) 5;; = s = Uy >0,
o¢,
1 BH ' ]

9H
(a4) 56; = Aia(qi) -b(q;) - u <0, strict inequality q% = 0,

(a5) u > 0, strict inequality » Iq¥ < q,
i

(ab) %ﬂ = ¢, < 0, strict inequality - u* = 0,
ug i-— i

Finally the corner conditions are satisfied if, for all v, € {0,1] and all
i=1, ..., n,
n

(a7) ﬁ(v) = I J(vi)A(qi(v)) - B(qi(v)) is continuous.
i=l

It is convenient here to introduce some additional notation. Let IJ = [xj-l,xj],

j =0, ..., 2m + 1 where x0= 0 and x2m+1 =1, Also let

f(v_i) = F(vl) cee F(Vi-l) F(vi+l) e F(vn)

Take
A; = K(Vi)
From (a3)
op*
=L =0on tu .., v
i

251 23,

24
Also, for v, E 14 = [x™,
v

i
- 2j-1
sxev v ) - 03y ) = () ijlu(xj )-3(2))dF (2)
X
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From condition (B) the right-hand side is less than or equal to zero

21 23-1 2
J = [x J ,X j] and equal to zero for v, = xzj. Therefore if we define

¢¥(x¥,v_4) = 0

for v, €1

it follows that ¢;(vi,v_i) is everywhere non-positive so condition (a6) is

satisfied. Substituting for A; in (a6) we have

(a9) K(vi)a(qi) - b(qi) -¥<0

with the strict inequality implying 9 = 0.

Conditions (a9) and (a5) are the necessary conditions for the maximiza-
n

tion of L K(vi)A(qi) - B(qi) subject to the aggregate supply constraint.
i=1
Arguing exactly as in the proof of Proposition 1 these conditions, which

define a vector of allocation functions <qI(v), ceey q;(v)>, are also suf-
ficient. Thus statement (#) of the Proposition is satisfied. Moreover,
since K(vi) is non-decreasing, q;(v) is non-decreasing in vy From (16)

we know that this is a sufficient condition for inequality (a2). Finally,
since §1K(vi)A(q:(v) - B(q:(v)) is the solution to a maximization
problemi:nd K(Vi) is continuous it follows that ﬁ(v), defined by (a7)

is everywhere continuous. We have therefore obtained a vector of allocation
functions q*(v) which satisfy all the necessary conditioms.

Just as in the proof of Proposition 1 we can make use of equations (10)

and (11) to establish that the expected tariff paid by buyers must be of

the form v
i

*
Ti(vi) = VZ {viA(qi(v)) - B(qi(v)) - Of A(qi(x,v_i)dx}
-1

Comparing this with (##) it follows immediately that the latter defines

the optimal tariff function.
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It remains fo establish that q*(v) yields the global optimum. From (14),
the expected revenue from any feasible allocation rule is
n 1
(a10) I {J 3(v)6, (v)dF(v;) - E B(q;(V)) - Hi(0,0)}
i=1 0 v

where Gi(vi) is a non-decreasing function.

Below we shall show that this expression is no greater than

n 1

(all) izl {é K(Vi)Gi(Vi)dF(Vi) - 5 B(qi(v)) - Hi(O,O)}
It is evident that q;(v), the solution to (#), satisfies the necessary
conditions for maximizing (all) as well as (al0). Furthermore, for \A < x*
so that K(v,) <0, q¥(v) = 0 maximizes the integrand in (all).
Finally the integrand is a concave function of q for vy > x*., Then the
necessary conditions indeed define the global optimum for (all) and hence for
(al0).

It remains to confirm that (al0) is less than or equal to (all).
From the definition of K(x) the second integral minus the first is

n n ij

(a12) © I s [J(xzj)-J(x)]Gi(x)dF(x)
j=1 i=1  2j-1

Let yl, cees yC be the points of non-differentiability of Gi(x) = E A(qi(x))
Vi
i + .
and define y0 = sz 1, yc 1 23

can be rewritten as

= x“J. Then, integrating by parts, the integral in (al2)
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k+1
¢ .y 2§-1
(al3) I {/J [J(x ) - J(x)]Gi(x)dF(x) =
k=1 k
y
k

c y
6,65 - 6,601 T e - 30 1ere
k=1 2371

c ktl X

- I ?f Gi(x) J [J(xzj-l) - J(z)1dF(2)
k=l Kk 231

~ Since Gi(x) is a non-decreasing function it follows from condition (B) that

the right-hand side of (al3) is non-negative.

Q.E.D.



