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0. INTRODUCTION

This paper studies continuous time games with
closed-loop strategy spaces. A strategy selection such
that every agent's strategy is optimal for all initial
conditions is called a perfect equilibrium. This is
an equilibrium of expectations - regardless of what
happens now each agent expects that in the future
everyone will behave optimally.l

There are two main difficulties with the perfectness
concept. First, these equilibria are typically

non-unique - in many cases entire continua of equilibria
aré known to exist.2 Second, the informational
requirements are absurd. Agents are supposed to know
what will happen in all contingencies, including
contingencies that never have and never will occur and
which are far distant from the actual path of the system.
This is particularly upsetting since opponents' behavior
away from the realized bath may not be uniquely
determined by what they do along that path.

The objective of this paper is to point out that
approximate perfect equilibria that satisfy reasonable
informational assumptions exist and that these e-perfect
equilibria3 are unique in the sense that they are
approximately equal ?o one another.

A reasonable assumption about agents’ information



is that they know all relevant information locally near
states which have actually occured. They ¢ould gain

this information by making small perturbations in their
controls near the status quo.4 The model of local
information I propose is to assume that agents know

low order derivatives of relevant functions at the status
guo. Naturally this presupposes a relatively smooth
environment.

For local data to be used in making intertemporal
decisions it must first be extrapolated to global
information. I model this by assuming that agents
extrapolate income streams linearly into the future.
Césual empiricism indicates that the use of such
techniques is widespread. My view is this: agents
entering an environment for the first time do so with
the working hypothesis that linear extrapolation works
relatively well. As long as their experience does not
contradict this belief they will continue to use naive
extrapolation to compute almost optimal paths. Hence
e~-perfect equilibria sufficiently smooth that linear
extrapolation works, if they exist, are the only
economic equilibria likely to be observed.

Let me briefly indicate how the local adjustment
procedure works. At each moment of time agents

extrapolate income streams linearly and based on this

make an (almost) optimal choice at that moment. By



continually reoptimizing in this manner at all future
times it follows from Bellman's principle that the path
chosen this way will be (almost) optimal. Notice that
agents need nbt actually determine what they will do
in the future, indeed if at some future time their
decision were to be based on linear extrapolations from
some far past date they would not do weli at all.

One important smooth e-perfect equilibrium, which
I call the fundamental solution, is derived by basing
linear extrapolation on the presumption that all agents

behave myopically. The loss from doing this is of the

same order of magnitude as that from complete linear
extrapolation. As a result local almost perfect
equilibria avoids the game theoretic infinite regress.
It is true that each agent's behavior depends on what

he thinks his opponents think he thinks, and so forth.
In a model passing through time, however, the higher
levels in this chain have consequences in the more distant
future. With discounting these higher level conjectures
may as well be abandoned. This leads to a finite
recursion. At the final stage a solution is uniquely
determined because everyone is presumed myopic. This
accords well with reality, for although game theoretic
pParadoxes pose a curious and interesting intellectual
challenge, game theoretic regressions don't seem to be

an important part of observed economic behavior.



An important fact that follows from the recursive
nature of the fundamental solution is that.all e-perfect
equilibria smooth enough to permit accurate linear
extrapolation and with € small enough are close to the
fundamental solution: the adjustment path is essentially
unique.

The organization of the paper by sections is:

(1) describes a simple dynamic model with adjustment
costs; (2) describes myopic and linear extrapolation,

the myopic and fundamental solutions and characterizes
them in the main theorem; (3) contrasts the full optimum
with the fundamental solution in a control problem with
quadratic objective; (4) examines the fundamental solution
in a simple duopoly problem; (5) states an extension

of the earlier results; and (6) summarizes the salient

conclusions.



l. THE MODEL

This section describes a simple dynamic economic
environment with adjustment costs. Extensions are
considered in section six.

There are N agents j=1,...,N. Agent j's vector
of control variables is denoted wj(Jij. The vector of
state variables is v€RM™, The control and state spaces

are assumed unbounded. The equation of motion is

vV = gw =) )lgzlgkwk (1-1)
where the 9, are fixed m x m matrices. You may wish
to think of the scalar case with vl firm j's capital
stock, wl its level of investment and gj z[0,...,1,0...]
with 1 in the jth position.

Agent j's objective is the present value of income.
His discount rate is 0<pj<w with corresponding discount
factor stl/pj; his time horizon is infinite. The

income of agent j is given by
al(v,wl) = od(v) - 8T (WI) (1-2)

where al is net income, ol is gross income and BJ are

adjustment costs. It is assumed
8J(wl) = (1/b) (1/2) (wi) T3 | (1-3)

where T denoted the transpose of a vector,



0 <b<<1 1is a "small" scalar constant and adjustment
costs are correspondingly "large". Since"aj may be
non-linear, if agents move rapidly relative to the
discount factor the income stream will be highly
non-linear and linear extrapolation won't work well. To
prevent this adjustment costs have been assumed large.
There are several reasons why it may be costly
to adjust quickly. It may be physically difficult to
change variables such as the capital stock or the
physical location of the agent. From the perspective
of this paper there is a more fundamental source of
adjustment costs which needs to be made explicit: the
cﬁst of determining an optimal policy. Suppose I am
selling apples and need to know how many I should pick
today to sell tomorrow. I know I sold twenty-five
apples today at one dollar each and can be fairly
confident I can do the same tomorrow. If I contemplate
changing output by five or less apples I must know my
demand curve in the range fifteen to twenty-five apples
in order to make an optimal decision subject to the
self-imposed restriction that I'm not going to change
output by more than five apples. This I can do fairly
easily by inspecting prices and sales over the last
several weeks, by recalling conversations I've had

with customers, and the like. 1If, however, I wish to

contemplate changing output by up to fifteen apples



I must know my demand curve in the range five to
thirty-five apples. To form a reliable de£ermination
of demand over so broad a range in so little time as a
day will require an appreciable expenditure of time and
effort on my part: telephone marketing surveys, poring
over sales/revenue records from many yea:s, and the like.
The point is that adjustment costs may stem from bounded
rationality - the faster I move the more resources I
must expend to determine how best to move.

Throughout this paper the following assumption

is maintained

Assumption (A): al is five times continuously

differentiable and for some l<K0<°° p=0,1,2,3,4,5

|DPJ|<K lgl< Ky |p < g |aJ|<x

Here DP denotes pth order differentiation. The fact
that all the bounds in assumption (A) are the same is
a convention. The restrictive assumption is that aj
be smooth and that the derivatives remain bounded as

|v] grows large.

Definition (1-1): A (closed-loop) strategy for agent j

is a bounded continuously differentiable function
£J : R™> R™J. This means that at v when playing £’

agent j chooses w) = £3 (v).



This strategy space is limited in the sense that agents
don't choose their controls as a function of the entire
past, merely as a function of the state variables.
While this is restrictive with the present formulation
of the equation of motion, in the more general state
equation of section five thg state space can be
extended to include various'informational variables
(including time). The quite reasonable interpretation
of definition (1-1) in this more general context is
that agents' decisions are based on a finite set of
variables which have a Markovian structure - i.e. evolve
according to an ordinary differential eguation.

| Suppose f is a strategy selection. Since f is
bounded and continuously differentiable there is a-
unique flow ¢t(f,v) defined for -«<t<o and for all

v ¢ R®which satisfies

¢o(f.v) = v
Dt¢t(f.V) = gf(¢t(f.V)) ‘ (1-4)

and is the path of the state variables when all agents k

k

play £ and the system starts at v at time zero. By

standard arguments it can be shown that

t
Dv¢t = exp[éfo Df(¢s)ds] (1-5)



or equivalently that Dv¢t satisfies the variational

equation
D, (D ¢,) = (gDE(¢,)) (D 9,) (1-6)

with initial condition Dv¢0 = I the identity matrix.
Using this flow the present value of agent j's
income starting at v until the horizon t when £ is

played is

adie,vizff ad (o (£,v),£3 (o (£,v)))exp(-pIs)ds
(1-7)

Since f is bounded aj is bounded and

ad(f,v) = lim Al (£,v) (1-8)
Tt

exists and is finite.

We shall need a smoothness criterion for strategies.

Definition (1-2): A strategy selection £ is called

K-smooth iff for K>K,, p=0,1,2,3 |DPE|<bK

Thus f must be thrice continuously differentiable with
bounded derivatives. The dependence of the bound on b
makes good sense - if adjustment costs are large of
order (1/b) it is to be expected.that the adjustment

rate will be 3mall of order b. In.section three it is
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shown that f K-smooth with b<<1/K is precisely the
condition required for linear extrapolation to provide
good results.

Let £~ be the strategy selection for all agents but

agent j.

Definition (1-3): A strategy £fJ is called e-optimal for

j given f J iff for all v
adv) = ad(E,v) > ad(f,v) - ¢
if, in other words; j is within ¢ of the optimum.

Definition (1-4): A strategy selection f is called an

e-perfect equilibrium iff for all j £ is g-optimal for
£, |
This says that each agent e-optimizes having rational
expectations about everyone's behavior in all
contingencies. While bounded rationality is consistent
with e-perfect equilibrium the converse isn't
necessarily true: why if everyone has rational
expectations do they sub-optimize? An alternative
interpretation, and the one relevant to this paper, is
that agents make small expectational errors and this

causes them to undertake sub-ontimal decisions relative

to the full optimum.
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A key technical fact is that in a smooth environment
approximate optimization occurs if and only if Bellman's
equation is approximately satisfied. To state this
precisely some notation is required. If M(x) is a
function the notation M(x) = Op(K) means that there
is some positive real function ﬁ(-) which does not

depend on the economic environment in any way

such that for n = 0,1,...,p |D"M(x)|< M(K). The
superscript T denotes the transpose of a matrix or
vector, while ng is the row vector of derivatives of

aJ with respect to the state variables. Then

Proposition (1-1): f K-smooth and b<l/K imply

(a) ij = 02(K) ahd therefore

£ (v) = bg§D£jT(v) = bol(x)

(B) sufficiency

-1, (be) * O(K) implies £ e-optimal for j

given E-j

(C) Necessity 1f be<l

r 2N e~optimal for j given EJ implies

.
-~

£ = 89 + be)® o(x)

Notice that there is no reason that the symbols 0 (K)
in (B) and (C) should stand for the same function: the

sole reason for introducing this notation is to avoid
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having to continually recompute bounds.

To interpret proposition (1-1) it should be realized
that fj maximizes the approximate Hamiltonian that arises
when Dij are used as costate variables in place of the
present value derivatives along the optimal path. Note
that the assumption of linear response and quadratic
adjustment costs guarantees that Ej is unique. An
implication of proposition (l1-1) from the case ¢ = 0
is that Ej = fj is necessary and sufficient for an
optimum: this is simply Bellman's principle.

An e-equilibrium requires that each agent e-optimize

over all closed-loop strategies. Although this rules

oﬁt the use of strategies which depend on the entire
past history of the game it is important to realize
that this constraint is not binding: if a closed-loop
strategy is e-optimal (relative to other closed-loop
strategies and for given initial conditions) then no
strategy of any kind (provided the differential egquation
(1-1) has a unique solution) can yield a gain of more
than € over the closed-loop strategy.

The reason for this is fairly straightforward.
The proof of proposition (1-1) actually shows that a
smooth closed-loop strategy is e-optimal relative to
other closed-loop strategies if and only if it is
€e-optimal reiative to all smooth open-loop control paths

originating at the same initial conditions - this
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requires only notational changes in the proofs. Since
any path for which (1-1) has a unique solution can be
approximated arbitrarily closely by smooth paths it
folloﬁs that a path e-optimal with respect to smooth
paths .is e-optimal with respect to all paths.

The significance of this is that while the
restriction of agents to clésed-loop strétegies fequires
bounded rationality it does not entail any loss to agents -
they do as well with closed-loop strategies as they

would if all strategies were available.
A proof of proposition (1-1) can be found in the

appendix.
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2. LOCAL PERFECT EQUILIBRIA

This section investigates environmenté in which
linear extrapolation works well. This means first that
assumption (A) must be satisfied. If this fails - if
the non-linearity of the exogenously given functions as
measured by KO is large, and the adjustment costs as
measured by (1/b) is small - agents will move rapidly
over a non-linear income surface and the resulting
income streams will be highly non-linear. As we will
show, more than this is required. The agents' strategies
must also be K-smooth with b small relative to K. 1In
other words, even if the exogenous environment is
relatively smooth, agents might choose to behave in such
highly non-linear ways that linear extrapolation does
poorly. In this section it is shown that in relatively
smooth environments the loss from linear extrapolation
is of order b>. Thus I call K-smooth Kbs—perfect
equilibria K-linearly perfect equilibria to reflect the
fact that they are smooth enough to permit relatively
accuratc linear extrapolation, and agents do no worse
in order of magnitude loss than if they extrapolated
linearly.

The goal of this section is to characterize linearly
perfect equilibria. An adjustment path called the

fundamental solution is explicitly computed and shown
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to be linearly perfect, thus establishing existence.
The fundamental solution is shown also to have an
important dominance property that implies approximate
uniqueness : every linearly perfect equilibrium is
close to the fundamental solution.

The proofs of these facts are based on Taylor
series representations simple in principie but complicated
in detail. The first subsection is devoted to analyzing
various bounds and approximafions needed in the proof of
the main theorem. Subsection two describes linear
extrapolation and the fundamental solution, and states
the main theorem. The final two subsections prove the
main theorem.

To deal efficiently with high order derivatives the
perspective that they are symmetric multi-linear maps is
adopted. Thus if M(x) is a function DpM(x)[Yl,...,yp] is

the p-linear map DpM(x) applied to yl,...,yp.

Expansions and Bounds

Let f be K-smooth with b<1l/K. The-pth time
derivative of income to J at v is denoted by Eg(v)

and can be computed recursively from

aj (V.fj (v))

Eg(v)

=3 =] £ -
8(v) = pal ) [gf(v)] - 2-1)
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The derivatives Dpég needed to compute (2-1) recursively

are

pal[y] = pad[y] + (1/b)E3TpFI [y]

Dzég [yl,y?] = 5253 [¥]
= p%[y] + (1/b) {p£3T[y']pF [y?]
+ F3Tp283 ]}
p*ad [yt.y?,yY]) - b} [y]

. PV SO D
= 0’8} [y] + /o) tIo3T[y Y]p2Ei [y 2,y )
(il,iz,i3)=all permutations of (1,2,3)

+ (1/b)FITD3E3 [y] (2-2)

Using assumption (A) and K-smoothness with (2-1) and

(2-2) it can be established that

2

ag = bPo?(x) p=0,1 &) = bZol(x) (2-3)

and inspection shows that all parts of K-smoothness are

required to bound Dég.

Next consider
Dij(v) = f;DEg(Es)exp(-pjs)ds (2-4)

Expand (2-4) under the integral sign in Taylor series
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Dij(v)

f:{Dég(V) + D§2(¢;)}exp(-pjs)ds

éjDsg(v) + bO(K) (2-5)

where (2-3) is used to bound the remainder. Similarly
p’A(v) = 67p%&] (v) + pO(K) (2-6)

Finally, expand (2-4) into a first order Taylor series

with remainder

DAd (v) = [5{pa) (v)+pa] (v)+(1/2)0a] (42) Jexp (-pTs) as

GjDég(v) + (6j)2052(v) + b20(K) (2-7)

This final equation forms the basis of linear -

extrapolation techniques.

Linear Extrapolation

Suppose all agents play £ K-smooth with b<1l/K.
Agent j computes approximately the present value of
income at v to be &7 and chooses £- according to

£3(v) = bg3D a3% (v) (2-8)

1f a? = A7 so that no approximation is involved £
would be optimal by proposition (1-1). Aalso by
proposition (l1-1) necessary and sufficient conditions for

£J to be e-optimal are



189wy = B2 | < be)¥ox) C (2-9)

(where however different functions O(K) may be involved
depending on whether necessity or sufficiency are

involved.) What does this mean in terms of Clj ?

1) - B | bgi [0 &% (v) - pA¥T (W]

bKD&’ (v) - DAT(v)|  (2-10)

IA

Thus necessary and sufficient conditions for £J to be

e-optimal are
g3 (v - bAd(v)| < (e/b) %0 (K) (2-11)

The objective is to consider methods of
extrapolating future income from local information. A

naive form of extrapolation is the purely myopic method
a’w) = 8353 (v (2-12)

which assumes v won't change in the future. From the
Taylor expansion of Rj in (2-5) we see that

Cij = gj + bOl(K), where remember Ol implies the first
derivatives are close. Thus from (2-11) we are led to
conclude (2-12) is b3O(K)-optimal for j. This leads us

to define

18
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DPefinition (2-1): £7 is K-myopically optimal (for j given
£79) iff £9 is b3K-optimal. )
In other words, strategies that do as well in order of
magnitude term as myopic extrapolation are called
myopically optimal.

A more sophisticated extrapolation technique is
to project the income stream linearly into the future,
setting

al = 6737 + (53)253 (2-13)

Using the expansion (2-7) and (2-11) we see that linear

extrapolation is bSO(K)-optimal. This leads us to define

Definition (2-2): £J is K-linearly optimal (for j given

£73) iff £3 is bSk-optimal.

Definition (2-3): E is K-linearly perfect iff f is

K-smooth and EJ is K-linearly optimal for j given E-J.

Linear perfect equilibria are exactly those equilibria
smooth enough to permit linear extrapolation, and in
which agents do no worse than they would if they used
linear extrapolation (in order of magnitude). Aas
pointed out above, in an environment of the type

under consideration these are the only economically
interesting equilibria.

The fundamental myopic (or myopic) solution for
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j is to set

-~ o

Q3

§3a3 (v) (2-14)
0 _ |

which is the same as (2-12) except that adjustment
costs are ignored. Since these are of order b anyway,
we shouldn't expect any greater order of magnitude loss
from (2-14) than from (2-12).

The fundamental linear (or fundamental) solution

for j is to set

a; = 9l w. B + (2 (wigE (v) (2-15)

=™

which is derived by extrapolating linearly under the
assumption that everyone is myopic (and also ignores

an adjustment cost term of order b2).

Theorem (2-1) [Main Theorem]:

(A) Smoothness: fi andAfz are O(K,)-smooth

(B) Existence: If b<O(K,) Ez is O(Ky)-linearly perfect

(C) Dominance: If f is K-smooth K>0(K,) b<1/K
(1) Eg and fg are O(K)-myopically optimal
(2) if £79 is K-myopically optimal for -j
£) is blo(x)-optimal for j
(3) if £ is K-linearly perfect for any 0<n<l

f]

] is b4+nO(K)-optima1 for j



21

(D) Unigqueness: if £ is K-linearly perfect KZQ(KO)

for any 0<n<l |£-,|= (6°>*") %p (x)

Note that the functions O(K) need not all be the same,
and in particular in (C3) and (D) they may depend on
the choice of 7.

The main theorem uses the fundamental solution
to categorize linearly perfect equilibria. For b small
enough and K large enough part (B) shows linearly perfect
equilibria exist and part (D) shows that they are
essentially unique in the sense that they are all
close to the joint fundamental solution. Part (C) is
algo of interest: it shows £hat as long as opponents
are reasonably well-behaved the fundamental solution does
reasonably well.

The next two subsections prove the main theorem.

Outline of the Proof

This subsection states a number of lemmas and shows
how they imply the main theorem. The next subsection

demonstrates the truth of the lemmas.

3 Cox§ =3 23
bo’(ky) ] = E + bPo3(xy)

-1y, £J
Lemma (2-1): fm 2

Lemma (2-2): if f K-smooth b<1/K then
2

(a) |Ej-E%|5p K implies £3 O(K) -myopically optimal

(B) £ K-myopically optimal implies-lgj-fglﬁbzo(x)
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Lemma (2-3): if £ K-smooth KzQ(Ko) b<1l/K and
IDp? - Dpf;'.i (b3+n)%K where 0O<n<l p=0,1 then

(a) £J is b4+nO(K)-optimal

(B) if in addition f is K-linearly perfect
- = -~ = +
12 - 8| < M%)

Lemma (2-3): M(x) twice continuously differentiable

|M] < Kb" |D?M| < Ib imply |DM| < (b"*1) % prE-

Let's see how the main theorem follows from these
lemmas. Part (A) follows from lemma (2-1)and the
definition of K-smoothness. To prove part (B) we
need only show that El satisfies the hypothesis of
lémma (2-3A) with n = 1. This is a direct consequence
of lemma (2-1).

Part (C-1)is just lemma (2-2A). To get (C-2)
observe by lemma (2-2B) |E‘j-E;j| < b%0(K). Since zﬁiand
%-jare K-smooth lemma (2-4) enables us to conclude that
IDE_j-D%;jI < b3/20(k). Then part (C-2) follows from
lemma (2-33).

Parts (C-3) and (D) can be proven simultaneously
by induction on n. Take first n=0. Since £ linearly
perfect implies Ek myopically optimal (all k) we see
as in part (C-2) IDE - D%ml < b3/20(K). By lemma (2-3A)
this proves (C-3) for n=0, while by lemma (2-3B) it

proves also (D) for n=0.
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_We now examine the implication of (D) for n=0.
By lemma (2-4) it enables us to conclude
Ipf - pf,| < b/%0(x). By lemma (2-1) this in turn
shows IDE - ngl < b7/4O(K). Using lemma (2-3) as
before shows (C-3) and (D) hold for n =1/2 (and
therefore 0<n<1/2). Continuing on in this way we get

n arbitrarily close to one.

Proof of the Lemmas

~

1. £ = a3 3 = 33
Lemma (2-1): fm bo (Ko) fl .fm + b

2

3
o (Ko)

. - i ni 73 - i ving FJ
proof: From (3-14) defining ‘a‘m and (3-8) giving fm

£ = redaTpadT -

£ = bs nga (2-16)

By assumption (A) ]Dpajl < K, 0<p<5 which with (2-16)

shows fJ b0’ (Ky). From (2-15) defining 4] ana (2-16)

>3 >3 jy2n.3,. T. 3T
a; Qn - (1/2)b(87) “pa’g g Da

+ b(GJ)ZDankékgkgzDakT (2-17)

Observing from (2-8) that fg = bg?DCliT and using
5 _ 23,.2.3

assumption (A) once again shows Ej = fm+b 0 (KO).

e

Q.E.D.
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Lemma (2-2): if f is K-smooth b<1/K

(A) IEJ-E;I < b2K implies %J O(K) -myopically optimal

() $£J K-myopically optimal implies |Ej-Ei|5pzo(x)

proof:

For any K-smooth strategy selection we have from the

Taylor expansion (2-5)

pal = 6JD§3 + bO(K)

n(i,lj;l - (/p) 83 (1/2)FITET 4 po(x)

= Dcig + bO(K) (2-18)

From Proposition (1-1) giving £2 and (2-8) giving E% (2-18) reads
£ = £ + po(x) ' (2-19)

1f [£9 - EJ| < b2k (2-19)implies |E3-F3| < b20(x)

and by proposition (1-1B) this implies Ej b30(K)-optimal
against -j. Conversely by proposition (1-1C)

£ b3K-optima1 implies IEj - Ejl < 520 (X) . Using (2-19)

and the triangle inequality then shows IE%-EJI < b20(K).

Q.E.D.

Lemma (2-3): if f K-smooth KEQ(KO) b<1l/K and

|DPf - DpEml < 3% o<n<1 p=0,1

(A) Ej is b4+n0(K)-optimal against -j
L
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(B) if in addition £ is K-linearly perfect

18 - 8] < >k

proof :
Tbe idea of the proof is similar to that of
lemma (2-2), using however the Taylor expansion (2-7)
in place of (2-5). Throughout the proof.K is assumed
large enough that Eg is K-smooth, where lemma (2-1)
shows this is possible.
For any K-smooth E from (2-7)

sjnag + (69)2pad + p20(x)

2J
DA 1

83 pad - (1/b)FITpEI;

+ (dj)Z[DZang + DangEJ + b20(K) (2-20)
so that from (2-8) and (2-15)
J 2 33 _ &3 £ITHF] _ F3TN:3
£’ = fz §“(1/b) [£f’"Df fm Dfm]
+ (63)2[p2adg(F - £1 + padgIDf - Df_11
+ b%0(K)

= Eg+|E-fm|0(x)+|u§-n§m|0(x)+b20(x) (2-21)
If in addition |DpE - Dp%ml hl (b3+n)%K p=0,1 then

£ = Eg + (13t % (k) : (2-22)
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Taking Ej = Eg and observing that Ei satisfies all
the required hypothesis shows by propositibn (1-1B)
Eg is b4+no(x)-optima1 against E'j. If in addition some
other Ej is K-linearly optimal against -j it follows
from (2-22), proposition (1-1C) and the triangle |
ineguality that |f] - Eg] 5_(b5+n)%Q(K)._

Q.E.D.

Lemma (3-4): Let M(x) be twice continuously

differentiable with |M| < bMYK and |D2M| < bL.

Then |DM| < (ML) %/FTR.

proof: Since [DM(x)| is the largest directional
deiivative on the unit circle it suffices to consider
the case where x is a scalar. Assume without loss

of generality DM(x) > 0. The idea of the proof is
similar to that in lemma (A-5). Since |D2M] < Lb

the earliest DM reaches zero is at x+DM(x)/Lb so that

by the fundamental theorem of calculus

2b¥K > M(x + DM(x)/bL) - M(x)

]x+DM(x)/bL
X

> fﬁ*DM(x)/sz [DM(x) /2]dz

[DM(x)]2/4bL (2-23)

DM(z)dz

from which the lemma follows directly.

Q.E.D.



3. AN APPLICATION TO OPTIMAL CONTROL THEORY

The theory of the previous section can be applied
to solve one-agent control problems. Because only one
agent is involved the subscript j is dropped in this

section. Let

(1/2)vTMV M negative definite

a(v)

g I the identity matrix (3-1)

In other words the control problem is

maximize f:(l/Z)[vTMv-(l/b)wTw]exp[—ps]ds
w(*)

subject tov =w (3-2)

First this is solved exactly, then compared to the
fundamental solution.

The Hamiltonian is
H(W) = (1/2) [VIMv - (1/b)wiw] + Aw (3-3)

where A = DA along the optimal path are the costate

variables. Maximizing the Hamiltonian in w gives

w = b (3-4)



while from control theory
A =p)X - DH = pA- Mv (3-5)

Thus the first order condition is

w w Pl -bM] |w ,
v| =€ vl T |1 0f |v (3-6)
First the eigenvectors and eigenvalues of G must

be computed. Let yi,yi be the eigenvalues of G with

corresponding eigenvectors xi,xz. Let ¥y be the
eigenvalues of M and Y; the corresponding eigenvectors.

A simple computation shows

l1_ p- /pz - 4uib

Y; =
1 2
+ Z_ 4uidb
Yi'_- o) p Hi
2
b SR S B TR s
I T 1*n1 Yi ¥y
3 -
X35 Y (3-7)

Fix v, then w must be chosen so that the system
(3-6) is stable; this means [wT,vT]Tmust be a linear
combination of eigenvectors of G whose corresponding

eigenvalues have negative real parts. From (3-7) these

1

are the eigenvectors Xy

28
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let C = (yl,...,ym]. Then
= m = -
v = Zi=l nyy; Cn (3-8)

where n is an m-tuple of coefficients. From (4-8)

n=cly | (3-9)

Finally

w = Jm %t
e i=1 "Ni¥i1

m
i=1 NiYi¥;

= ¢ giag (y{)n

_ . 1 -1

= C dlag.(Yi) C v (3-10)
which gives the exact solution in closed-loop form.

Consider now the fundamental solution. The myopic
present value is Clm = (l/2)(l/p)vTMv, and the myopic
solution is
T ~T

£o=w = bg DA; = (b/p)Mv (3-11)

The fundamental present value is

A, = (1/0) [a(v)=B(w )] + (1/6%) [Da(vIw_]

= (1/p) (1/2) [vTMv- (b/p2) vIM?v1+(1/02) (b/p) WMEV)

T T,2

= (1/2)(1/p) viMv + (1/2) (b/p )viMev  (3-12)



Thus the fundamental solution is

F 2w = wTopnT
fz—wz bgDam

= (b/p) M + (b/p?)M2)v (3-13)

Hdw are (3-10) the exact solution and (3-13) the
fundamental solution related? From the main theorem
Wy and Ve differ by at most order b3. Since (3-13)
contains no terms of order b3 it must be the second
order Taylor's series approximation to (3-10) viewed
as a function of b. Let's verify that this is so.
The only expression in (3-10) that depends on b are

the Yi which from (3-7) are

. n |
Yi =L  n- //I - —iEEE—— ] (3-14)
2 P

Expanding (3-14) into a second order Taylor series

around b = 0

2.2
1 WP ;b
Y; = + -1 (3-15)
1 3
p o

Consequently to second order

(b/p)C [diag(u,)+(b/p?)diagu?)) c™lv

1

n

l]v

(b/p) M+ (b/p?)C diag(uy) €7 C diaglu;)C”

(b/p) [M + (b/p2)M%]v (3-16)

30
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which is exactly (3-13).

Two points should be raised from a purely analytic
standpoint. First, the fundamental solution was easy
to derive and could have been derived equally easily
if a wasn't quadratic, while deriving the exact
solution was tedious and was possible only because a
was quadratic. Second, the expression for the fundamental
solution (2-12) is relatively easy to interpret,
while the exact solution is a rather mysterious function
of eigenvalues and eigenvectors.

A final note is that the problem given here doesn't
actually satisfy assumption (A) since a and Da are
unbounded. This reflects merely the fact that the main
theorem holds uﬁder quite general conditions - assumption

(A) is intended largely to simplify the proofs.
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4. APPLICATION TO A DUDPOLY PROBLEM

There are two firms, and vj is firm j's output.
Since each firm j chooses wj, the rate of change of its
own output, the matrix of fesponses of the state to
control variables b = I the identity matrix. Each firm's
discount rate.sj £ 1 and both firmé have identical gross

profit functions

ol = 11 - vt - v? I (4-1)
which corresponds to constant marginal cost, a linear
demand curve with unitary slope and price minus marginal
co#t at zero industry output egual to one.

The myopic éresent value for firm j is Cig = cj
and the myopic strategy is Eg = bDjaj = l-vk-—2vj k#J .
It is easy to see that if both firms behave myopically
the symmetric steady state Em = E; =0 vl=vy?s= Gm
occurs at the static Cournot-Nash output ;m = (1/3).

The fundamental solution is easily computed to be

3 k in2 .k
a Dku +Dka Djk“ 1}

P I 3 in2 J.pn2
£ b{Dja +b[Dja Djj“ +Djk

J ¥k (4-2).
which can be solved for the symmetric steady state output

Gf = (1/3) (1 + b/3) . (4-3)
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Thus when both firms play their fundamental strategies
the industry is more competitive and both firms worse
off than when they act myopically. This is reminiscent
of the Stackelberg warfare discussed by Bishop [1].
Both firms realize that when they increase output
their opponent's myopic response is to cut output, thus
at the static Cournot-Nash 6utput both firms will
increase output slightly until the steady state in (4-3)
is reached. This is an outstanding example of how,
because of a public goods problem, increased rationality
of agents can make all agents worse off (except
consumers who aren't represented in the game).

Notice that fundamental steady state output in
(4-3) is close to the static Cournot-Nash output. It
is easy to see why: the condition for a myopic steady

state is the first order condition for a static Nash

equilibrium of the game with payoff functions al.

Since the fundamental solution is a small perturbation
of the myopic solution its steady states will typically

lie nearby.
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5. EXTENSIONS

The model of the previous sections had a very
strong structure. While this greatly simplified the
algebra in the proofs this structure is by no means
necessary for our results. 1In this section several
easy extensions are given.

What is important in the types of results here?

Two assumptions are key: the exogenous environment must
be such as to permit smooth adjustment by agents, and
adjustment costs must be large enough that agents will
choose to adjust slowly relative to the discount rate
and the intrinsic non-linearity of the payoff structure.
For example, bang-bang control problems will never fit
into this framework - linear extrapolation won't work

if large discontinuous changes will take place in the
future. A sample of the type of problem that does fit

the framework here is

v = bh(v,w) + g(v)w (5-1)

al(v,w) = dwm- 83 (v,w (5-2)

(1/2) (1/b)wiBw < 83 (v,w) < (1/2) (1/B)wTBIw (5-3)
where §j and Sj are positive definite and Bj is
strictly concave. The quadratic bounds on the

adjustment costs illustrated in fiqure (5-1) insure

that agents will choose small values of the



(1/2)(1/b)ywB Iw

Figure (5-1): Bounded Adjustment Costs
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controls; the adjustment égquation (5-1) insures that
when w is of order b v will be as well, so that
extrapolated paths will be good approximations.
Provided that the functions h,g,a and g are sufficiently
differentiable with uniformly bounded derivatives all
of the theorems of the prev;ous sections go through
unchanged. Note that in (5;3) adjustment costs can
depend on all agents' controls. This complicates
the expressions for the Hamiltonian and for E but
otherwise has no significant impact on our results.

One important technical assumption was that the
state space be unbounded. As long as (almost) optimal
pafhs don't actually hit the boundary this makes no
difference. If the paths do hit the boundary this
creates a minor problem: payoff paths will be
discontinuous when the boundary is reached. However,
as long as the system is sufficiently far from the
boundary the discontinuity will be far enough in the
future that the discounted error from extrapolation
will be small.

Behavior near the boundary is problematic. A
far more serious problem, however, is that in economic
models there are frequently important non-convexities
on the boundary - start-up costs and the like - which
are unrelated to the smooth structure in the interior.

About these types of problems this framework has nothing
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to say.

A second assumption that was primariiy technical
in nature was the assumption that various functions
and their derivatives were bounded at infinity. It
is not hard to see that what is really needed here is
that income streams and their derivatives not grow
faster than the discount rate. Although the algebra may
be messy, there is no reason in principle why the results
of this paper can't be extended to growth models.

The results can also be extended to discrete time
models. This requires replacing assumptions on
derivatives with assumptions on finite differences and
using first differences as the basis of linear
extrapolation. While algebraically messy this is

conceptually straightforward.
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6. CONCLUSION

What does it mean for b to be ”small”} Apparently
as b goes to zero adjustment costs become infinite and
nobody moves - not a very interesting limit system. This,
however, is an artifact of the units in which things
are measured as the limit is approached. Two systems
of measurement yield non-degenerate limits and give
insight into the typ= of environment to which the results
of this paper are applicable.

One way of rescaling the system is to change the
units in which time is measured choosing new time units

t = bt. In these new time units the equation of motion

(1-1) becomes
v = (1/b)gw (6-1)

and as b goes to zero both the myopic and fundamental

solution approach

v = (1/b)g'£m

= ], 6%g, g3Da® (6-2)

in which each agent moves the state variables in the
direction which improves his own individual income. 1In
the new time scale the discount rate is pJ = pj/b. As

b+ 0 pJ¢ ® and with an infinit: discount rate agents
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behave completely myopically. If the discount rate is
large (but not infinite) agents will still do reasonably
well behaving myopically, but do even better using linear
extrapolation or the fundamental solution.

An alternative method of rescaling the system is
to change the units in which both income and the state
variables are measured setting 2} = bal ana v = v/b.

In these units with initial conditions Vo the system

approaches

v = ], 6%, g70a* | (6-3)
where the limit income function aX(V) = Dak(vo)[;]
is linear. 1In other words the myopic solution is exact
if gross income is a linear function. 1If gross incbme
is " almost" linear in the sense that Dak changes
slowly along the equilibrium adjustment path the myopic
solution does reasonably well, but the fundamental
solution does even better. In actual economic
environments, of course, the gain to using a linear
extrapolation rule may outweigh tue informational and
computational costs, and the use of these ruies will
be important.

The discussion of limiting systems is useful in
understanding what it means for b to be "small®™. The

non-linearity in gross income should be small over a
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period of time during which substantial discounting
occurs. From an economic perspective, howéver, this
discussion misses the point. The objective of this
paper has been to study a particular class of rules

of thumb - forecasting techniques which extrapolate
income linearly. casual empiricism suggests that in
many economic environments such rules are widely used
and work relatively well. For this reason it is
interesting to make assumptions which guarantee that
linear extrapolation works. The central point of this
paper ié a simple one - in these environments there is
a Knearly) unique adjustment path. It is characterized
by the fact that along this path each agent can assume
without significént loss that his opponents behave °
myopically. This is to say that in an economic
environment in which linear extrapolation is a good
rule of thumb game-theoretic regression is not an
important aspect of behavior. This may explain why,
although the paradoxes of game theory are an important
intellectual question, they don't seem from an empirical

standpoint to have much relevance to economics.
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APPENDIX: ALMOST OPTIMAL CONTROL

In smooth systems Bellman's equation is necessary
and sufficient for a smooth optimal path. This appendix
demonstrates proposition (1-1): that in a smooth
system a necessary and sufficient condition for a smooth
almost optimal path is that Bellman's equation almost
hold.

Throughout this section E is assumed to be
K-smooth with b<l/K. 1In outline the strategy of the
proof is : (1) establish the smoothness of the state
valuation functions Kj; (2) derive an expression for
the loss from switching from fj to fj in terms of Ej
which maximizes the Hamiltonian, and (3) use (2) to
find a necessary and a sufficient condition for an |
e-optimal path.

To deal efficiently with high order derivatives
it is convenient to view them as symmetric multi-linear
operators. If M(x) is a function its pth derivative
DpM(x)[yl,...,yp] is a symmetric p-linear function of
the variebles yi which have the zame dimension as x.

By definition the norm |DPM(x)| is the smallést number

such that for all y

IDPM(x) [y]] < |DPM(x) | nizllyil
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Smoothness of the State Valuation Function

Lemma (A-1): AJ = O(K)

Eroof:

al(v,f) = oI (v) - (1/2) (1/b) £3TEI

O(K,) + 0(bkK%/2)

O (K) (A-1)

using laj(v)lixo from assumption (A),lfjli bK from
K-smoothness and the maintained hypothesis b<l/K.
Integrating and using l/pJ = 63530 from assumption (A)

shows

A =[5 2l (3, exp[-p7s]as
O(K) [gexp[-p7s]ds

ox) 83 = o(x) (A-2)

Q.E.D.

To bound ngj the derivatives of the flow ;t must

be bounded.

o 2
Lemma (A-2): [D ¢.| < exp[k“bt]

proof: By (1-4)

-~

D
v¢t

= exp(g IEDE(as)dSJ (A-3)

and the lemma follows from |g|5xo |D;|§K
| Q.E.D.
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Lemma (A-3): [D ¢.| < O(K)bt exp[K?bt]

proof: From (A-3)
2~ 1l 2 t ~2271..1 > 2
Dgo [y"¥°] = {(g/2) fGin%E[yt.D 6 _[v?]] +
sz[yz,Dvas[yl]J}ds} exp[gngE(as)dS] (A-4)

Using lemma (A-2) and the additional bound IDZEISbK

yields the desired result.

Q.E.D.
Lemma (A-4): DAJ = 02 (K)
proof: Since
,ij(v)= f:aj(as,fj(as))exp[-pjs]ds (A-5)
DAJ= j:{Daj-DBjDEj}Dvasexp[-pjs]ds ‘(A-6)

p’ad[yl,y?] =
fo(iped [y]-p2e3 [DEI [y1], b33 [y2]]
- (1/2)p8 [y}]pE3 [y2]- (1/2) D8I [y?]pE3 [v']ip 0,

+{Daj-DBjD%j}Dv¢s[y])exp[—pjs]ds ) (a-7)

the bounds in lemmas (A-2) and (A-3) with (A) and
K-smoothness now yield the desired result.
Q.E.Do

This proves part (A) of proposition (1-1).
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The Hamiltonian

For agent j the Hamiltonian corresponding to £

is defined as
ﬁj(v,wj) = aJ(v,wJ) + DRJ(V)QE (A-8)

which exists by lemma (A-4)3and the maintained hypothesis
that f is K-smooth with b<l/K. This differs slightly
from the usual definition of the Hamiltonian since

Ej is evaluated along 5 which is not necessarily an
optimal path for agent j.

Consider the problem of maximizing ﬁJ(v,wJ) over

w’. From (A-8), (1-1) and (1-2)

8 (v,wd) = ad(v) - (/b (a/2) [wI] T3

+ Dij(v) { 1 ngk(v) + gjwj } (A-9)
k#3

J

which is quadratic in wl. The unique value of w

denoted Ej(v) which satisfies the first order condition

D2 ﬁj(v,wj) = 0 is the unique maximizing choice of wl.
The first order condition is
-(1/b) wl + g? palT(v) = 0 (A-10)

so that

Ej(v) = bg? DRjT(v; ' (A-11)



Also since ﬁj is quadratic in wj if ﬁj(v)Eﬁj(v,EJ(v))

is the value of the maximized Hamiltonian

1 (v,wd) = B (v)-a/m) (/2) 3-E3 o T wI-EI vy
(a-12)

The objective of this section is to use (A-12) to

evaluate the gain to j from switthing to £J from fj
23(£,v) = a3(£3,873,v) - A3 (v) (a-13)

To this end define

A . . C o - jt~' s .
e, vy = Al (£, 8 9,0) + e P Ao (£7,873,v))

(a-14)

to be the present value of playing £fJ to time t then

switching to £J. Since by lemma (A-1) AJ is bounded

23(£3,v)

od(£,v) - od(ed,v)
(a-15)

) j 3 '
[ D05 (£7,v)as

where the last line follows from the fundamental

theorem of calculus. Using (A-14) it is seen that
p,(£3,v) = [wd (o .3 (o ))-pn3 (4 )]e‘°js (A-16)
T RS g ¢g))-p s

where-cbs = ¢s(f3,§-3,v). Furthermore, by the usual

properties of present values
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pAd (v) = B (v,E3 (v)) (A-17)
Equations (A-15), (A-16) and (A-17) combine to show

. R : o o _ 3
al(e? vy = JUlRY o €000 AT (o B (001 7P S0

(A-18)
To evaluate (A-18) observe that
ﬁj(v,wj) - ﬁ(v,ﬁj) = [ﬁj(v,wj) - ﬁj(v)] -
B, - 83wm]  (a-19)

so that using (A-12) (A-18) becomes

ey o et o m oms om0
87(£7,v) = (/) (/2 S(E-E) T(£9-1)e7P Bas

o, 4 =4 '-'-j
[o£7-£) T (£3-83) 7P 544, (a-20)

evaluated along ¢S. Some simple implications of
(2-15) are that EJ is optimal if and only if §3=§3
which is Bellman's equation, and that if EJ#EJ,

£ yields strictly greater present value than EJ.

Characterization of e-Optima

Suppose as always E is K-smooth with b<1l/K. Set

;j = sup lEj(v) - fj(V)l (A-21)
v



This section completes the proof of proposition (1-1) by
showing that bounds on 73 of order (be)kO(K) are

necessary and sufficient for an g¢-optimum for j given
E-j L]

Sufficiency is éasy. Suppose Tji(Z/Ko)g(bs)%.

Then the first term in (A-20) is

(a/b) (1/2)f 5(EI-E) T (£3-83) exp (-pIs) as

(1/b) (1/2) 63 (392

A

IA

(1/b) (1/2)Ky[(2/K,)be] < € (A-22)

and from (A-20) we see this implies that Ej is indeed

e¥optimal for j. This proves (B) of proposition (1-1).
Consider now the converse, part (C). Suppose

Ej is e-optimal. Then by definition the gain from

playing Ej Zj(fj(v)) < e for all v. From (A-20) we

see that this means
(1/b) (1/2) S5 (£3-8) T(FIFexp (-pIs)as < e (a-23)

when the integral is evaluated alcﬁg Es‘ However,
along ;s thj and Dt;j are absolutely bounded. Thus if
?j is too large Ifj-fjl can't decrease fast enough for
(A-23) to be satisfied. To formally conclude the proof

of proposition (1-1) we prove

Lemma (A-5): (A-23) implies 7j < (be)kO(K) provided




be < 1.

proof:
By part (A) EJ = bol(K) while by K-smoothhess

£ = bol(x). Thus

Ip, [£(e,) - 3]
< [pf3 (s, - pE (s, )] ID,8, |

PY)
< bO(K)Igjf * Ipgs 9yt [

b20 (K) (A-24)

A

Let 4 = |fI(v) - ;J(v)l. By (A-24) |£I - ;Jl declines

no faster than linearly to zero at time d/bzo(K),so

(l/b)(1/2)f:(Ej-zj)T(Ej-Ej)exp(-pjs)ds
d/2b20 (K) ) .
(1/b) (1/2)f (a/2) “exp(-pls)ds

v

= (1/b) (1/2) (a%/4) {1-exp[-pIa/2b%0 ()]}

(1/b) [0(K)d]?{1-exp[-0(K)d]}

v

= (1/b) [M(O(x)d)]2 ' (A-25)

where M(x) = X/1 -exp(-X). Using the hypotheses

(A-23) and (A-25) shows
a < o) [M e (A-26)

and it is easy to verify that for 0<be<l

48



M L(be) < K, be

1

where Kl is a fixed constant.

conclusion.

(A-27)

This is the desired

Q.E.D.
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NOTES

(1) The concept of perfect equilibrium is due to Selten
and discussed in Selten [7].

(2) This is pointed out in Rubinstein ([4].

(3) Epsilon equilibria are due to Radner and are discussed
in [3).

(4) Learning by small perturbations is examined formally

in Levine [2].



