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ABSTRACT

Do oligopolistic firms successfully collude? With adjustment costs
and plausible assumptions on the information available to firms the
relevant solution concept is that of local almost perfect equilibrium.
This paper applies that concept to an environment in which firms
respond instantly to each other's output movements. Subject to
technical qualifications I show that in the long run complete collusion

occurs.



0. Introduction

How and to what extent do self-interested oligopolistic firms suc-
cessfully collude? The story of oligopolistic interaction ought to be
a simple one. With the same firms in a static market over time uncooperative
rivals can be punished and helpful rivals rewarded. Only to the extent
that retaliatory strategies have associated frictional costs should less
than fully collusive behavior be expected.

To date economic theory has not successfully established this point.
Supergame models such as Friedman [1], Green [4], Marschak and Selten
[12,13] or Radner [16] allow collusive equilibria but many others as well.
Other models such as that of Smale [17] employ ad hoc behavioral assumptions
to get unique equilibria.

In a recent paper [10] I argued that with very large adjustment
costs only one (approximately) perfect equilibrium adjustment path is
consistent with the bounded rationality of firms. I argued there that
firms cannot know how the industry will perform in every contingency,
but must extrapolate from local data concerning industry behavior near
the status quo. I showed that essentially only one adjustment path is
consistent with firms extrapolating income linearly into the future.

In the two parts of this paper I apply the concept of local almost
perfect equilibrium developed in [10] to the problem of oligopoly. 1
study an industry without frictional costs in which firms can respond to
one another instantly. 1 ask: how are long run steady states of the ad-

Justment proredure related to pareto efficient outcomes of the static



game? the answer has two parts.

0 In "almost all1" games steady states and outcomes satisfying
the first order conditions for static pareto efficiency "almost"
coincide.

0 The general stability analysis is intractible. However, it is
possible to show that with identical firms and symmetric initial
conditions a steady state is stable if and only if it is (Tocally)

efficient.

The paper has two parts. Part I studies equilibrium. Section one
introduces the model and derives the adjustment process. Section two
studies steady states. Section three considers the very long run. Part

I1 examines stability.



1. The Model

This section describes a simple model of oligopoly without entry in
which firms communicate threats,1 but cannot enter into legally
binding contracts. There are four parts. Part one describes the
actions available to firms and the information structure by which
threats are communicated. Part two describes firm income. Part three
models firm behavior. Part four computes the equations of motion of
the state variables. The remaining sections of the paper explore the

qualitative features of the model.

The Environment: There are N firms, entry is prohibited and each firm

j controls its own output xJ. The output vector x is presumed to

1ie in9X, an open subset of IRN. By assuming ?( is open, behavior
on the boundary is ignored.

Information is exchanged costlessly by a fixed information
structure. At time t all firms j announce that they will respond to
autonomous output changes by other firms k at a rate Ra. At time
t+at all firms k announce their automonous output changes of
yk. At time t+2at each firm j computes its total output

change as

. . . N .

axd = yd 3 Riyk = Y R‘}(yK (1-1)
k#j k=1

where Rg = 1. Firms are assumed to observe one another's actual output.

When at is infinitesimal relative to the discount rate j's opponents

observe immediately whether or not he fulfilled his announced
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commi tment given in (1-1). Thus lying is detected instantaneously; and
(1-1) may be taken to determine the amount by which j actually changes
his output. In the continuous time limit as at -> 0 firfm j chooses a
vector of response rates (also called reaction coefficients) Rj and

an autonomous rate of change of output yj. Firm j's actual output

follows the equation

3 N .
x* = 3 RLY (1-2)

It is important that in this environment firms react only to an
opponent's autonomous output change. They do not counter-react to an
opponent's retaliation. The ability of firms to communicate is
crucial: it is only the information generated by communication which
enables firms to distinguish between voluntary and reactive movements
by rival firms.

In addition to changing output firm j may gradually alter its

commitment RJ over time. This is given as

o) d
R, = Sy (1-3)

where SJ is the rate at which firm j alters Rj. Thus firm j chooses
paths for the control variables yJ and SJ in an effort to

control the state variables x and R.

Firm Income: The profits of firm j are given by a smooth function

nJ:ex.->lR. Let nﬁ = anj/axk. To insure that firms are able to affect



opponent's profits it is assumed that for x ¢ %X and j # k 'i(X)'< 0.

Let »° be the vector of profit functions, W be the column vector
N iV j

(wk) , =0 the row vector (uk) and = be the matrix with rows =v.

j=1 k=1 .
Since X is open the static game with profit functions ) may not have

any efficient points. To rule out degeneracy at least some point
xcX should satisfy the first order conditions for pareto efficiency.
As a second regularity condition it is assumed that for some x egx;
det (m(x))=0. In section two it is shown that this is in fact the first
order condition for efficiency.

Firm j's intertemporal preferences are described by a discount rate

oJ. The corresponding discount factor is sJ = l/oJ.

Firm Behavior: Firm behavior will be described by the local almost

perfect adjustment path analyzed in Levine [10]. This attempts to
model the bounded rationality of firms by assuming they compute present
values of income streams by extrapolating existing rates of income
growth linearly into the future.

A strategy (or closed-loop strategy) for firm j is a function
(yJ, sy = Fx, R) = (F(x, R), g(x, R) (1-4)

which assigns a vector of control variables to the vector of state
variables. This already embodies a degree of bounded rationality since
firm j's choice depends only on the current state variables and not on
the entire past history of the market. Suppose that all firms k play

F‘k. Then firm J receives



;j(x, R) =f wj(x(t)) exp(-pjt)dt (1-5)
0

where x(t) and R(t) satisfy the system of differential equations

s N . -
= TR xR J= 1,0 N
&1
R = gd(x,R) J 21,00 ,N
x(0) = x R(0) =R (1-6)

which are derived by substituting (1-4) into the equations of motion
for the state variables (1-2) and (1-3).

Perfect rationality of all firms requires that (for any starting
point xo,Ro) each firm instantly adjust its control variables to maximize
(1-5) subject to (1-6). This is an unreasonably strong assumption. 1
shall instead study a model of bounded rationality in which
(1) firms optimize only approximately: they do not maximize the true
present value A (which isn't observable) but rather Rj (which is observable)
an approximation to the true present value.

(2) firms do not adjust instantaneously: they move in the direction that
yields the most rapid increase in the maximand Rj.

Thus, by assumptions (1) and (2)
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whereﬁ,ﬂ > 0 are constant adjustment coefficients, and b > 0 is a small
scalar constant, as discussed below.

What (1-7) describes is a partial adjustment model with bki exo-
genous adjustment rates for the controls. In this model the controls
are set to increase the (approximate) level of present value over time.
The factor b shows that the controls are small--equivalently that the
state variables are adjusted gradually.

Implicitly it is expensive to choose large values of the controls.
Indeed, in another paper [10], I show that if there are quadratic costs
of choosing the controls the adjustment process (1-7) is almost optimal
provided that Dﬁj is uniformly close to Dﬁj the true present value
derivative. Naturally adjustment costs and partial adjustment are dual.

One important reason for a partial adjustment model is bounded
rationality. If firm j wishes to globally and instantly set the optimal
output level (for example) he must know his demand curve everywhere.
I1f he is content to restrict himself to change output slowly, he need
only learn a small segment of his demand curve each day to make an optimal
choice subject to his self-imposed constraint. The point is that the
faster a firm moves the more quickly it must learn. Bounded rationality
and large costs of gathering information imply it will move rather slowly.

How can firms use local information to approximate the present value
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of income: how do they choose ﬁj close to ﬁj? If the future income
stream is not too badly nonlinear, simply extrapolating income linearly
should be a good approximation--indeed, casual empiricism indicates

this is a widely used technique. Of course in the distant future the
extrapolated income isn't too accurate, but with discounting this doesn't
matter much. In the present context the coefficient b is a measure of
the linearity of future income relative to the discount rate: the
smaller b the better linear extrapolation does. Intuitively, if b is
small the adjustment rate in (1-7) is small relative to the fixed dis-
count rate. The slower the rate of adjustment the more slowly the (non-
linear) system in (1-6) departs from its linear approximation. These
points are discussed rigorously in Levine [10].

There are many kinds of extrapolation a firm might use and linear
extrapolation has no particular claim to priority. Fortunately it is
shown in [10] that if we require that all firms do no worse (in an
order of magnitude sense) than they would using 1inear extrapolation the
equilibrium adjustment path is approximately independent of the extrapo-
lation rule they choose. Thus we may as well examine the most easily
computed adjustment path - any other being approximately the same. One
easily computed path derived in [10] is the path along which all firms
extrapolate linearly and assume that in the future all firms will behave
myopically. Let us see what this means in the present context.

Extrapolating linearly we see that



l\j had . ., .
AT = ./g [+ + thJexp(-th)dt

= ¢9ad 4(ed)2 . (1-8)
Via some algebraic manipulations and dropping all terms of order bz
(which is the order of magnitude error in (2-5)) we find
" .. .o N . N N ~k
Raedd (@) A rl ko /A (1-9)

2=1 2 k=1 m=1 9X
where wg = anj/axl and
+1  z>0 (1-10)
sgn(Z) = 0 z=0
- z <0

The assumption that in the future all firms behave myopically means that
in computing aﬁk/axm on the right hand side of (1-9) firms assume a

flat future income profile
bA) ~ belrk | (1-11)

In other words pure myopia means drop terms of order b2 and higher in
computing baﬁk/axm. Thus our approximation A is derived by substituting

(1-11)1in (1-9) to yield

RY kksk ¢ Rk (1-12)
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Nature of the Solution: From (1-7) the partial adjustment equation and

(1-12) giving the approximate present value

J J
The analysis is greatly simp]ified2 by replacing (1-15) with

J

I N |
y =l s T ek (1-14)
=1

This incorporates two innovations. The constant bechg has

been normalized to one. This, however, we are free to do by changing

J are measured. A more significant

the units in which j's profits =
feature is that the term of order b2 in (1-12) is dropped, Since the
first term is of order b (1-14) should be a good approximation to (1-12).
am not arguing that firms will wish to ignore the second term--to
achieve the same degree of accuracy as provided by linear
extrapolation, they cannot. I am pointing out instead that important
qualitative features of the dynamical system describing the evolution
of x and R over time can be understood without reference to the second
term in (1-12). In economic terms, 1 don't care whether a firm's
market share is 10 or 12 percent even though the firm itself may care
tremendously. The mathematical implications of this approximation are
discussed in section three.

From (1-12) and the equations of motion (1-6) the motion of x is

given (approximately) by

e e N . .
R: = beVk 3 zl ”2"? + O(bz) (1-13)
2:

I
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k=1 k=1

Turning to éi = Si = gi from (1-7), (1-12) and (1-15)

. . N . .

J_ ik m k -

Rk- bnk['nj z Rk -n";’] + -ng y ) (1-16)
m=1

where the constant ni = (63)2]<i and use is made of the normalization
rule b553<3 = 1. Note that since all terms in (1-16) are of the same

order, none can be omitted, even as an approximation.
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2. Equilibrium

The remainder of the paﬁér addresses the following question: what
js the relationship between stable steady states of ‘the dynamical
system described in the first section and pareto efficient outcomes of
the game? Mathematically this divides into two issues: how are steady
states related to outcomes which satisfy the first order conditions for
pareto efficiency (called FOPE), and how are the stability conditions

related to the second order conditions for pareto efficiency? This

section takes up the first issue and yields the following conclusion:
in "almost all" games which satisfy the required regularity conditions
steady states and FOPE coincoide "almost exactly." Part II of this paper
examines the relationship between stability and local efficiency.

A point x is supportable as a steady state (or is simply called a
steady state) if there is some reaction matrix R such that x(x,R) = Q.
In this case the dynamical system is motionless for all time regardless
of whether y = 0. There are two possible types of steady states. If
y = 0 by (1-15) x = 0. This is called an autonomous steady state to re-
flect the fact that the autonomous action control variables y are stationary.
Steady states at which y # 0 are called non-autonomous. The first half
of the section examines autonomous steady states and shows that they are
all FOPE. As a partial converse in "almost all" games the FOPE form an
N-1 dimensional stratified submanifold of which at worst an N-2 dimensional
stratified submanifold fail to be autonomous steady states. The second
half of the section examines the possibility that some non-aufonomous

steady states might fail to be FOPE and demonstrates that in "almost all”
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games such exceptional steady states are a set of isolated points.

Autonomous steady states are characterized by the conditions y = 0

R = 0. To analyze the set of points x which are supportable as autonomous
steady states R must be eliminated from these equations. The resulting
condition will then be contrasted with the first order efficiency con-
ditions to show that autonomous steady states are FOPE.

Equating the expressions for y and R from (1-14) and (1-16) to zero

gives the condition for an autonomous steady state

N

P - =1,..., N (2-1)
Z “pRJ 0 J
p=

. N .
J J P = i = = cee j 2-2
L 2 " R 0 j=k=1,..., N J#k (2-2)

Since the ng # 0 (by assumption) they can be eliminated from (2-2) to

yield the equivalent condition

N .
v u‘;RE=0 jok=1,..., N j#k (2-3)
p=1

It is instructive to combine the N2 equations in (2-1) and (2-3) into

the N vector equations

ka =0 k =1,...,N (2-4)



-14-

N

where 71={7.'i} with j subscripting rows and k subscripting columns and Rk=(11'.i1)3=.L

If it is to be possible to selve (2-4) for N vectors satisfying
Rt = 1 then » must be singular and admit in its null space a vector
Yy = (YJ)yzl with yJ # 0 for any j. 1 will call such a matrix

reqular singular. If 2 is regular singular setting Ri = YJ/Yk solves

(2-4) and satisfies the restriction Rt =1, So it is necessary and
sufficient for x to be an autonomous steady state that =(x) be regular
singular.

How does this compare with the first order condition for pareto

efficiency? At a pareto efficient point for a non-zero vector of

. N .
weights u = (u3)§=1 the weighted sum .Zl anJ must be maximized. The
J:

first order conditions (which must be satisfied since %% is an open
set) are

N 5

T wn =0 K=1,..., N (2-5)
=1 . '
which in matrix notation is
p's =0 . (2-6)

or the condition that = be singular. This condition will be taken as
the definition of a FOPE, the restrictior that the weights uJ have

the same sign being viewed in this terminology as part of the second
order conditions for efficiency. Note incidentally the difference between

the weights y corresponding to reactions and the weights ﬁ corresponding

to utility weights: the former satisfies my = 0, the latter u'w = 0.
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A1l autonomous steady states are FOPE. The converse is false since
not all singular matrices are regular singular. To proceed further we
must recall some basic ideas from singularity theory. A good reference
here is Yu [19 ] pp. 30-31.

An L dimensional stratified submanifold S (in a suitably high dimen-
sional Euclidean space M) is a finite disjoint union of submanifolds
SO, S],..., Sk with maximal dimension L and such that SéJS]..AJSi is
closed in M. A map meets S transversally iff it meets each component
submanifold transversally. Since the number of strata Si is finite all
the usual genericity theorems concerning transversality apply to strati-
fied submanifolds as well.

As is well known singular NxN matrices are a N2-] dimensional stratified
submanifold. Not surprisingly appendix (A) shows that non-regular singular
matrices (which satisfy the additional restriction that every vector in
its null space has at least one component vanish) are contained in an
N2-2 dimensional stratified submanifold. Thus we are led to conclude
that almost all singular matrices are regular singular.

To infer genericity in the space of regular games we utilize the

3on the space G of all C2 mappings;&?&RN. Appendix

Whitney C2 topology
(B) shows that the set of regular games GR is an open set plus a portion
of its boundary in G so that standard genericity theorems work in GR.

Thus the jet transversality theorem implies

Proposition (2-1): If S is an L dimensional stratified submanifold
then for almost all games (the intersection of a residual set in G with GR)

the set of xe2" which satisfy the restriction n(x)eS is a N-(NZ-L) dimensional

stratified submanifold.
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An immediate corollary is
Proposition (2-2): A1l autonomous steady states are FOPE. In almost
all games FOPE are N - 1 dimensional and are all autonomous Steady states

except possibly in an N - 2 dimensional stratified submanifold.

Exceptional Steady States: At an autonomous steady state y = 0, and the

first order conditions for pareto efficiency are satisfied. It is possibie,
however, that x = 0 and y # 0 in which case the preceding analysis does
not apply. Here it is shown that in almost all games there are at most
an isolated set of points which are steady states but not FOPE. There
are two steps in this undertaking: first R is eliminated from the equations
x=0R-= 0; then an application of Proposition (2-1) gives the desired
genericity result.

The conditions for a (not necessarily autonomous) steady state are

given by equating the expressions for x and R from (1-15) and (1-16) to

zero
N < . |
T RS =0 J=lyeee, N (2-7)
k=1
j N ;K -
[ (T 5 R+ wfy1 =0 j#k (2-8)
p=1

To eliminate R from these equations use wg §0)¢# k to define

i ! =k (2-9)
k

A ..
-ng/ﬂﬂ jk
Then (2-8) is equivalent to

N . . '

Jop_ K.J -
z 'p Rk =Y A J#k (2-10)
p=l
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The equation (1-14) defining yk is

k S ,,: ARp (2-11)

which can be expressed as
N
k .p k k
2 ot Ry Ty (2-12)
po1 p k k
since xt = 1 by definition. The N2 equations (2-10) and (2-12) can be

combined into the N vector equations
R, = yka (2-13)
k- %

Throughout the remainder of this discussion it is assumed that the
steady state is not a FOPE. In this case = is non-singular and (2-13)

can be solved for the reaction coefficients.
Rk s y hi Xk (2‘14)

The equation for Rt (which is one by definition) is
1= RE = ykhk (2-15)
from which the autonomous controls are

y* = 170K N (2-16)

Observe that this implies yk ¥ 0 for any k, which is consistent
with the earlier finding that the steady state must be non-autonomous
since it is not a FOPE.

The N vector equations (2-14) can be rewritten using (2-16) as the

N2 scalar equations

R Y teh s (2-17)
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So far the first steady state condition X = 0 given in (2-7) has not
been used. To eliminate R from the steady state conditions (2-7) and

(2-8) substitute (2-17) into (2-7) to get the necessary conditions

N .

S hIateTh* % = 0 (2-18)
k=1
which since =1 is non-singular is equivalent to

N
S /Th P =0 (2-15)
k=1

A useful implication of (2-12) is that xi ¢ 0 and ng ¥ 0. If not

since for j # k Ai = - wg/wi it must be that ng = 0 and so Ai = 0 for

every k # j. In this case since xﬁ = 1 by definition

N .
/L 1P -
k=1

At/[(ﬂ-l)k xk]Z >0 | (2-20)

contradicting the steady state condition (2-19).

N
E

N2 dimensional then by Proposition (2-1) almost all games will have

Let H. be the set of matrices = which satisfy (2-19). If Hg is

only an isolated set of points x at which I(X)cHg. Define the

surjective mapping U:Hg -=> Hﬂ by

k 2

Ui = sgn (ut) . xi/[(a'l) ] (2-21)

Since :t # 0 this map is smooth. To show that Hg is N2 - N dimensional



it suffices to show that HS is N

W, N

smooth inverse.

Let e be a vector of ones. By (2-19) if uenﬁ Ue

that Hﬁ is an N2

£ Since U is smooth HU and HE
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2. N dimensional and diffeomorphic to

N are diffeomorphic provided U has a

0. This shows

- N dimensional linear subspace.

To solve for = given U it is necessary only to solve for A and wg

Jg=1,.

of » in (2-9) as
o3,

L 'nj/Ak

which is smooth since Aﬂ # 0.

since by the definition of U
gk o ,J
Uk/Uk A
where Ut # 0 since nt and At

U observe from (2-22) and Ag

..,N. The wi J # k are then given by reversing the definition

J#k (2-22)

Solving for xa j # k is straightforward
in (2-21)

(2-23)

are non-zero. To solve for wg using A and

1 that » factors as

: J .
. 1 j=k ] j=k -
n=ed 8 = . ¢ - (2-24)
-1/a) Ik 0 ¥k
L . . -1 -1-1
Since ™ # 0 d is non-singular, » ~ =d "8 = and
(hE = dsmh (2-25)

Substitute this expression into (2-21) the definition of Ug to find

ul = sgn (wi)xg/[(1/ﬂ§)(s'1)jxj]2

J

(2-26)

and since Ag = 1 (2-28) solves as (2-27)
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J - J J -1y -
mj = sgn (Uj)‘/ Uj ’(8 ) ) , (2-27)
which is smooth since it can never vanish.
The preceding discussion can be summarized as

Proposition (2-3): In almost all games the set of steady states which

are not FOPE are a set of isolated points.
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3. The Very Long Run

The system we have been studying was derived by approximating the true
equation for y (1-13) by (1-14). Thus the true system is a (small) per-
turbation of the system we have studied. How does this perturbation af-
fect our results?

The first point is that a small perturbation can't have steady states
far distant from the steady states of the unperturbed system. This means
that the perturbed steady states are (approximately) a subset of the
steady states we have studied. In effect, a perturbation can destroy
steady states and it can introduce new steady states but the new ones
must be close to the old ones.

The exceptional steady states are generically hyperbolic and thus
won't be affected much by small perturbations. The situation near the
manifold of autonomous steady states is very different. Generically,
perturbations of a dynamical system have locally isolated steady states.
It is to be expected that when the system is perturbed the steady state
manifold will be replaced by a set of isolated steady states lying near
the manifold.

This deserves a bit of explanation. Figure (3-1) illustrates what
the system might look like before and after a perturbation. Initially

the x = 0 and R = 0 curves coincide constituting a manifold of steady

states. When (1-13) is replaced by (1-14) the x = 0 curve shifts slightly

by an amount proportional to b. Only the steady state (x*, R*) remains.
What happens along the old steady state manifold? Suppose both

x = 0 and R = 0 are attractors. Initially R doesn't move, while x moves

towards the new x = O curve. As x approaches x = 0 R is no longer in

equilibrium and begins to move along the old steady state manifold as il-
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Figure(3-1): Perturbation of the Steady State Manifold
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Figure(3-2): Drift Along the Unperturbed Steady State Manifold



lustrated in Figure (3-2).

1f the old steady state manifold is a repellor the situation is quite
different: a small perturbation of the system will typically cause the
system to move away from the old manifold entirely.

In the attractive case, how rapid is the drift along the steady state
manifold? From (1-14) and (1-16) x = bF(x, R) and R = bZG(x, R) where

remember b is small. As the system moves along the old manifold x is

approximately in equilibrium at x = O since it equilibrates faster than

0 lie apart by order b, that the

R. This means, since x = 0 and R
distance of the system from R = 0 is ax = bH(R). Thus, R = bZGX Ax = b3GXH(R)

where Gx are the derivatives of G with respect to x.

In the short run x equilibrates most rapidly at rate O(b) so
R is determined by initial conditions and x by ; = 0. In the long run
R equilibrates at rate O(bz) causing the system to move towards the
unperturbed manifold of steady states. In the very long run, however,
the perturbation causes the system to drift along the unperturbed
steady state manifold at rate O(b3). This is similar to the notion
of fast and slow manifolds introduced by Zeeman [20] chapter 3.

The exact nature of very long run steady states where output shares

are determinate is an interesting question for future research.
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APPENDIX (A)--Singularity and Regular Singularity

The objective is to prove two lemmas:

Lemma (A-1): m x n matrices of rank r are a set of codimension (m - r)

x {(n - r).

Lemma (A-2): vregular singular n x n mtrices are a set of codimension

2.

Proof of (A-1): From McCoy [14] section 15.5 a matrix A of rank r has

an r x r non-singular submatrix A;y. Assume

r n-r
21 A2z m-r

Any matrix of rank r is obtained from a matrix of the form (A-1) by
permuting rows and columns. Since only a finite set of such
permutations is possible it suffices to prove the lemma for a matrix of
the form (A-1). Following Guilleman and Pollack [6] chapter 1.4
problem 13 define

-1
0 1

Since B is nonsingular rank (AB) = rank (A). Also
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Ay 0 (A-3)
AB 1
A Ara = Aa1hn Ay

so that A has rank r if and only if

- -1 =
F(A) = A22 - A21 A Aip =0 j (A-4)

Since aF/aA,, = I the transformation F has full rank. Thus since F(A)

is (m - r) x (n - r) the lemma follows. Q.E.D.

Proof of (A-2): Let A be square, singular and non-regular. Any such

matrix can be obtained from a mtrix that admits a vector of the form
(0, Xp, ...y Xp)' in its null space by a finite permutation of columns,

so assume A has this form. Set

where a is an n-vector. Then A has the required form if and only if
A12 has rank (n - 2) or less. By the same reasoning used in lemma

(A-1) this implies a codimension of 2. Q.E.D.
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APPENDIX (B)--Genericity in Regular Games

Let G be the set of C2 mappings =" :%) --> |RN in the Whitney C2

R be the subset of =° ¢ G which

topology where X is open ianN. Let G
also satisfy wi(x) <0 j#kand det (n(x)) # 0. The objective is to

prove

Lemma (B-1): G'c closure (interior GR)).
! to be the subset of G which satisfies ﬂi(x) <0 j# kand G2 the

subset which satisfies det (m(x)) # 0. Obviously small perturbations of =

Define G

satisfying wi(x) < 0 will satisfy the restriction so G1 js open. Thus it suffice

3 to be the subset of G2

to show Gzc: closure (interior Gz)). Define G
such that for =°¢ G3‘there is an x; and x, with det (n(xl)) > 0 and
det (n(x,)) < 0. Obviously G3 is open. To prove lemma (B-1) it is

then necessary to only show that
2 3
Lemma (B-2): G & closure (G")

This requires a preliminary lemma.

Lemma (B-3): If A is singular there is a matrix B such that for

A >0 det (A + aB) > 0.
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By the Jordan decomposition theorem A = ¢ 13C where J is upper

triangular, has zeroes in the first (N - r) diagonal positions and the

non-zero eigenvalues of A in the remaining r diagonal positions.

Assume without loss of generality that the product of the non-zero

eigenvalues of A is positive. Let D be a diagonal matrix with ones in

the first r positions, zeroes in the other (N - r). Then for » > 0

det (J + D) > 0. Thus B = C'DC satisfies the required property.
Q.E.D.

Now suppose n° ¢ 62 - G3. Ignoring the case det (=)

vanishes identically (left as an exercise) suppose without loss of

generality for some x; det(x(x;)) < 0. By assumption for some X2

det (n(x,)) = 0. Let B be a ball centered on X5 . Because %X is open in

|RN we may assume B€Y and X, f closure (B). Let #* be (by lemma B-3))

such that det (n(x,) + an*) > 0 for A > 0. Using techniques similar to

those of chapter 2 section 2 of Hirsch [7] there is a function

FAEY) GRS IRN which is C™, vanishes outside closure (B) and has

3

Dn*(xp) = «*. Then («° + 2 ") ¢ G° for a > 0 and approximates =*

arbitrarily well. This proves lemma (B-2) and thus (B-1).
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Notes

(1) Oligopoly without communication is discussed in Levine [9].

(2) With this modification the model is conceptually similar to that
of Guttman [5].

(3) See Hirsch and Smale [8].
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