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0. Introduction

Part I of this paper introduced a model of endogenous collusion between
oligopolists in a frictionless environment. It showed that in a generic
sense steady states of the dynamical system describing firm behavior are
the same as outcomes satisfying the first order conditions for pareto
efficiency. This paper continues that analysis by relating stability and
the second order conditions for pareto efficiency. No entirely satisfactory
relationship is uncovered, except in the symmetric case. Here we can show
(section 2) that locally pareto efficient outcomes and steady states are
one and the same. Section 3 discusses the implications of locally non-
unigue steady states in the general case while section 4 applies section 3
to symmetric two player games. Section 1 recalls the key equations of

part I and section 5 summarizes our conclusions.



1. Review

Recall the key equations of motion from part 1. Movement of output is
S A | (1-1)
The autonomous output is (approximately) determined by

Jn

Finally the reaction coefficients move according to

od = pod k N m_j J k )
Rk bnk [nj e Rk mot Y ] (1-3)



2. Symmetric Games

In a symmetric game all firms are identical including in the initial
conditions. Such games are easy to study since the game is characterized
by two variables: the common output and the common reaction. First the
steady state conditions are restated in terms of these variables. An
examination of the stability conditions then shows that (local) pareto
efficient points and stable steady states coincide.

Let xj = z and Ri =r J#k for each firm. In a symmetric game
all firms are identical and these variables complete describe the game.

The motion of z is given by the equations describing the motion of the

x3 (1-1) and (1-2) as

pexde SR 3 R

m=1 p=1

J JoP , J
(Z Rm + 1)(2 ﬁpRj + 'l'j)
m#j p#J

(- 1) r+ DN - Dr o) + 43) (2-1)

The motion of r is given by the equation of motion for Ri j#k (1-3)

as
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= bny La E JRP) + 41 4K
pel
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p=l

br Lagladr + ) + «) (N - 2)r)
+ ng(n% + (N - 1)r ﬂﬂ)] (2-2)

where the motion yk is from (1-2) and n is the common value of the “i'
Equating (2-1) and (2-2) to zero and solving for z and r shows that
there are three types of steady states

r=1 ng + (N - 1) wﬁ =0 (2-3)

r= -1/(N - 1) wg -a =0 (2-4)
j_J .

r=-1/(N - 1) (N - 1) 5T Tk 0 (2-5)
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The steady state in (2-3) is autonomous and an extreme point of the
weighted sum ﬁ% nj. The steady state in (2-4) is also autonomous and
is an extreme %;%nt of the weighted sum nj - ﬂk j # k. It cannot

be pareto efficient, since the weights do not all have the same sign.
The steady state in (2-5) is not autonomous.

Necessary conditions for stability are

ai/az + a;/ar <0 (2-6)

(a2/22)(ar/ar) - (a;/ar)(a;/az)lz 0 (2-7)

sufficient conditions are that (2-6) and (2-7) hold with strict
inequality. Do the inefficient steady states in (2-4) and (2-5)
satisfy the necessary conditions? Differentiating the expressions for

i and ; in (2-1) and (2-2) shows that

2z/3z = ((N - 1)r + 1) .

(N - Dr (ady + ad + 0= 2a]peady - 1 3N (2-8)

. . . 2 . .
bn (11;]( 11:.}*’ ('ni) (N - 2)+1vg ni (N - 1))

ar/ar

When r = -1/(N - 1) as in (2-4) or (2-5) we see from (2-8) that a3z/3z =

and for stability from (2-6) it must be that ar/or < 0. In (2-7)

wg = ui and from (2-9)

br (N o3 + (N - 2) ) (2-9)

0,



ar/ar = ba(x))? 2(N - 1) > 0 (2-10)

implying instability. In (3-5) =3 = x)/(N - 1) and from (3-9)
ar/ar = ba(s3)2 (N/(N - 1) + N - 2) > 0 (2-11)

implying instability as well.

The steady state in (2-3) must be broken into two cases. Define

S = E)Z'N‘j/az2

- ngj + (N - 1)ﬂ§k + (N - 1)(w§k + “ik + (N - 2) ngm) (2-12)

A necessary condition for pareto efficiency is that each firm's profit
be maximized subject to the symmetry constraint. The first order
condition for this maximum is the condition in (2-3) ng + (N - l)ui = 0.
The second order necessary condition is S < 0. In Appendix (A) it is
shown that in regular games S < O together with the first order
condition are also sufficient for a symmetric outcome to be locally

pareto efficient.

Examination of (2-3) shows r = 1 and combining this with (3-8) shows

22/2z = NS (2-13)
while n§ = - (N - l)ni combined with (2-9) shows
. J.2 o
ar/ar = bn (= )" L(N - 2) - N(N - 1)] E B
N i
= = bale))2L(N - 192+ 11 < 0 (2-14)



So if S < 0 {2-6) holds. To determine when the other half of the

sufficient condition (2-7) holds compute from (2-1), (2-2) and (2-3)

ai/ar = (N - 1)((N - l)ni + ﬂg + N(N - l)ni)
= N(N -1)q) (2-15)
a;/az = bn[(ng + ng)S]

- bn(N - Z)WQ S (2-16)

Using (2-13), (2-14), (2-15) and (2-16) to compute the expression in
(2-7) yields

(a;/az)(a;/ar) . (aé/ar)(a;/az)

= - ba(x)? SINLIN - 1)% + 17 - N(N = 1)(N - 2)]

= - bn (%S | (2-17)

If S <0 the sufficient condition is satisfied and if S > 0 the
necessary condition fails. Except for the unimportant case S = 0a

steady state is stable if and only if it is locally pareto efficient.



3. Strong Quasi Stability

When steady states are not isolated it is possible to make arbitrarily
small movements away from a steady state to another steady state. Stability
is impossible. A weaker condition which I call strong quasi-stability
requires only that a small movement away from a steady state leads to a
nearby steady state. For autonomous steady states which are N-1 dimensional

this is the relevant stability concept.

Define the stability matrix

A= ax/ax ax/aR (3-1)
aﬁ/ax aﬁ/aR

A necessary condition for strong quasi-stability is that the real parts
of the eigenvalues of A be non-positive. If steady states form an

N - 1 dimensional manifold N - 1 of the N2 eigenvalues of A must
vanish, the corresponding eigenvectors indicating directions on the
steady state manifold. In Appendix (B) it is shown that if

(x*, R*) is a steady state at which N2 - N + 1 of the eigenvalues

of A have strictly negative real parts and if there is an open set
surrounding (x*, R*) in which the set of steady states are an N - 1
dimensional manifold then (x*, R*) and all nearly steady states are

strong quasi-stable.
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The previous section showed that the points x* which are
supportable as steady states are usually N - 1 dimensional. This does
not tell, however, the dimensionality of steady states in (x, R)
space. Appendix (C) shows that if the matrix a(x*) defined by
A - lj ; { i (3-2)

'"j/"k Jfk
does not admit a non-zero vector with non-negative components in its
null space, and in addition for all k [« lxk] has full rank, then there
is a unique R* such that (x*, R*) is a steady state and a neighborhood
of this steady state in which steady states form an N - 1 dimensional
manifold.

This discussion yields the following conclusion concerning

quasi-stability.

Proposition (3-1): 1if (x*, R*) is an autonomous steady state and
o [n(x*) | x has full rank for all k
o Ax*)u=0= u}o0
0 A(x*, R*) has N2 - N + 1 eigenvalues with strictly
negative real parts
then there is an open set U 3 (x*, R*) in which all steady states
0 form an N - 1 dimensional manifold

0 are strongly quasi-stable.
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4. Two Firm Symmetric Games

Symmetric pareto efficient points in symmetric games are stable with
respect to symmetric shocks. As an application of Proposition (3-1) it
is demonstrated here that in two firm games symmetric pareto efficient
points are strong quasi-stable; that is with respect to asymmetric as
well as symmetric shocks.

The first order condition for symmetric pareto efficiency was given

in (2-3) as

J J . -
T4 (N-1)m =0 (4-1)
Trg: + 'n‘z =0 (4-2)

where (4-2) follows from N = 2. The matrix = is

T = P—ul‘z ng ) (4-3)
o
L J

which has rank one since nﬂ # 0 and is regular singular since it admits
e = (1,1)' in its null space.

The matrix » is computed from (3-2)

k

1
“i - 3 (4-4)
-/ itk

1 1
A= (4'5)
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From inspection of (4-3) and (4-5) these matrices satisfy the

hypotheses of proposition (3-1). To apply the proposition requires in

addition that three eigenvalues of A have strictly negative real parts.
In the two firmcases the dynamic equations for agent one from (1-1),

(1-2) and (1-3) are

x! = Loy + Riny + Ry(ad + Ryad)] (4-6)
RS = bnln® (xRY+ al) + ol(al + 2R1)] (4-7)
2 = n Tfl 1[1 1[2 '"1 '"2 n 2

Differentiating these equations, using symmetry and the equilibrium

conditions in (4-2) shows that

1, .1 _ 1 2

X /3R2 = [1!2 + Rz 1[1 + RZ 1[1] b‘ll’k
1, .2 _

9X /aRl - '"k

3Ry/aRy = = bn (n))?

-1 2
aRZ/aR1

n
o

(4-8)

By symmetry the stability matrix A defined in (3-1) is

-
-

A= axl/ax1 a;(l/ax2 wi }i
a;cl/ax2 a;(l/ax1 wi ni
ali;/ax1 aﬁ%/axz - bn(wi) 0
aRg/ax”  aRy/ax! 0 - bn(wﬂ){ (4-9)
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Let e, = (0, O, 1, -1)’; then Ae, = -bn(ng)zeo S0 e, is an eigenvector
corresponding to a negative eigenvalue. Furthermore there are two
other eigenvalues corresponding to symmetric departures from
equilibrium and by the analysis of symmetric shocks these are strictly
negative as well.

Proposition (3-1) now applies and the efficient steady state and

nearby steady states are strong quasi-stable.
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5. Conclusion

When firms can engage in costless retaliatory policies we
anticipate that they will reward opponents who make pareto improving
output adjustments and punish those who selfishly try to increase
output. This paper has shown that, subject to technical
qualifications, this is true. The important qualifications:

) In asymmetric games pareto efficient outcomes may be unstable
steady states. A small subset of the pareto efficient outcomes may not
be steady states at all.

) In asymmetric games there may be stable steady states which
satisfy the first order conditions for pareto efficiency, but not the
second order conditions. A small number of steady states may not even

satisfy the first order conditions.
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APPENDIX (A)--Symmetric Efficiency

The objective is to show that in a symmetric game with 1{‘< 0j#Kk
ng + (N - 1) wi =0 and S < 0 imply local efficiency. It was already
shown that this implies no small symmetric perturbation makes any firm
better off. Suppose T has rows mJ as always. I will show that if z
is an asymmetric N-vector then 72z < 0 for some k thus implying any
non-symmetric perturbation makes at least one firm worse off via the

mean value theorem.

Lemma (A): If z is non-symmetric for some k 2z < 0.

Proof: Suppose conversely z is asymmetric and nz > 0. Since wi #0
j # k a check shows that = has rank N - 1. .Since »e = 0 where e is
symmetric (by assumption) it cannot be that 7z = 0. Thus we may
assume nz > C where C; =1 C, =0 k> 1. By a theorem on linear
inequalities found for example as theorem 2.7 in Gale [3] the system
nz > C has a solution if and only if the system y'n =0 y'C = 1 has
no non-negative solution. Lettinge = (1, ..., 1)' we see that

e'n =0and e'C =1. Thus nz > C has no solution, a contradiction.

Q.E.D.
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Appendix (B) -- Strong Quasi-Stability

Definitions: We consider a dynamical system x = f(x) defined on an open

mn The vector field f is assumed to be C] and by the existence

subset of R
and uniqueness theorem there is a unique maximal flow ¢t(x) satisfying

30,/3t = f(¢,) and ¢y(x) = x. If x* is an equilibrium so f(x*) = 0 then

the stability matrix A = Df «. An equilibrium x* is strongly quasi-stable
if for every € >0 there is an open neighborhood Ue 3 x* such that x ¢ U

implies 1lim ¢t(x) exists and lies within e of x*. Sufficiently small per-

{0

turbations from x* lead to an equilibrium close to x*.

The Theorem: Our objective in this section is to prove the following
sufficient condition for quasi-stability:
Theorem (B-1): Suppose there is an open set U = x* in which the set of
equilibria M E{X e U|f(x)= 0} are an m dimensional submanifold of U
and that the stability matrix A(x*) has n eigenvalues with strictly negative
real parts. Then there is an open set W 3 x* such that

(a) x e MNW implies x is strongly quasi-stable

(b) the rate of convergence in the definition of quasi-stability

is exponentially fast

Proposition (B-2): Suppose x = (x],xz)'; f = (f],fz)' where x] e R",

x2 € HQN, that there is U 3 0 with

f(x1,00=0  (x',0) €U
and that Df0 has n eigenvalues with negative real parts. Then there are
g,G >0, W30 and map p: W~ R™ x 0 continuous at O such that x € W
implies for t 2 0

|64 (x) = p(x)] s 6e™9"
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Theorem (B-1) follows from (B-2) by the use of local coordinates and the

continuity of A(x).

Proof of the Proposition: The idea behind the proof is much like that in

the usual case where all eigenvalues of A have negative real parts: we
show that the linearized system is stable and that trajectories remain so
close to the initial equilibrium that the linearized system is a good
approximation to the actual system. We do this by examining the motion
of the system in a small cylinder around the equilibrium manifold. The
important extension to the ordinary stability proof is to show that the
fact that the equilibrium manifold has the right dimension guarantees the
system cannot drift out the end of the cylinder.

1 1/2

Our procedure is to define z' = [xll and 22 = (xz'sz) The var-

iable z] measures how far down the cylinder around the equilibrium manifold
x2 = 0 the system has drifted. The variable z2 measures how far the
system is from the equilibrium manifold in the metric induced by the

positive definite matrix B. Our proof proceeds via a series of lemmas.

Lemma (B-1): Suppose z](t), zz(t) > 0 and for some A,y > and

A2 z],z2 0 22/|i]| < =y then 22(0) < min (1,y) [A - z](O)]

[\V4

implies 0 < z](t), zz(t) <A for t>0.

Proof: Obvious.
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1

1/2
Lemma (B-2): For z= = lel 2 . (x2| 2) /

z Bx and

B positive definite

2‘ .2 1
£2/)8) < 6 [x ’;T X |l|:|

|t st

where & > 0 depends only on B.

Proof:

2 1/2

82 = (x2'Bx?)/(x°'Bx%)
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2278 = 2'nel Ll L) 77 (B-1)
12| |xi'xt| (x2'Bx?)
1/2

‘and the lemma follows since Ile/(xz'sz) / < &
by equivalence of norms. QED

By P12
Lemma (B-3): Set A =Df, = :

0 A A
21 22

then the eigenvalues of A22 are the non-zero eigenvalues

of A.

. . 1 _ B ~
Proof: Since £(x7,0) = 0 All = A21 = 0 and

det (A - A1) = (- det (A,, - AIl. since A has at most

m zero eigenvalues the lemma follows directly. QED

Lemma (B-4): Suppose A22 ijs a real matrix and that the
largest real part of any eigenvalue of A22 is dominated by
+  =g'. Then there is a non-singular matrix C such that for

any 2

2

LI 2
x  C CAzzx

2

£-3'x 'C‘sz

Proof: According to ch. 7 §1 lemma of Hirsch and Smale [8]
there is a real basis such that in the'correspondiﬁg inner

product, < . > <A22x2, x2> S-B<x2,x2>. Letting C
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transform the basis in which the coordinates of A22 are
given to this new basis shows.that this inner product can

be written in the desired form. QED

Lemma (B-5): There is «',B' > 0 and a positive definite

matrix B such that

2

2 x° S -a'|x

' 2,2 ' 2
x” BA,, | -B'x2 Bx

Proof: By lemmas (B-3) and (B-4) there is non-singular

matrix € and B8' > 0 such that

2

x 'C'CA 2

2
22% .

2!
S -B'X" C'Cx (B-2)

Taking B = C'C and observing by equivalence of norms that

2
x%'Bx? 2 ylle shows that a' = B'Y. QED
Lemma (B-6) : There is a neighborhood w of 0 with its
closure E c U compact and a a8 > 0 such that for

X €@

2' .2 < 2

2
x2'Bi? < -a|x%]°,

sz'Bx

Proof: Take i a closed ball of radius r at 0 with

@ c u. By Taylor's theorem
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%2 = fz(xl,xz) = fz(xl,O) + Azz(xl,;cz)x2
= A22(X1,§2)x2—. ®-3)
where (x%,%%) ¢ W. Hence, I(xl,§2)| < y. Since by
lemma (B-5)
xz'BAzz(O)x2 s - a'|x2|2, —B'xz'sz (B-4)

it follows that since A,y is continuous for any

0 <a <oua' 0 < 8 < B' r can be chosen sufficiently small

that the lemma holds. . QED

Lemma (B-7): There is yu > 0 such that for x ¢ w

1] s ulx?)

Proof: By Taylor's theorem

|il| = [fl(xl,O) +-A12(x1,§2)x?|
< sup'|A (X)||x2l
= o= 1712 (B-5)
xel '

and since W compact and P continuous

sup IAlz(x)l Sy (B-6)
xell
QED
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Lemma (B-8): Let V > 0 be open. Then there is V'O 0

such that for x e V' ¢t(x) e V.

Proof: For x ¢ W by lemmas (B-2), (B-6) and (B-7)

- 22
2,1 B
z /|2 l ¢ xz""')\'l ]
=] 7|

2,27
X BX

sa
m Y ' { )

IA

A
=0

Now choose A so that the ball_ around zero of radius A lies
in WN V and choose V' to have radius ‘A min (1,Y). An
application of lemma (B-1) yields the desired

conclusion. ' ) . QED

Lemma (B-9): There is p: W' SR x 0 continuous at
zero and qg,G > 0 such that for x e w* and

£20 o (1) - p(x}] < ce 9%,

Proof: Lemmas (B-2) and (B-6) imply for some g > Q and

x e W

2 2

2 £ -2gz (-8 )
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By lemma (B-8) if x ¢ W' initially (B-11) holds at later

times and by the Bellman-tronwall growth lemma
|22! <pe” 9% for some A& > 0
- . (B-9)
which is to say
21 < -gt
|x“| s e (B-10)
By lemma (B-7)
|51] s pae”%t (8-11)
implying the existence of pl(x) such that
1« - proo| £ (ua/gre”9t | (B-12)
Setting pz(x) =0 and G = A(u/3 + 1) we see

-

Ix - p(x)] £ |x* - pte| + [x°]

s ge 9t (B-13)

The continuity of p at 0 follows directly from lemma (B-8).
QED
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APPENDIX (C)--The Manifold of Autonomous Steady States

The objective is to prove that when the hypotheses of proposition
(3-1) are satisfied at (x*, R*) there is an open set\jD(x*, R*) in
which steady states forma manifold of dimension (N - 1). This is done

by means of four lemmas.

Lemma (C-1): If x(x*) does not admit a weak positive null vector then
there is an open UDx* such that x ¢ U and (x, R) a steady state

implies 7t(x) is singular.

Proof: Since a(x) is continuous choose U so that x ¢ U implies a(x) has

no weak positive null vector. If x(x) is non-singular the steady state
N .
is exceptional and from (2-20) satisfies ) Aﬂ /LK xklz =0

k=1
contradicting the fact x» doesn't admit weak positive null vectors.

Q.E.D.

Lemma (C-2): If [n(x*) |xk(x*)] has full rank for all k then there is
open UD x* such that x ¢ U and «(x) singular imply (x, R) can't be a

non-autonomous steady state.

Proof: Since w(x) and x(x) are continuous choose U so that x ¢ U

implies [n(x) | A (x)] has full rank for all k. From part I (2-13)

a necessary condition for (x,R) to be a steady state 1is
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Ry
[v | - " =0 all k (C-1)

yk

Since = is singular and [« | ] has full rank the only solution to (C-1)
is wR_= 0and y = 0. Thus all y* = 0 and if (x, R) is a steady

state it is an autonomous one. Q.E.D.

Corollary C-3: If (x*, R*) are as in proposition (C-1) there is

U 2 (x*, R*) in which all steady states are autonomous.

Now define wj = m9R . From (1-1) and (1-3) the equations of

motion are
. N .
= 2: ng
k=1

RY = by [agwd + olw] (c-2)

Let nik= (n{, cevs wi_l, nﬂ+1, cens nﬂ). The derivative of wi with

respect to all the state variables is the row vector

S j i
bwy = [0« R | O | .. | "2k | ... |0l (C-3)
1 k
where ij is the matrix of second derivatives of wJ. Observe that
*

Rk = y/Yk so that this can be written as

owd = L0/ [0 [ el | .. )02 (c -4)
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The matrix Dw is formed by stacking the Dwﬂ.

Lemma (C-4): If U contains only autonomous steady states and at steady
states corank (Dw) < (N-1) then autonomous steady states are a manifold

in U.

Proof: Since » is continuous by choosing U small enough we may assume
whenever = is singular the first row (say) is a linear combination of
the other rows. Since all steady state in U are autonomous w = 0 is
necessary and sufficient for a steady state there. Define w to be the
sub-matrix of w formed by deleting the (N-1) rows corresponding to

Wy, W3, ..., Wh. I claim that w = 0 implies w = 0 in U and DW has full

rank, which will prove the lemma.

Suppose W = 0. Then wi, wf, cees w? = 0 which reads an = 0.
Since R} = 1 this implies = is singular. Does w& =07?
1

This reads n'Rk = 0. But nJRk =0 for j #k and »~ is a linear
combination of the «J. Thus »'R, = 0. So w = 0.
Since corank (Dw) < (N-1) to show Dw has full rank it suffices to

show that Dw& is a linear combination of the rows of Dw. Observe from

(D-4) that

m m_ m m -
v, Ow - v Dwy = [-Yln_ll 0 l Wk |0] €-5)
Thus

1 1 1 1 | i
vy = voup = Lvpady | 0 [ [ werdy | 03 (c-6)

k
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N .
Suppose "1 = Z ulwl. Then from (C-5) and (C-6)
i=2

N .
DW& = (l/Yk)[YlDW% + Z (YkDW& - YlDWi)u.i] (C'7)
i=2

is the desired linear combination. Q.E.D.

Lemma (C-5): At an autonomous Steady state if the stability matrix has

corank (A) <'(N-1) then corank (Dw) < (N-1).

Proof: From (C-2) the equations of motion can be written as
v = lw , (C‘B)

where v is the vector of state variables and L is an Nsz2

matrix. Since w = 0 at the avtonomous steady state A = LDw. Thus

corank (A) < (N-1) implies corank (Dw) < (N-1). Q.E.D.

The proof of proposition (3-1) now follows from the fact that
corollary (C-3) and lemma (C-5) imply the hypothesis of lemma (C-4).
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