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It is well known that OLS can be consistent and asymptotically normal
despite serial correlation in the residuals. Although the usual estimator
of the asymptotic covariance of the parameter estimator is inconsistent
there is an alternative covariance estimator which is consistent.l The
purpose of this note is to sketch how and why these results extend to MLE.
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Notice that this does not imply that exp T LT(B) = I
joint density of the yt (conditional, or otherwise). 1If the zt are exogenous
this is true only if the yt are independent. Define the partial MLE ST to be
the estimator that maximizes LT(G). Note that MLE under the assumption of
independence is partial MLE if there is serial correlation. We shall extend
the usual consistency argument to show that the consistency of partial MLE de-
pends only on f(y,z,00) being the actual density of y conditional on z and not
on HE=1f(yt,zt,eo) being a joint density for the yt.

We make use of the following notation. The log-likelihood contribution
is xt(e) = log f(xt,G). Associated with Xt are L(6) = Ekt(e) and its empirical
counterpart LT(G) = (l/T)Zt=$ Xt(e). Subscript @'s denote differentiation. Thus

the score contributions are xg(e). Associated with these are autocorrelation

functions
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For pedagogical purposes we make the following assumptions:

t cati - .
(1) x is stationary and ¢-mixing with

Z Q\¢1/2

<
g=0 ¢ B

(Z)C)is a compact convex set

(3) f(yt,zt,eo)is the true conditional density of yt given 2t and is not

stochastically equivalent to f(yt,zt,e) unless 6=8; [global identification]

(4) 8oc interior (@)

t

(5) A~ and L are C2 and Rk CO functions of 6

e EpF® % < B
EREe)]* < B
E]Age(eﬂz §.B
(7 Lee(eo) is non-singular [local identification]

The mixing condition (1) requires a word of explanation.2 A stochastic
process x* is called ¢-mixing where ¢ is an infinite sequence ¢=(9o, \,,...)1iff
any event Ft defined by xl,...,xt and event Ft+k defined by xt+k,xt+k+1,...
satisfy |pr(Ft+let) - pr(Ft+k)| < ?k.

Roughly this asserts that the distant future is largely independent of the
past. Mixing is restrictive in that some common processes such as a normal
AR(1) aren't mixing. However, a stationary AR(1l) with bounded innovations

is mixing. Indeed, all Markov processes which satisfy Doeblin's condition

and have a single ergodic class without cyclically moving subsets satisfy
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assumption (1).3 Thus, most processes which are observed can reasonably be
argued to satisfy this condition.

An important (and obvious) fact about mixing processes is that functions
of mixing processes depending on a fixed finite number of lagged observations
are also mixing. Thus, the fact that xt satisfies assumption (1) implies
that xt(e), ri(e), etc. all satisfy (1) as well. This is very convenient
in a non-linear context.

First we show that GT is consistent.4 By the uniform weak law of large
numbers in the appendix together with assumptions (1) and (6) LT(G) converges
uniformly in probability to L(6). By a standard argument (3) implies L(8)
has a unique maximum at 60.5 These facts imply via another standard argument,
assumption (2) and the definition of T that plim (ST) = 60.6
Turning to asymptotic normality by (4),(5) and the usual Taylor series

expansion
T T +T,,-1 =l Lt
() \T (67-80) = [Lgg(BH1T (AAMI _12g(80)

where plim (éT) = 6. By assumption (6) the uniform weak law of large numbers
implies Lge(e) converges uniformly to Ekge(e). Also by (6) Ag(e) and ng(e)

are absolutely integrable so that7
(9) L., (8) = BAE (8) = 8% [EA"(8)1/30°
66 66 *
. T T -1 -1 8
Thus, by assumption (7) and a standard lemma, plim [Lee(e )] = Lee(eo).
As in (9) assumption (6) implies

(10) Lg(®) = Exg(e) = 3[Ert(8)1/98.
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Since L(8) is C2 by assumption (5) and 6y (the unique maximizing parameter
in @) is in the interior ofby assumption (4) Le(eo) = 0. Thus by (10)

T 2t

t _ . .
Eke(eo) = 0, This and assumptions (1) and (6) show that (IAJE) Zt=1 6

satisfies the hypotheses of the central limit theorem for mixing processes

S0 that9

(11) (A T7_ A58 2 N(0,v)
(12) V = Ro(80) + 2, . R (80).
From this it follows that

D - -
(13) JT(6T=60) > N(0, L3z (80)VLge(60)).

It remains to provide a consistent estimator of Lgé(eg)VL;é(eo). The
matrix Lgé(eo) can be consistently replaced with [Lge(GT)]”l for the same
reason discussed above that [L'€1;9(_6JI‘)]-1 is consistent. To estimate V observe
that by (6) and line (A-1) in appendix (A) the uniform weak law of large numbers
implies plim RE(GT) = Rk(eg). Suppose then that we wish to approximate V to
within € with probability 1l-a. We choose K large enough that
[ =1
0 < j < k with probability 1-o/(k+l) or more lni(eT) - R (80) ke/2(kt1).  We

V-Ro (6¢) - 2L Rj(90)|<€/2.] Then we choose the sample size T large enough that :

conclude that

k

T _ . T,2T\, oo T, T
(14) v° = RO(G )+ 2Aj 1 Rj(e )

is the required estimator. As a practical rule the number of autocorrelations
(k) which are used must be a fairly small fraction of the sample size actually

available.
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Assumptions (1) - (7) have been chosen for pedagogical reasons: the
results described above hold under much weaker circumstances. The nature of
the proof is such that these assumptions may easily be replaced. For example,
the statement that mixing implies the central limit theorem can be replaced
by any other assumptions (e.g. ergodicity) which imply the central limit
theorem.

A useful feature of the variance correction formula (14) is that it
protects against heteroskedasticity as well as serial correlation. I
hope that these results will be useful in models such as switching regressions

where it is impractical to explicitly model serial correlation in the likelihood

function.



APPENDIX
Uniform Weak Law of Large Numbers [for Stationary Mixing Processes]:

Let ht(e) be stationary and V(G)-mixing with Z:=0?:/2 (6) < B
E[n®(8)]% < B for 6c@ Define BT (8) = (1/DIL_ h'(6) and H(B) = E'(O).

Then HT(E‘) converges in probability to H(8) uniformly over .
proof:
The essential fact from lemma (1) p. 170 in Billingsley [2] is that

(4-1)  |cov(a®(®),n"*(8))] < 2¢1/%

We can now apply Chebychev's inequality

(A-2) pr(|HT(8)-H(B) |>¢

var (HT(8)) />

IA

(1/1H)s

T It covt®(e), 15 (8)) /e’
2, T t 1/2

2
s=1 yYt-s B/e

IA

W/THE ) 2

IA

(4/T)B2 /€2,

Since the final expression converges to zero uniformly in 6 as T



NOTES

(1)
(2)
(3)
(4)

(5)
(&)

(7)

(8)
(9)

(10)

See Hansen [7].
A discussion of mixing is found in Billingsley [2] chapter 4,
See Doob [5] chapter 6.

An alternative proof for a special class of time series models is in
Kohn [8].

See Bowden [3].

A proof of this using strong convergence is in Frydman [6]1. The weak
proof can be found in the appendix to Levine [9].

Interchange of differentiation and expectation is discussed in Cramer
[4] section 7.3.

See Amemiya [1] or the appendix to Levine [9].
Billingsley [2] Theorem 20.1.
See White [10] for the application of this estimator to provide robustness

against heteroskedasticity in OLS. MLE in discrete choice models is
ordinarily inconsistent if heteroskedasticity is present.
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