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We show that perfect equilibria of infinite-horizon games arise
as limits, as T»» and eT+0, of eT-pe.rfect equilibria of the game which
is truncated after T periods of play. A mumber of applications show
that this result provides a useful technique for analyzing the

existence and uniqueness of infinite-horizon perfect equilibria.



l. Introduction

The notion of a perfect equilibrium of a game in

extensive form, introduced by Selten [ 13,14 ], has recently
been found useful in analyzing a wide variety of economic
problems. The set of perfect equilibria can be straight-
forwardly computed in finite-horizon games by backwards
induction from the horizon. 1In many cases, however, speci-
fication of the horizon is arbitrary, and frequently infinite-
horizon games better capture the economics of the problem

(the prisoner's dilemma is an example of this). Unfortunately,
perfect equilibria of infinite-horizon games are more difficult
to characterize. This paper describes a device that can be
used for that purpose.

Our main result is that the set of infinite-horizon
perfect equilibria of any game satisfying a reasonable
continuity requirement is the same as the set of limit
points as T+ and eT+0 of eT-perfect equilibria in the
game which is truncated after T periods of play.2 Here
we follow Radner [9] in defining an e-equilibrium as
a state in which each player, given his opponent's
strategies, receives within € of the maximum payoff he
could obtain. Since the truncated games have a finite
horizon, this reduces the problem of finding infinite-
horizon perfect equilibria to finding finite-horizon
e-perfect equilibria, which can be done via backwards

induction from the horizon.



To demonstrate the usefulness of this technique we
consider several applications. For repeated games we
explain how a multiplicity of infinite-horizon equilibria
can arise from a multiplicity of finite-horizon
€-equilibria. For games with a finite number of actions
in each of an infinite number of periods we show that
games of perfect information have perfect equilibria, and
give an easily verifiable necessary and sufficient
condition for the uniqueness of perfect equilibrium. For
several simple examples we explicitly compute the sets of
perfect equilibria. Finally, we study a special case of
Rubinstein's bargaining game [11l], giving a more informative
proof of uniqueness than-in the original.

Section 2 introduces the notation and contains
definitions and a preliminary lemma. Section 3 gives a
technical analysis of continuity and the limiting
behavior of equilibria. It contains our main result: a
necessary and sufficient characterization of infinite-
horizon equilibria in terms of finite-horizon truncated
equilibria. Section 4 examines repeated games, and
discusses some work of Radner. Section 5 analyzes
finite-action games, and gives an existence proof for
games of perfect information. Section 6 studies the
uniqueness of perfect equilibria for several classes of

games. Section 7 reviews our findings.



2. Games, Subgames, and Equilibria

This section defines games in extensive and normal
form and the associated e-perfect equilibria. We do not
consider the most general definition of a game in extensive
form: our focus is on non-stochastic environments with
only mild informationalAimperfections. However, many
economically important games are in the class we
study.

For our purposes a game (in extensive form) has an
infinite number of periods t = 1,2,... . Each period
all N players simultaneously choose actions from feasible
sets of actions, which we take to be subsets of ]RM.

When they choose an action in period t they know the
entire history of the game until and including time t-1.3
It is possible that the set of feasible actions is
constrained by the history of play.

The outcome of the game in period T lies in ]RMN.
The way in which the outcome is made up of individual
choices is discussed below. The history of the game is
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a sequence of outcomes x = (xl,xz...)elB

The action space of the game E is o € B: it is a list

of all possible histories of the game. An example helps

illustrate this.

Example 2-1 [McClellan's Termination Game]:

There are two players, one and two. Play alternates with



player one moving first. On his move a player may either

continue or terminate the game. If a player terminates

the game in period t he receives a present value of Bta

and his opponent Btb where a and b are scalars and 0<g<l

is the éommon discount factor. If play never terminates

both players receive zero.4
Let "0" denote the option of "doing nothing" and

"1l" be the option of terminating the game. Here N = 2

and M = 1: the outcome of the game is a pair (yl,yz)

where y,,y, € {0,1} © R?. a player must choose 0 if

it isn't his move, or if the game has already terminated.

Thus the action space EA is the set of sequences of the

form ((0,0)1,(0,0)2,...(l,O)t,(O,O)t+l,...) where t is odd,

((0'0)1'(0'0)2'°'°(0'1)t'(0'0)t+1"" where t is even, or

((0,0)1,(0,0)2,...) .

It is generally useful and entails no loss of

generality to designate the outcome 0 € ®r'N

the "null"
outcome "nothing happens". We require that the null
outcome always be feasible. This means that if x is
feasible then the vector x(t), truncated after t by

requiring that the null outcome occur in periods

t+1, t+2,..., is also feasible:

(2-1) Wx €E® Wt  x(t) = (%) 1 XgseuerXgs0,0,.0.) ¢ gP



Let EA(x,s) be the space of all possible outcomes
in period s consistent with the history-xl,xz,...xs_l,
with the convention that EA(O,l) is the set of possible
first-period outcomes. By assumption (2-1) we may consider
this to be the space of vectors y such that
A

(xl,xz,...,xs_l,y,0,0,...)E E” since if

¢ E® then

Z - (Xl,...,Xs_l,y,zs+l,zs+2,.-.)

2(S) = (Xy,eeerXg 1,¥00,0,...) € ® as well.

1f b

is to be the action space of a game then the
choices available to player i in period t given a prior
history x , denoted EAi(x,t), must not depend on what
other players do in period t. Thus, in addition to (2-1),
we must also require that the space of all feasible

outcomes EA(x,t) is the cartesian product of the individual

action spaces
(2-2) wx€EP vt EP(x,t) = x)_ EPT(x,t) .

Thus in Example 2-1 the set of possible outcomes at
time 2 if the game has not yet been terminated,
EA(O,Z)A= {(0,0),(0,1)}, is the cartesian product of

e?l(0,2) = {0} and E®%(0,2) = { 0 , 1 }.

Definition 2-1: A game in extensive form E is a pair

(EA,EV) where EA Cc IB satisfies (2-1) and (2-2) and
EV = (EVl)lz=1 is an N-tuple of valuation functions



EVl:EA + IR assigning a value to each history of the game.
In Example 2-1 where z1 = ((l,O)l,(O,O)Z,...) and

22 = ((0,0),,(0,1)5,(0,0)5,...) E'(0) = (0,0);

eV (z!) = (Ba,sb) and EV(z%) = (8°b,8%).

Example 2-2 [Repeated Games]:

Each agent i has a fixed set of actions 0¢ Aic n?ﬂ a
utility function ui:A+]R where A = x§=lAi and a discount
factor‘Bi. Then in our framework the repeated game has
the action space EA = X:=1A so that history places no
constraints on behavior. The valuation functions are

Vi t

= 7% i
B N(x) = Iy By w(x).

Further examples are given in subsequent sections.

Associated with each game in extensive form are a
collection of truncated games in normal form: N(T) denotes
the normal form of the game truncated at time T by
assigning the null outcome to all periods
following time T. Let us formally describe the strategy
space of N(T). At time s player i,knowing the history
X rXgresesXg_ g, Must choose a feasible action in EA(x,s)
to undertake in period s. (Note that we don't allow

mixed strategies.) Let g;(x) denote this choice. Thus

for s =1 g;E EA(O,l) while for s > 1 g; is a mapping

(2-3) g;:EA(s-l)-+ ®" with gl(x) ¢ P (x,8)
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where EA(t) denotes all possible histories to time t,

i.e. all vectors (xl,xz,...,xt,o,O,...)E EA. A complete
set of contingent choices of this type is called a strategy
and is simply a sequence (gi,g%,...,g%,o,o,...) where

gi& EA(O,l) and for s > 1 g; satisfies (2-3). The set

of all such strategies is called the strategy space for

Si

player i and is denoted N™ " (T). The strategy space for

the truncated game N(T) is just the cartesian product
NS(T) = x§=1NSi(T). Note that Ns(l)sNS(Z)Q...QNS(w)-
While the truncated games depend on which action is
specified as the null action, we will later see that this
is irrelevant for our results.

The outcome function Fos assigns strategy selection

g € N(») the history of the game that occurs when the initial

history is XyreoorXg q and afterwards each player plays glz

Fxs(g) = 2 where for s > 1

l<tx< s-1

(2-4) gt(zl’22’...'zt-llo'o'...) t ZmaX(S,z)

We denote the history that occurs when each player plays
gi from the start by FOl(g).

To illustrate these definitions consider in
Example 2-1 the strategy by player one "terminate in

period three unless player two has already terminated,



after period three don't terminate" which has the form

gl = (010:g§,0,0,...)

1 _ =

g3 = [0 x, = (0,1)
1 X, = (0,0)

and the strategy by player two "never terminate" which

is given by

g2 = (0,0,...).

Then FOl(g) is the outcome that actually occurs so

FOl(g) = ((0:0)1l(010)21(170)31(010)41---)

while F04(g) is the outcome which occurs if the history
before time 4 is Xy =(0,0) X, =(0,0), .and X4 =(0,0) so that
F04(g) = 0. In other words if one reneges on his plan
to terminate in period 3 neither player ever terminates.

Finally if
X = ((0,0)1,(0,1)2,(0,0)---)

(so that two does terminate in period 2) Fx3(g) = x

and one must (and does) choose the null action in period 3.
We turn now to equilibrium in the games N(T).

Complete rationality of all players implies that whatever

the history of the game to date they should choose the

optimal course of action. This is Selten's [13,14]



concept of a (subgame) perfect Nash equilibrium. If
players can only approximately solve this optimization
problem they may only be able to get within € of the
optimum. Thus a generalization of perfect equilibrium

is Radner's [8] concept of a perfect e-Nash equilibrium.

Definition 2-2: g*¢ NS(T) is a subgame perfect e-Nash

equilibrium (or simply e-perfect) iff for each 's > 0,
history x, strategy g¢ NS(T) and player i
Vi 1 %1y - Vi

(2-5) E T (F, (97,9 B (Fygla®)) <& 3

that is, iff in no circumstance can player i improve his

payoff by more than € given the strategies of all players.

Note that g_i denotes the cartesian product of all

players' strategies except for that of player i. Note
also that the restriction s < T in (2-5) would be vacuous ,
since,with g,g* € N(T), for t > T gy = g{ = 0. Finally,

if € = 0 the equilibrium is simply called perfect.

One goal of this paper is to relate e-perfect
equilibria of truncated N(T) games to perfect equilibria
of the N(») game. To this end define the constants wT to
be the greatest variation in any player's payoff due

strictly to events after (T-1) :



x(T-1) = z(T=-1)

At this point wT may be infinite,but we argue later that
most games of interest in economics have wT + 0 as T + o,

The idea behind the limit theorem of the next section

is revealed in

Lemma 2-1:

(A) h* g-perfect in N(T) is (e+wT)-perfect in N{(w)
(B) g* e-perfect in N(«) then
h* = g*(T) = (gi,gi,-..,g;,o,o,oo-) iS

(€+2wT)-perfect in N(T)

proof:

(A) The point is that h* is e-optimal-against strategies
in N(T) while strategies in N(«) differ from strategies
in N(T) only after time T and thus by (2-6) have payoffs
no more than wl greater than truncated strategies.
Formally let g¢ NS(Q) and let x and s be given. Set

h = g(T) = (gl'gZ"'°'gT’0"")' By assumption

Vi i %=1 Vi
(2-7) E (Fxs(h +h )) - E (Fxs(h*)) < €

10



while since h and g differ only after T by definition

(2-8) VN, (gh0"h)) - EVimintth)) oW
Adding (2-7) to (2-8) shows
(2-9) £V (r, (gh,0"h)) - EV(E _(h*)) < e + Wl

Since g, x,and s are arbitrary (2-9) implies h* is

(e+wT)-perfect.

(B) Let h€¢ N(T), and x,s be given. Since g* is e-perfect

in N(«x)

Vi i *-i Vi
(2-10) E'N(F,_(h',g 1)) - EVI(F, _(g%) < e .

Since h* and g* differ only after T

Vi vi T
(2-11) E (Fxs(g*)) - E (Fxs(h*)) Lw.

and also

(2-12) e (r _(ni,n*1)) - eVH(r, (i, g h)) < W

Adding (2-10), (2-11),and (2-12) shows

(2-13) EVY(r__(nt,n*"1) - EVl(Fxs(h*)) <€+ 2w,

XS ))

and thus h* is (s+2wT)-perfect. Q.E.D.

11



3. Continuity and Limit Equilibria

This section contains our main result: a strategy
selection is perfect in N(«) if and only if it is the
limit as T - « and eT + 0 of eT-perfect equilibria in
N(T). Before proving this result we must discuss the
continuity of the valuation functions and the convergence
of equilibria. This requires that we define topologies

on EA and NS(w).

« MN

Recall that EA c xT=l IR = IB. The metric

(3-1) d(x,2z) = sup [(1/T)min{|x; - z4|,1}]
T

induces the product topology on ]B.5 Hereafter all

statements about continuity, convergence, etc. will be

with respect to this topology (relativized to EA).
Having introduced a topology on E® we now discuss

continuity of the valuation function EV:EA -+ :m”

, which
we refer to as continuity of the game. Continuity
implies events in the far distant future don't matter
very much. While this may not be a good assumption in
planning models, such as that 6f Svenson [14], it is a

natural assumption about the preferences of individual

game players.

Definition 3-1: E is uniformly continuous if for all

2,20 c EA, (x™-2") > 0 implies IEV(xn) - EV(zn)l + 0.

12



We shall only be interested in uniformly continuous
games.

Recall that wT is the greatest variation in any
player's payoff due solely to events after T. The idea
that the future doesn't matter very much is captured by

requiring wT + 0.

Definition 3-2: E is continuous at infinity iff wl + 0

as T = o=,

A supergame has w! constant over time and is not

continuous at infinity. A repeated game (Example 2-2 )

T wT-l

with discount factor 1 > 8 > 0 has w = B and is

continuous at infinity provided w1 < o,
An important fact is that uniform continuity implies

continuity at infinity.

Lemma 3-1: E uniformly continuous implies E continuous

at infinity.

proof:

T_#*
I1f, conversely, w 0, then there are sequences
x®,z" with T(n) + «, x®(T(n)) = z"(T(n)), and

IEV(Xn) - Ev(zn)l > 8§ > 0. However, from the definition

of 4, d(x",z") < (1/(T+1)) since xz = z:

Thus by uniform continuity, IEV(xn) - Ev(zn)l + 0,

for 1 < t < T.

a contradiction. Q.E.D.

13



Many economically interesting games are uniformly

continuous. An example gives a broad class of such games.

Example 3-1 [t-Markovian Games]:

The valuation functions have the form

Vi _ @ i
E (X) - Et='[ ut (Xt,xt_l,...,xt_T)

where ut (defined on a suitable domain) are real valued

utility functions. Since the actions available to players
at a moment of time may depend on history, many interesting

games have a Markovian structure. Set

u, = sup |ut(y)|

y € domain ut(-)
then it is apparent that if
g=7 U < °

the game is continuous at infinity.

Example 3-2:

L] - i
£=1 u, < o and the ut are

uniformly continuous. Then E is uniformly continuous. To

Suppose E is t~-Markovian with I

see this let € > 0 be given and choose T such that

z < £€/2. Choose § such that for Iy1 - y2| < 3§

0 -—
t=T+1 Yt
all NT functions ut have Iut(yl) - ut(yz)l < g¢/2T. Then

d(xl,xz) < (6§/T) implies lxi - xil < 8§ fort=1,2,...,T

14



and thus IEVl(xl) - EVl(xz)I < e.

Finally, we must extend our notion of convergence
in E® to the strategy space Ns(w) (and implicitly to its
subsets NS(T) T < »). We choose a topology which captures
the notion of closeness most relevant to perfect
equilibrium : two strategies f and g are close if for

A the histories resulting

every t and initial history x€ E
from f and g being played are close and the history
resulting when any one player deviates from f is close
to that resulting from the same deviation against g.

This topology is generated by the metric

(3-2) d(f,q) =

sup {d(F,, (£),F,, (@), swp [, 0h,e ™), £ (hd,g7H)10.

x¢ EDt i, T
n* ¢ Nl (T)

Our motivation for choosing this topology is
revealed by the following lemma.

Lemma 3-2: Let gn be e-perfect in N(«) and gn + g in a

continuous game. Then g is also e-perfect.

Eroof:

. A
Suppose g is not e-perfect so that for some t, some x€ E ,

and gt ¢ N1 (),

15



Vi ~3i

Vi
E'T(F, (3 - E

-i
r 9 7)) (Fop(9)) > € (2-3)
Since g™ + g, for large n Fxt(él,gn-i) is close to

Vi

Fxt(él,g-l); and as E is continuous, for N large

enough

vi ~i N-i Vi
(3-4) E " (F,,(g7,g 7)) - E (F (@) > ¢
contradicting gn e-perfect. - Q.E.D.

The lemma shows the chosen topology was fine enough
to guarantee that the equilibrium set is closed. Of
course this would be trivial in the discrete
topology, but then we could hardly hope to characterize
infinite-horizon equilibria as limit points. The interest
in the lemma, and the justification of the chosen

topology on Ns(w), is

Theorem 3-3 [Limit Theorem]:

Suppose E is uniformly continuous. Then

(A) A necessary and sufficient condition that g* be
perfect in N(«) is that there be a seguence {gn} of
2wT(n)-perfect in N(T(n)) such that as n + », T(n) + «

and gn + g* (in the space N(«)).

(B) A necessary and sufficient condition that g* be
perfect in N(«) is that there be sequences e?, T(n), and gn such

gn is en-perfect in N(T(n)) and as n+», %50, T(n)-,

and gn+g*.

16



proof:
Since the hypothesis of (A) implies that of (B), it

suffices to show the hypothesis of (A) necessary and that

of (B) sufficient.

(A) Necessary:

We claim the sequence {g*(n)},
g*(n) = (gi,gg,...g;,o,o,...) with T(n) = n has the
requisite property. First, since g*(n) and g* exactly
agree in the first n periods, d(g*(n),g*) < 1/ (n+l)
(see (3-2)). Thus g*(n) -+ g*. By Lemma 2-1(B) we also

have g*(n) 2wT-perfect in N(n).

(B) Sufficient:

wT(n))

By Lemma 2-1(A) gn is (ef +, -perfect in N(«).

Since e + wT(n) + 0, for each 6 > 0 there is an N such

T(n) , e® < §, whenever n > N. Thus by Lemma 3-2

that w
g* is §-perfect. Since this is true for every § > 0, g*

is "in fact perfect. Q.E.D.

.17



4. Repeated Games

Much work has been done on repeated games, although
for such games the perfect equilibrium concept has been
disappointing in failing to isolate a small set of
equilibria.6 Here we briefly describe how our results
apply to repeated games.

Recall from Example 2-2 that a repeated game has
P = x:=lA and EVi = Z:=1 B: ui(a). These games typically
have a multiplicity of perfect equilibria. For example,

let a* be a Nash equilibrium of the static game and let

a' satisfy for all i
(4-1) ul(a') > ul(a*) [pareto dominance]
and

(4-2)  (1+6,)u’(a") > max ul(a;,ar) + gular)

aif Ay
Then the strategies "play ai as long as everyone else
played a:i in the past otherwise play a{ forever" are
easily seen to be a perfect equilibrium in the infinite-
horizon game. We conclude immediately from Lemma 2-1 (B)
that a' can also be supported as an 2wT-equi1ibrium in
the game repeated T periods only. Alternatively we

could easily show that the strategies suggested are

18



2wT-perfect in the truncated game and conclude that a'

can be supported as perfect in the infinite-horizon game.

Example 4-1 [The Prisoner's Dilemmal:

If both prisoners confess both get -1. If one confesses
and his partner does not he gets +2, his partner -2. If
neither confess both get +1. The common discount factor
is 0 < B < 1.

For each T the game has a unique perfect equilibrium:
both players confess. The reason is simple‘- confessing
is a dominant strategy. In the final period both players
must confess. Consequently they must confess in the
previous period, and so forth.

Suppose instead both players confess if and only if
their opponent confessed in some previous period. 1If
a player cheats in the final period he makes BT. If
he cheats in the next to last period he makes (l-B)BT“l
and if he cheats on the t-th period t < T he makes
Bt(l-8—62-83...—BT-t). Thus, this is an eT-perfect
equilibrium for el = max{(l-B)BT-l,BT}.' Since €f + 0
Theorem 3-3 implies the strategy in question is perfect

in the infinite horizon.

The concept of e-perfect equilibrium was introduced
by Radner as a bounded rationality explanation of how
the prisoner's dilemma could be resolved in a finite

horizon., Theorem 3-3 and Example 4-1 make it clear

why the attempt was successful.7
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5. Finite-Action Games

Finite-action games are games in which there are

only a finite number of possible actions in each period.

Definition 5-1: E is a finite-action game iff for each t
A

and history x€ E© the set of feasible outcomes in period t

given the history x, EA(x,t), is a finite set.

This section proves that finite-action games have three

key properties:

(1) they are uniformly continuous if and only if they

are continuous at infinity;

(2) gn converges to g iff for any T gn and g eventually

coincide for the first T periods; and

(3) the strategy space Ns(w) is compact.

As a corollary to these results we show that in
finite-action games of perfect information perfect
equilibria always exist. 1In section six' we use the
results of this section in conjunction with Theorem 3-3
to analyze the uniqueness of equilibrium in finite-action
games. In general it ought to be possible to use our
results to characterize equilibrium sets of finite-action
games that arise in applied economic problems. Note that
repeated finite games such as the prisoner's dilemma are

finite-action games.

20



It is convenient to have a concrete description of
convergence in finite-action games: convergent sequences
in EA must for any T eventually coincide for the first

T periods.

Definition 5-2: {x"} ¢ mB converges finitely to x

(or f-converges) iff ¥T > 1 3N > 0 such that n > N

implies x"(T) = x(T) (i.e. for 1 <t<T XD = x

t t)'

Lemma 5-1: In finite-action games f-convergence and

convergence are equivalent on D,

proof:

f-convergence implies convergence

f
Observe that x" > x iff T(xn - X) =+ « where
T(z) = sup{T|z, = 0 t < T}. We have
d(x,z) = sup [(l/t)min{]xt - ztl,l}]

(5-1) < 1/T(x - z)

Hence T(xn - X) =+ « implies d(xn,x) -+ 0 and thus

f-convergence implies convergence. Q.E.D.

convergence implies f-convergence

Suppose x? + x but doesn't f-converge to x. Then there
is a subsequence {z"} ¢ {x"} and T > 1 such that

z®(T) # x(T). Since z™(T) ¢ EB(T) and E®(T) is a finite

21



set d(z™(T),x(T)) > 6 > 0. However

a(z",x) > a(z"(T) ,x(T)) > & > 0 contradicting z" + x. Q.E.D.

As an immediate consequence we have

Corollary 5-2: In finite-action games uniform continuity

and continuity at infinity are equivalent.

Just as convergent sequences of histories must
eventually coincide in finite-action games, convergent

sequences of strategies must too.

Definition 5-3: {g"} € NS () converges finitely to g

(or f-converges) iff ¥T > 1 3N > 0 such that n > N

implies for 1 < t < T gg = g,

Lemma 5-3: In finite-action games f-convergence and

convergence are equivalent on Ns(w).

Proof of this lemma (which is omitted) parallels that
of Lemma 5fl: the essential point is that NS(T) is a
finite set.

We turn now to the compactness of Ns(m). First
a technical aside. We call a game closed if the action
space E® is closed in B. This rules out degenerate

situations such as the one-player with action space

={(0,0,...),(1,0,0,...),(1,1,0,0,...)}. 1In this game

22



(l,l,oo.) iS the limit Of (1,0,0,...),(1,1,0,0,...),
(,1,1,0,0,...),+«. but isn't in EA. Closedness should
be viewed as a technical rather than a substantive

. 8
assumption.

Lemma 5-4: 1In a closed finite-action game Ns(m) is

compact.

proof:
Since Ns(w) is a metric space a sufficient condition for

compactness is that it be complete and totally bounded.9

Ns(m) is complete

Let {g"} € NS (=) be a Cauchy sequence. By definition of
the metric for each t > 1 and histbry x € g} Fxt(gn) is

a Cauchy sequence in EA. Since EA is closed in the
complete space IB it is complete and Fxt(gn) + z(x,t) € EA.
Define g€ N°(») by g, (x) = (z(x,t)),. Since

Fxt(gn) + z(x,t) and for each T < o« NS(T) is a finite

set, gn converges finitely to g and thus by Lemma 5-3

g” > g.

NS (w) is totally bounded

Fix € > 0. We must find a finite subset of NS(w) such
that every g¢ Ns(w) is within € of some member of the
subset. Choose T > (l-e)/e or equivalently € > 1/(T+l).
We claim NS(T) is the desired subset. It is certainly

finite since it is a finite sequence of mappings with
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finite domain and range. If g¢ Ns(w) then g(T) € NS(T).
By definition for 1 < t < T 9, = (g(T))t. Thus by
definition of the metric on N°(®) given in (3-1) and (3-2),

d(g,g(T)) < 1/(T+l) < €. Thus Ns(w) is totally bounded. Q.E.D.

To conclude the section we prove an existence
theorem. A game of perfect information has no more than
one player making a decision in each period (who the
player is may depend on the history). In our notation ,
for each t and history x ¢ EA,there is a player i such that
EA'i(x,t) = 0; only player i faces a decision.

It is well-known and can easily be established by
backwards induction from the horizon that a finite-horizon

finite-action game of perfect information has a perfect

equilibrium. From this we deduce

Corollary 5-4: Continuous (at infinity) closed

finite-action games of perfect information have perfect

equilibria.

proof:

Each finite-horizon subgame N(T) has a perfect equilibrium
gT. By Lemma 2-1(A) gT is wT-perfect in N(«). Since

NS (@) is compact there is a subsequence {hTy © (g7}
with hT + g* ¢ N°(»). By Theorem 3-3(B) this implies

g* is perfect in N(=). Q.E.D.
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6. Uniqueness of the Infinite-Horizon Perfect Equilibrium

This section uses the limit theorem of section three
to study the unigueness of infinite-horizon perfect
equilibrium. The limit theorem implies that there will
be a unique equilibrium if and only if all convergent
sequences of truncated 2wT-perfeét equilibria have the
same limit as T - », As an aside, note that a necessary
condition for uniqueness is that every convergent
sequence of truncated perfect equilibria have the same
limit.

The first class of games we consider are the
finite-action games of section five. Recall that in
such games a sequence of strategies converges if and only
if it converges finitely (Lemma 5-3). This means that
there will be a unique infinite-horizon perfect
equilibrium if and only if by taking the horizon ,T, large
enough, we can ensure both that a 2wT—perfect equilibrium
exists, and that all 2wT-perfect equilibria exactly agree

in the first k periods. Formally we have

Definition 6-1: A game is finitely determined (f.d.)

iff for any k > 0 there is T > k such that

(a) there is g 2wT—perfect in N(T)

(b) if g' is 2w -perfect in N(T) and k > t > 0 -g_ = g! .
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Proposition 6-1: There exists a unique infinite-horizon

perfect equilibrium in a closed finite-action game that
is continuous at infinity if and only if it is finitely

determined.

Eroof:

f.d. implies existence

f.d. implies the existence of a sequence of 2wT—perfect
equilibria with T + «, By Lemma 5-4 this sequence has
a convergent subsequence, and by Theorem 3-3 the limit

point is perfect in N(«).

f.d. implies unigueness

Let g' and g* be two infinite-horizon perfect equilibria.
By Lemma 2-1 for any T > 0 g*(T) and g'(T) are
2wT-perfect in N(T). By f.d. this means for any k > 0

g*(k) = g'(k) and thus g* = g'.

existence and uniqueness imply f.d.

Assume conversely that g* is the unique perfect equilibrium
of a game which isn't finitely determined. By

Lemma 2-1 g*(T) is 2wT-perfect in N(T). 'Since

the game isn't finitely determined, there is k > 0 such
that for T > k we can find gT 2wT-perfect in N(T) with

gl (k) # g*(k). N(«) is compact, so {g"} has a
convergent subsequence {gn},and by Theorem 3-3 this

subsequence converges to g*. But gn(k) # g*(k), implying
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that gn doesn't converge finitely to g*, a contradiction.Q.E.D.

Thus uniqueness in finite-action games requires that
changes in strategies at the horizon not affect play in
the early periods. As an illustration, consider McClellan's
terminating game of Example 2-1 shown in Figure 6-1.
At each node, the indicated player chooses whether to
"terminate" or "continue". If the game terminates at
node k, k odd, the payoffs are Bk-l(a,b); if k is even,
they are Bk-l(b,a); and if no player chooses to terminate,
they are (0,0).

Let us show that this game is finitely determined

in two cases

case (i) a > 0 a > gb

case (ii) a < 0 a < Bgb

and that it is not finitely determined in the complementary

cases

case (iii) a > 0 a gb

IA

case (iv) a<ao a Bb .

v
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FIGURE 6-/
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To do this note that there is only one history at each
node which allows players a choice: if the game has
stopped, both players must choose the null action. Thus
a strategy may be viewed as a choice of which nodes to
stop at (if the game hasn't stopped already). For example,
if T is even, "stop at T, T-2, T-4,..." is a strategy for
player two: it means that if the game hasn't stopped
before T, two will stop it, otherwise he chocoses the null
action. Note that the truncated games are assumed to
continue forever if they haven't stopped by the truncation
point.

Case (i) is a game which both players want to stop
as quickly as possible. Indeed, in the perfect equilibria
of the truncated game the last player to move must stop,
and in every previous period the moving player stops.
In a 2w -perfect equilibrium the last player to move can choose
to continue. However, at earlier nodes k, the minimum
loss from continuing is Bk min (a - Bza,a - Bb). Thus
if € < Bk min (a - Bza,a - Bb) all e-equilibria must
terminate at all times before k. Since w® + 0 with T we

can always choose T large enough that 2flferﬂxt:emﬁlﬂxialmwe
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both players stopping before T. Thus the game is finitely
determined and both players always stop.

Case (ii) is a game which both players wish to last
as long as possible. Arguing as in case (i) the minimum
loss from stopping at k is Bk min (gb - a,BZa - a). Thus
for k fixed and T large enough the 2w -perfect equilibria require
that neither player stop before k.

Case (iii) is a game of "chicken": each player wants

the game to stop, but doesn't want to end it himself. 1In
the game truncated at an even time T the unique perfect
equilibrium is for two always to stop and one always to
continue. In the game truncated at an odd time T the
unique perfect equilibrium is for one always to stop and
two always to continue. Thus the period one action by
player one isn't uniquely determined and the game isn't
finitely determined.

Case (iv) is a game in which it is pareto optimal
never to stop, but if your opponent decides to stop, you'd
prefer to stop first. It is like a "reverse prisoner's
dilemma": the finite horizon truncated games have a unique
equilibrium "never stop" (which is pareto optimal) while
in the infinite-horizon game the pareto inferior "always
stop" is also a perfect equilibrium. Naturally the
finite-horizon truncated stratégies "stop in every period

before the horizon" are 2wT—perfect; indeed, the only
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sub-optimal play involved is by the last player to move -
he loses no more than BT+lb = wT. Thus the game isn't
finitely determined.

In finite-action games, uniqueness of the
infinite-horizon perfect equilibrium is equivalent to
the condition that changes in strategies at the horizon
have no effect on (equilibrium) play earlier. In
continuous-action games we need not require that such
chahges have no effect on earlier play but only that the

effect is damped out as we work backwards from the horizon.

We illustrate this point with an example.

Example 6-1 [Rubinstein's Bargaining Game with Discounting]:

This example is due to Rubinstein {11l]. Two players, one

and two, must decide how to partition a pie of size one. Both
players have a common discount factor B and a utility function
linear in pie. 1In odd periods player one proposes'a partition
which player two accepts or rejects. Similarly, in even
periods, two makes proposals. Play begins with player one in
period one. Play ends when a proposal is accepted. Thus if

a partition s is accepted in period k, player one gets a

present value of Bks and two Bk (1-s).
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We will show that this game has a unique infinite horizon
perfect equilibrium. To do so we will demonstrate that, for
any history x and time t, if T is big enough all 2wTﬂxmiLﬂxia
have the player moving at t making an offer his opponent ac-
cepts in the same period. We then use this fact to show that
the offer by player one on an odd move k converges to 1/(1+8)
as T - » and wT + 0. By symmetry this is also true of player
two's offers. It follows directly that the acceptance sets of
both players converge. The convergence of offers and acceptance
sets implies that the corresponding strategies (when properly
written out in the formalism of this paper) must converge.
Thus the infinite horizon equilibrium is unique.

We recall the convention that a partition is the amount
of pie going to player one. Let e(k)EBk (1-8)/3. If T > Kk
we claim all e(k)-equilibria in N(T) stop immediately.

Assume without loss of generality k is odd so that one proposes
the partition at k. If two doesn't accept one's proposal either
no agreement is reached or two gets l-s in period k+j. So

two must accept any proposal promising him a present value of
more than Bk+j(1—s) + e(k). In other words if one proposes

a partition of l-Bj(l-s) -8 Xe (k) it will be accepted. If he

is to make a proposal that is refused he must ultimately get
more than this:

(6-1) 8°11-p3 (1-5) -8 Ke (k)1 < B Iste k),
This implies
(6-2) e(k) 2 B (1-B)/2

which contradicts our assumption.
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Since W 0 when T is big enough 2wm < e(k) and at time k
player one must make two an offer he can't refuse.

We continue to consider a 2w' - perfect equilibrium.

Let §k be the largest (sup) proposal one makes at k and §#

the smallest (inf). If 2WT is small enough these proposals

will be accepted by two and the game ends. Thus at k one gets

a present value of at least Bksk and no more than Bk§k.

Now consider one's decision in period k-1 to accept or reject

two's offer. If two proposes more than gl~X (gkgk + wT)

one must accept since he can't get more than Bk§k by continuing.

Similarly he'll reject proposals of less than Bl-k(Bkgk - ZWT)'

Since two's proposals must be irresistable they won't be less

1-k , kok_

than B (B7s 2wT) and two certainly won't be offer more than

Bl-k(Bkgk + 4wT). Reasoning as above, this means that at k-2

two accepts proposals offering him more than

g2k {sk‘l | (1-g17% (g%s* - 2T ] +sz"} and

rejects proposals offering him less than

B2-k {Bk—l [(l—sl-k(ekgk + 4wT)] - ZWT} . As before

this implies that

gk-2. ) - g2k { gk-l |[(a-gt7* (g58% + T - 27}

(6-3) K72 = 1 - g2k {Bk—l [(1_Bl-k (gksk - 2qu . 4wT}
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The claim we wish to establish is that as T + =«

§k,§k + 1/(14B). Since the mapping in (6-3) is a contraction

as we work it backwards from period k+j, j large,

gk approaches [1/(1+B)] + C? wT and
§k approaches [1/(l+6)] - C? wT.

Letting Wl > 0 and noticing that C§

doesn't depend on T yields the desired conclusion.
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7. Conclusion

In games which satisfy an economically appealing
continuity requirement, infinite-horizon equilibria
coincide with the limits (as T + =) of sT-equilibria of
the finite-horizon truncated games. Because finite-horizon
equilibria are easier to work with than infinite-horizon
ones, this theorem provides a powerful tool for analyzing
infinite-horizon games. It can be used to compute
answers to such questions as the existence and unigueness
of infinite-horizon equilibria.

While our analysis examines only simultaneous-move
extensive form games, it can easily be extended to cover
other economic models such as strong perfect equilibrium,
and "state space" games, in which payoffs and strategies
depend not on all history but on a finite vector of "state"

variables.lo'll

The theorem may also extend to the
sequential equilibria of Kreps-Wilson. [4]. As a technical
matter all that is required is to prove an analog of

Lemma 3-1 and to find some reasonable notion of the

convergence of strategies.
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Footnotes

It is our pleasure to thank Timothy Kehoe, Eric
Maskin, Andreu Mas-Colell, Andrew McClellan, Ariel
Rubinstein and Jean Tirole for helpful conversations.
Joe Farrell and Franklin M. Fisher provided useful

comments on an earlier draft.

A similar theorem holds for overlapping generations
competitive equilibrium. See Balasko, Cass and
Shell [1].

More general definitions involving information sets
can be found in Luce and Raiffa [7] or Kreps and
Wilson [4].

We are grateful to Andrew McClellan for providing
this example, which helped clarify our thinking in

the early stages of our investigation.
See Munkres [8] p. 123.

This is pointed out by Rubinstein [10] in the context
of supergames. It remains true in repeated games
with discounting. More details on repeated games

can be found in Friedman [2].

As a model of bounded rationality e-perfect equilibrium
combines almost-optimization with perfect knowledge

of the game and perfect foresight. Levine (5]

presents an alternative formulation.

In finite-action games, continuity at infinity
implies both uniform continuity and that the valuation
functions are bounded. The valuation functions can

then be extended to the closure of EA.

See, e.g., Munkres [8], p. 275.
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10. We thank A. Rubinstein for pointing this out. See
[12] for a treatment of strong perfectness in
supergames.

11. For examples of such games see Fudenberg and Tirole
[3] or Levine [6].
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