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THE DETERMINANTS OF READING SCORES:
AN ANALYSIS BUILT ON EXPLICIT PRIOR INFORMATION
by
Edward E. Leamer

1.0 Introduction

Every analysis of associations in non experimental oettiﬁgs confronts o
a great excess of potential variables. The effectiveness of a data analysis
depends fundamentally on how this morass is reduced to a manageable few.
‘There are, I believe, three different approaches that may be taken. The
first is to let the computer do the job. In the regression setting, this
means using one of the variants of step-wise regression. Variables (or
linear combinations in the case of principal component regression) are in-
cluded if they "contribute adequately" to the explanation, and are excluded
otherwise. The second approach is to let the researcher select the possible
subsets of the variables for inclusion, to estimate these alternative
"models" and to select the one or ones that work "best." The third approach
begins with a formalization of a priori opinion about the size of the coef-
ficients in the general model. The prior opinions are packaged in a proba-
bility distribution and the data are used via Bayes rule to form a posterior
distribution.

Each of these approaches has serious shortcomings. The computer searches
and the researcher searches are quite common in practice, but the Bayesian
approach has remained almostly completely a theoretical toy (pipe dream?).
It is my intention in this paper to demonstrate that the shortcomings of the
Bayesian approach can be overcome at reasonable cost. I will try to con-
vince you that the Bayesian approach, with certain important modifications,
is actually the best of the three approaches, best by a considerable margin,
I believe. In order to do this, I provide not just the recipe, but a taste
of the pudding as well. That is, I will contrast a Bayesian analysis of

reading scores with the two alternative approaches.



2.0 Computer Selection, Ad Hoc Selection or Bayes Selection?

The computer searches are obviously "mechanical” but deserve as well .
the epithet "uninterpretable." Step-wise regression, as it is usually
practiced, has no foundation in statistical theory. 'The estimates and the
standard errors which result have no meaning, or at least a meafiing that
has eluded theoretical statisticians. One problem is obvious with step-wise
regression. If two variables are highly correlated, one will be excluded,
and one included, the included playing the role of itself plus.the role of
the excluded variable. Suppose you wanted to explain school-average reading
percentiles in terms of the two variables: X, the ratio of the
number of black teachers to the number of pupils and, Xys the ratio of white
teachers to the number of pupils. Because these variables are highly cor-
related, step-wise regression will select one for inclusion and the other
for exclusion. The model that results will make little sense. If the
black teacher variable is included, the model will over-estimate the effect
of black teachers and underestimate the effect of white teachers.

Economists, to their credit, do not often use step-wise regression.
Instead, they try different subsets of the variables and select the model
that "looks best." To continue the example, they might first regress
reading percentile on the total teacher/pupil ratio (x1+x2), and then try in-
cluding both variables separately, x; and X,. If the second equation pro-
duces different signs for the two coefficients, if the coefficients are not
"significant," and if the R2 is not much better than the first equation,
then they may revert to the first.

The step-wise procedure produces the non-sensical result

(1)



The researcher-selection procedure produces one of two sensible outcomes

P = Bo + B(x1+x2) » OT : (2)
P = Bo + 31"1 + Bzx2 . - (3)

The second equation is selected if §1 and §2 are "close" and if the hypo-
thesis ﬁl = BZ can be rejected at traditional levels. If §1 = éz can be

rejected, and if Bl and éz are not close, say opposite in sign, then you

select another variable, say Xq, which is gsufficiently correlated with

either x, or x,, that the regression

-A ~ A ~ 4
P Bo + lel + 82x2 + B3x3 (4)

is "OK."

By now you should realize what is wrong with the researcher-selection
methods. They are ad hoc. They are whimsical. For reasonably complicated
problems they cannot be fully reported. They depend on the researcher's
judgment, in this case the opinion that Bl and Bz are close. The final
model is therefore an unknown mixture of the data information and the im-
plicit prior information. There really is no way to tell from the reported
equations how many were tried and what the researcher's prior was. There
is, furthermore, no way for the researcher to know if he is using his prior
information correctly.

The third method, the Bayesian approach, seems ideally suited to this
problem. The data alone probably camnnot be used to estimate sensibly 81.

B2 and 83. We can augment the data information with explicit prior



information. It is'computationally most convenient if the prior for Bo,
Bl’ 82' and 83 is in the form of a multivariate normal distribution. To
use the same information as the ad hoc searcher, the-difference 81 - 82 can
be taken to have mean zero and variance V,, and 83 can be taken-to have
mean zero and variance VZ' All other linear combinations, except those of
the form a(Bl—Bz) + b83, can be taken to have infinite variance, to reflect
a state of relative ignorance about other parameters. The problem with the
Bayesian approach now arises. What numerical values should be selected for
V1 and V2? No one that I know can select these numbers comfortably. Under
the assumption of normality, the interval —1.96V§ < 61 - Bz < 1.96V§ has
probability .95. In order to select Vl’ you must ask yourself how differ-
ent Bl and 82 can be. These coefficients are changes of the reading score
in response to changes in the teacher-pupil ratio. As for myself, when I
try to select V1 I start to think about (61+82)/2. It is hard to think

about Bl - Bz without thinking about the absolute size of Bl and 82. To be

explicit, let us write the model as

B +6, Bl—B
By + g (xptxy) + =5

+d
L}

(xl 2) + B

60 + 61(x1+x2) + 62(x1—x2) + B3x3‘ .

Suppose that you decide (Bl+82)/2 has mean M.3 and variance V3; by that I
mean you are willing to announce that the interval

M3 - 1.96V§ < (BI+62)/2 < M3 + 1.96V§ has prior probability .95. It may then

make sense to think that Bl and BZ are different by no more than 10 per cent
of the mean: |[B, - le < .1(!81l+|62|)/2. Possibly you could represent

this by selecting 1.96V? =
about (B +B )/2 you should let 1. 96V';5 .1(M3+1 96V';i

.1M3; or maybe to allow for your prior uncertainty



Next we have to select M3 and V3, the mean and variance for
61 - (61+Bz)/2. If S 1s the percentile reading.score, then 6 is the im-
provement in the percentile induced by changing the teacher-pupil ratio by
one. An experiment that would have more meaning would be to increase the
teacher—p;pil ratio from 1/50 to 1/25. The variable x, + x, increases by
.02 = 1/25 - 1/50, and S increases by .0291 - .02(81+Bz)/2. Now ask your-
self by how much would the reading scores improve if the teacher-pupil
ratio increased from 1/25 to 1/50. That seems to me to be a big improve-
ment in the quality of education and I would imagine a big increase in
reading scores. A big increase in scores on a year-to-year basis is, I
suppose, 5 percentiles. But something is wrong here; if you start at the
98th percentile, you can hardly improve by 5 percentiles. And if you im-
ﬁroved the teacher-pupil ratio and maintained it, you can hardly improve by
5 percentiles indefinitely. A change in the functional form is required,

and one that seems to make sense is
100P/(P-100) = 90 + 91(x1+x2) +‘92(x1-x2) + 63x3 . (5)

The transformation S = 100P/(100-P) stretches the interval from O to

100 into the interval from zero to infinity. The derivative of S with re-
spect to P is (100)2/(100-P)2. This is one at P = () and increases monotoni-
cally as P approaches 100. This means that a given change in the teacher-
pupil ratio will have the largest effect at low reading percentiles and will
have an increasingly imperceptible effect as P approaches 100. An alterna-
tive dependent variable is 1n S where 1ln is the natural logarithm. Table 1
compares the changes in P associated with equal changes in S with the changes

in P associated with equal change 4n 1n S, I -believe that the former



steps in P better represent the outcome of equal amounts of teaching effort,
and I will adopt the first dependent variable, although for statistical reasons
In S could be better.

PRSI ZVRTE R

T Next we have to decide if the linear function xl x, is better than
some non-linear function, such as 1n(x1+x2). If T represents the number of
teachers and P the number of pupils, then the linear form S = Bo + BlT/P has
derivative 3§/3T = BllP. This means that the marginal effectiveness of an
extra teacher decreases with the number of pupils but is independent of the
number of teachers. On the other hand, the log-linear form
S = Bo + Blln(T/P) has derivative 9S/0T = BllT, which decreases with the
number of teachers. The log-linear form thus includes a saturation effect as the
number of teachers increases. It seems to me to be a more sensible char-
acterization of the school learning environment. In order to allow for
differences in the effectiveness of black and white teachers, you could use
the functional form S = B0 + Blln(x1+82x2) + 83x3. This form is non-linear
in the parameters and is consequently difficult to estimate. A less desir-
able functional form that is linear in parameters is
x)
S = 100P/(100~-P) = Yo + (Yl+v2 1 2)1n(x1+x2) + Ya%4 (6)

Having iterated to this new, more sensible funétional form, let us now
think about the prior distribution for Y, and YZ' The parameter Y1 is the
change of S with respect to a percentage change iﬁ the teacher-pupil
ratio 1f all teachers are white. A large change in S is 50 units. That
corresponds to a change in the reading percentile from 0 to 33, or 33 to 50,
or 50 to 60. To get such a dramatic changé in the reading score, you would

have to double the number of teachers (I guess). This allows me to solve

for a guesstimate of'Y1 : 50 = Y1(1n2x-1nx), or Yl = 50/1n2 = 72. This will



serve as my prior mean. I am not an educational expert and I am very un-
certain about Yy° Accordingly, I will select the prior variance of Yl to
be (25)2, thereby asserting that Yy is quite likely (probability .95) to be
in the interval 72 - 1.96 - 25 < Yy <72 +1.96 * 25. Because E don't
think there is a substantial difference between black and white teachers I
‘will select the prior mean of YZ to be zero and the prior variance to be
(5)2, thereby assigning prior probability .95 to the interval

-5 ¢« 1.96 < YZ <5+ 1,96, Similar considerations would produce a prior for
V3.
If you are tired from all this, a bit confused, and rather incredulous,

then I have made important point number one. If you think the functional
form (6) is likely to be a better representation of the data than (4) and
if you think you know something about the parameters in (6) but have a hard
time thinking about the parameters in (4), then I have made important point
number two.

Point number two is that there is a substantial side benefit to a
Bayesian approach. In order to think about prior distributions for the param-
eters of a model, the parameters have to make sense. You are forced into
choosing a functional relationship that can be understood. You will identi-
fy parameter values that are extreme, and you will be in a position to be
surprised by the data. (It is surprises that allow creative learning.)

Point number one is that it is difficult, if not impossible, to be a
textbook Bayesian. There has to be a reason why a formal Bayesian analysis
is not used in practice, when judgment is so often used and so often re-
ported as the reason for selecting one set of estimates over another. The

reason, I believe, is that researchers are unable to form complete prior



distributions. Even for the relatively simple problem reported above there
were so many twists and turns, so many partly arbitrary decisions, that you
have to feel uncomfortable with the final product., You ought to be uncom-
fortable as well with the ad hoc selection procedure, but most people are
blissfully ignorant, and act as if the equation they gselect was really the
only one that matters anyway.

The obvious benefit of a Bayesian approach is that you make overt use
of fully articulated prior information. You understand exactly what you
have done, and so does your reader, at least to the extent that a prior
probability distribution is understandable. But that's the rub. It's dif-
ficult to select the prior distributions, and it is logically impossible to
understand fully any given distribution. The cumulative distribution for a
single parameter B is F(c) = Pr(B< c). In principle, you have to select
F(c) for every value of c. That will take an unlimited amount of time.
Instead, the cumulative is parameterized in terms of a few parameters, say
normal with mean M and the variance V. These parameters are then selected
by introspection concerning a couple of points of the cumulative distribu-

tion, say .025 = F(cl) and .975 = F(cz), which imply M + 1.96V;ﬁ -c and

M- 1.96V% =c,. In so doing, you have selected the complete cumulative
distribution, even though virtually every point has mot been given the
slightest thought. Moreover, even the values of ¢ and c, are difficult to
choose. I can't, and I doubt that you can, distinguish between probabilities
.01, .02 and .03. It could well be that the value of ¢ that I select in
fact implies .01 = F(cl) rather than .025 = F(ci). I really don't have any
way of knowing.

If you are now prepared to discard forever the Bayesian approach,

please recall that I promisedto demonstrate that the shortcomings can be



overcome. The way to do this is a semsitivity analysis. There are two
kinds of senmsitivity analyses. A local sensitivity analysis ltudies the
changes in the posterior distribution induced by small changes in the prior
distribution. A global sensitivity analysis studies thé changes in the
posterior distribution induced by large changes in the prior. In each case
it is up to the researcher to identify interesting perturbationms, large or
small.

Let us take the prior for the vector of coefficients £ to be multi-
variate normal with mean vector m and variance-covariance matrix V. Given
the usual normal linear regression model, it is then possible to compute the
posterior distribution f(BIY,m,V) where Y stands for the observed data.
Various features of the posterior distribution, such as the mean E(BlY,m,V),
the mode M(B|Y,m,V), or the probability Pr(BiEOIY,m,V) are natural candi-
dates for reporting. In a local sensitivity analysis you would report the
derivatives of these quantities with respect to the prior mean vector m and
the prior variance-covariance matrix V.

A global sensitivity analysis proceeds somewhat differently. We begin
with a rather general family of prior distributions, say all those with a
given mean vector m. Corresponding to this family of priors is a family of
posteriors. Extreme members of this class are identified and bounds for

the issues of interest are reported, say
nin E(B, |Y,m,V) < E(B, |Y,m,V) < max E(B,|Y,n,V), or
v i - i - v i

min Pr(8,>0|Y,m,V) < Pr(8,>0[¥,m,V) < max Pr(Bi>0|Y,m,V) .
\ - - - T v -

If these bounds are too wide to be useful, you must seek ways credibly to

narrow the family of priors. Onme possibility is to restrict the variance
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matrix from above and below, V, < V < V*, where A < B means B -~ A is posi-
tive definite. The narrower is the "interval" between V, and V%, the
smaller will be the family of posterior distributions and the tighter will
be the bounds for the issues of interest. The ideal outcome is that you
can identify a family of priors so broad that with virtual certainty your
pfior is a member, but so narrow that the specification intervals for the
issues of interest are useful. If these intervals are wide, and the family
of priors cannot be credibly reduced, then inference with your data set is
suspended.

The point of a global sensitivity analysis is to base inference only
on assumptions you can comfortably make. I am not comfortable with the as-
sumption that the prior for B is a multivariate normal distribution with
mean vector m and covariance matrix V. There are settings in which I am
comfortable saying the prior is located at m. I also think it is very in-
formative to analyze the data by bounding the prior covariance matrix from
above and below, V, < V < V*, but I am somewhat unhappy with the assumption
of normality which underlies this bound. (I am equally uncomfortable with
the assumption of normality for the error distribution (sampling process).)
I often have feelings about signs of coefficients and I would like to be
able to use prior bounds of the form P, < Pr(Bi>0) < P*, Computer codes
that make use of the prior bound P, < Pr(BiZO) < P* or that compute
posterior bounds for Pr(8120|Y) are not yet available, and in this paper 1
will present posterior bounds for E(BiIY,m,V) based on prior bounds for V.

’2.0 Mathematical Results

.....

presented are based on the assumptions that: (1) the observable T X 1 vec-

tor Y has a multivariate normal distribution with mean X8 and variance
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021, where X 1s a T X k observable matrix, B is a k X 1 vector of unobserv-
able parameters, and 02 is a scalar variance parameter; (2) the vector 8 has
a multivariate prior distribution which is normal with mean m and variance
V. From this joint distribution of Y and B it is straightforward to compute

the conditional distribution of B given Y, which is normal with moments

B(V,m) = E(B|Y,V,m,0%) = (8+V 1) L (ub+v 1m) (N

Var(EIY,v,m,oz) = v ht

where

2

H=o0 “X'x ,

2

Hb = 0 “X'Y .

Although these moments condition on 02, an unknown parameter, I will be
acting as though 32 = (Y-Xb)'(Y-Xb)/(T-k) were a perfect estimate of 02, and
for computational purposes replace 02 by 82 in every formula. Formally
speaking, I will be acting as if the product of a normal kernel and a Student
kernel can be well approximated by the product of two normals. This requires
that the degrees of freedom T - k be large enough that 02 is accurately esti-

mated.
The local sensitivity analysis discussed in Section 3 proceeds straight-

forwardly by differentiating (7) with respect to the prior mean m:

B/om = vyl |

This matrix of derivatives can be collapsed into a scalar when interest
focuses on some single function of B, say y'B where Y is a vector of con-

stants. Then
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3'8/om = ' @mv Nl | ®

The global sensitivity analysis makes use of the following result from
Leamer (198l1). In these results the prior mean is taken to be the vector

zero without loss of generality.

Theorem 1: Given that V > V, with V, positive definite, then g(V) lies in the

ellipsoid

B - £,)'H,(B-£,) <c, (9

where

e o]
*
L]

HV,H + H

Fh
L]

-1
o = (HV,H + B)™ (HV,Hb + Hb/2)

H+ v;l)'l(ub + v;lb/Z)

e, = b'V;i(H + Vi) lmb/a.
Conversely, any point in this ellipsoid is a posterior mean B(V) for some

v > V,.

Theorem 2: Given that V < V* with V* positive definite, then B(V) lies

in the ellipsoid

(B - £%)'H*(B - £%) < c* (10)

where

1

H* = (V¥ © + H)

£ = (v¢1 4 1)~ lub/2

1

c* = b'H(V* T + B) LEb/4.



13

Conversely, any point in this ellipsoid is a posterior mean B(V) for some

V < VA,

Theorem 3: Given that V, < V < V* with V_ and V* positive definite, then

B(V) 1ies in the ellipsoid

A A A

(B-£) "H(B-£) < ¢ (11)

where
H = (H+v*'1)(V;I-v*'l)'l(u+v*'1) + (a1l
= 1w + e @ v e )

c = b'n(u+v*'1)'1(v;1-v*'1)(u+v*'1+v;1-v*'1)'lnb/4

Ellipsoids (F), (9), (10) and (11) are depicted in Figure 1. Ellipsoid
F allows V to be any matrix and has a boundary that is generated by priors
which assign zero prior variance to some linear combination of parameters
but are otherwise diffuse. In other words, these are least-squares
estimates subject to linear restrictions. These boundary points are
not obtainable if the prior variance matrix is bounded from above or from
below, with the exception of the origin in the former case and least-
squares in the latter.

As sample size grows, the outside ellipsoid (F) does not collapse,
the ellipsoid (10) which contains the origin grows to fill all of (),
and the ellipsoid (9) which contains the least-squares point collapses
to that point. Thus, in order for large samples to make priors irrelevant
it is necessary (of course) to exclude dogmatic priors, that is to bound
the prior variance away from zero. Provided that dogmatic priors are
excluded, 0 < V,, the ellipsoid (11) as sample size grows will eventually

shrink to the least-squares point.
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FIGURE 1: Ellipsoidal Bounds for Families of Prior Variance Matrices

(F) o<v
(9) v, <V
(10) vy
(1) v, <ve<w
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3.0 An Analysis of Reading Score Data

To 111ustrat¢lthe Bayesian techniques, I present an analysis of the
determinants of elementary school reading scores in the Los Angeles
Unified School District. The data were kindly provided by J. Ward
Keesling. Included in the data set are reading scores for each of 436
elementary schools beginning in 1969 and ending in 1975. Also included
are a fairly long set of variables which describe characteristics of
schools such as race, and average family background.

The basic model which I will study takes the reading percentile
in the spring of year t, denoted by P, to depend on the reading percen-
tile the previous spring, PO’ the teacher/pupil ratio, X, and the non-instructional

expenditure/pupil ratio, X,:

100P/(100-P) = §100P,/(100-P,) + B + 6la x, + Yln x,,

where §, B, © and Y are parameters to be estimated. The transformation
100P/(100-P) has the effect of stretching out the high percentiles. This
reflects the difficulty of inducing schools with high scores to improve
even more. In the absence of instruction, the current reading percentile
can be expected to be somewhat lower than the previous percentile,

largely because instructed students are improving their skills and '"raising
the curve" on which the percentiles are computed. The quality of instruc-
tion is measured in terms of the pupil/teacher ratio and the expenditure/
pupil ratio. My suspicion 1s that reading achievement depends primarily
on the size of classrooms and only incidentally on expenditures other

than teaching salaries such as the hiring of administrators or the purchase
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of equipment. Ideally, the term x, would include expenditures for class-
room materials. Since it does not, y must be expected to be a rather

small number.

The parameters B, 6 and Y are allowed to depend on seéeﬁ variables:
three racial composition variables, the logarithm of average family
income, adult educational attainment, crimes, and pupil stability. These
variables affect B because they measure to some extent the reading train-
ing that takes place outside of school. The variables affect 6 and Yy
because they measure to some extent the quality of the school environ-
ment and the receptiveness of students to reading training. It is
anticipated that some schools will be so affected by student turnover,
criminal behavior, and adult indifference that no matter what quality
of reading training is offered little learning can occur. In that case
6 and Y would be very small numbers.

These variables are listed and more fully defined in Table 2. You
will find there also a list of variables which were excluded from this
study. The general research strategy which I am recommending begins with
a model which is over-parameterized by traditional standards. The model
which I have selected has twenty-five variables, including the constant
and interactions. I do not expect that an ordinary least-squares regres-

sion with this model would make much sense. I do expect the Bayes estimates
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to be reasonable, gnd the problem of "over-fitting" is cured by the use of
a proper prior distribution. But you may now ask why stop at twenty-
five variables? If you included the twenty other variables in Table

1 in the interactive form the model would include eight-four variables.
Actually;:I do not think that eighty-four is too many at a conceptual
level. However, my computer program can handle only twenty five. By
excluding these fifty-nine variables, I don't think I will be greatly
influencing my inferences from this data set. Partly their effects are
small and partly their effects are already part of the model. But there
are many interesting hypotheses which I regrettably have chosen to ignore.
For example, do black students respond better to black teachers than

to white teachers? Are unhappy teachers ineffective? By listing these
excluded variables, I hope I have made clear that any statistical analysis
for reasons of costs operates within a horizon. We must accordingly
reserve the right to extend that horizon when data peculiarities suggest.

The model including interaction terms is

7 7 7
S = 6. + (B, + IB,z)+(O,+ 06,z,)1lnx +(Y,+ Iv,z,) 1lnx
0 A o 07 o1 1 (S i ! 2

where S = 100P/(100-P) and S, = 100P0/(100-P0). The issues of interest

0
which I will discuss are the nine derivatives

ds/d 1n x = eo + Zeizi
ds/d 1n X, =Yy + Zyizi
dS/dzi - Bi + 61 in x) + Yy 1n x, i=1, ..., 7.

The first two of these derivatives measures the effectiveness of teachers

and expenditures in raising reading scores. These depend on the characteristics
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of the schools. I will provide estimates of these par;;etets for the
"average" school and for several extreme schools. The remaining seven
derivatives will be evaluated only at the average values of lﬁ x; and lo Xy

In order to perform a Bayesian analysis it is necessary to form a prior
distribution for the 25 parameters. This is done by selecting prior means
and variances for 25 linear combinations of parameters, which are a priori
distributed independently of each other. You regard a parameter 91 to be
independent of 62 if, given information about 62, you do not change your
mind about 61. The twenty five linear combinations of parameters which I
take to be independent are listed in Table 3. There are sixteen of the in-
dividual parameters and 9 linear combinations indicated by dS/dzi or dS/dxi.
These are derivatives of S evaluated at the data means of 1n xy and Zg.

It is appropriate, actualiy desirable, for you to question each aspect
of my prior distribution. If this distribution greatly misrepresents your
own opinions, then the sensitivity analysis that will be discussed will be
less useful. I have not been engaged in research on reﬁding achievement,
and I ought not be expected to have the opinions of experts in the field.
Another interesting approach would be to interrogate experts to elicit a
more informed prior.

In Table 2, I have reported.means and two times the standard errors for
each linear combination of parameters. The linear combination is thought to
be highly probable (.95) to be within two standard errors of its wmean. Ex-
planations for these choices are as follows:

1) s4: - The eoeffieient of last year's reading score is quite
likely. to be in the inte£;al from .8 to 1.2.
(2) By: One way to think about the constant is to suppose that z,

and 1n X, are all zero in which case the model becomes
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S = GSO + Bo, but this is taking the functional form too
seriously. It is better to think of Bo as being selected
to make the estimated function approximate 1n the region of
the data as accurately as possible the true functionms.

This complicated task will ordinarily leave you with little
knowledge of the constant. Hence the prior standard error
is set to infinity.

(3) dS/dzlz Referring to Tabler}, a large change in S is 50 units.
Steps of fifty units in S correspond to changes in the
percentile from 33 to 50 to 60 to 66 to 71. As the racial
composition varies from zero percent Spanish to 100 per-
cent Spanish, I doubt that year-to-year changes in reading
scores would vary by more than 100 units.

(4) dS/dzZ: Same as (3).

(5) dS/dz3: Same as (3).

(6) dS/dzA: Each 10% change in family income, could affect year-to-
year changes in reading scores by no more than 5 units.

(7 dS/sz: Each grade change in adult education level is unlikely to
affect year-to-year changes in reading scores by more than
10 units.

(8) dS/dz6: A change in the crime rate per student from n per thousand
to n + 1 per thousand is unlikely to affect year-to-year
changes in reading scores by more than 5 units.

9) dS/dz7: When the percent of students who remain in the school varies
by 1, year-to-year changes in reading scores are unlikely

to vary by more than one unit.
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(10) ds/din X3 A one percent increase in the teacher/pupil ratio is
likely to increase year-to-year changes in reading
scores by roughly 2.5. This change is unlikely to be
outside the interval from -2.5 to 7.5.

(11) ds/dln ;¢ The expenditure effect is expected to be half the
teacher effect. A one-percent increase in expendi-
tures is unlikely to change reading scores by more
than 6.25 or less than -3.75.

(12) 61, Yy 1 # 0: All the interactive parameters have mean zero. My

uncertainty about these parameters is similar to my

uncertainty about the derivatives dS/dzi.

Least-square estimates, three stepwise estimates and Bayes estimates of the model
for grade 2 are reported in Table 4. The corresponding estimates of the par-
tial derivatives dS/dzi and dS/dln x, are reported in Table 5. It will come
as no surprise to those of you who analyze data that the least-squares
estimates are peculiar in many respects. This collinear data set could
hardly support alone the estimation of such a cbmplex model.

A typical discussion.of these least-squares estimates might proceed
something like the following: ''The most significant variable is last year's
score, with a surprisingly low coefficient of .21. Students who finish the
first grade with a measured reading advantage find that only 21%
of the advantage translates into improved scores the following year. An-
other significant variable is adult education which reduces the effective-
ness of teachers, but raises the effectiveness of expenditures so that over-

all the adult education variable has a positive effect on reading scores.
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The three crime variables all have significant coefficients. Crime surprisingly
is estimated to have a positive impact on teacher effectiveness. Crime has
a negative effect on expenditure effectiveness and overall reduces the rate
of learning, though insignificantly so. No other variable in tﬁe least-
squares estimate in Table 4 has a t-value in excess of 2. Of the derivatives
reported in Table 5 only the pupil stability variable has a t in excess of
2, although family income has a t of 1.9. One surprising result in Table 5
is that teachers are estimated to reduce reading scores. Some of these un-
usual results may be due to the collinearity problem which is solved by
stepwise regression.

Three methods were tried, each using SAS default options for termination.
The forward selection method includes sequentially the most significant
variable until no variable can be found with "significance level" .5 or less.
Backward elimination deletes variables sequentially until all included
variables have significance level .1 or less. "Stepwise" both adds and
removes variables with a significance level .5 to enter and stay. All
three methods select last year's score for inclusion. All three methods
select the following six variables for exclusion: X Spanish, % Asian, pupil
stability, the teacher-pupil ratio’interacted with Z Spanish and ¥ Black.
The derivatives reported in Table 5 are generally not too sensitive to
the choice of variables. The exceptions are the teacher/pupil ratio estimated
with the backward elimination method. The method that seems to give the
best results is the "stepwise" method. It includes few variables all with
the right sign. These estimates imply that family income, pupil stability
and non-instructional expenditures improve learning rates and blacks reduce

learning rates."
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I hope you have detected the quotation marks at the beginning and the
end of this sequence of sentences. I do not want to be blamed for saying
such things. It 1s clear there is a problem with the least-squares esti-
mates, but you will be lucky indeed if stepwise methods could cure it. Re-
searcher-selection methods are much better because they make use of a
221953 judgments. Actually, in the absence of a priori opinion, there is no
"collinearity problem" and there is nothing wrong with the least-squares
estimates. Remember it was the "wrong" signs that made you want to omit
variables. The selection of the "stepwise" estimates over least~squares,
forward selection and backward selection was based on Judgment about the
coefficients. The alternative is a Bayesian analysis which makes use of
fully articulated priors in a logical, f&rmally correct manner.

You will find Bayes estimates of the model in Tables 4 and 5. These
estimates are based on the prior described above with zero means for every
coefficient except the teacher/pupil and the expenditure/pupil coefficients.
This prior therefore does not embody much of the information about signs of
coefficients alluded to above. As will be shown below, this doesn't matter
very much. In any case, the Bayes estimates in Tables 4 and 5 are all sensibly
signed with reasonable magnitudes, with the exception of the crimes
derivative in Table 5 and the interaction between teachers and crimes and
stability in Table 4. The crimes derivative does have a small t-value
and it will be further discussed. The Bayes derivatives reported in
Table 5 are similar to the least-squares derivatives although the teacher
effect is rather close to the prior mean. This is consistent with the low
t-values for the teacher variable. The Bayes estimate of the coefficient

. on last year's score is in contrast only slightly larger than least-squares
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and is rather far from the prior mean of one; Only one other of the Bayes
estimates is more than two prior standard deviations from the prior mean:
the family income derivative. None of the Bayes estimates of the deriva-
tives is more than two sample standard deviations from the least-squares
estimates. ﬁhat is true for this problem, but is not true generally,

is that the formal Bayesian analysis has not generated conclusions that are
much different than can be oﬁtained by an inspection of the least-squares
estimates and standard errors. The construction of the prior was nonetheless
useful because it prepared me for the two surprises in this data set: the
small coefficient on last year's score and the large derivative for family
income.

One issue that could be studied with this data set is the optimal al-
locatién of resources across schools. It could well be that some school
environments are so antagonistic to learning that no reasonable efforts
could raise reading scores significantly. Estimates for several schools
of the change in the reading score induced by a one hundred percent change in
the teacher/pupil ratio and the expenditure/pupil ratio are reported in
Table 7. School characteristics are reported in Table 6. School #60 is
white, wealthy, educated, crime-free and stable. School #66 is stable and
Asian. School #215 is Spanish, poor, uneducated and crime-ridden. School
#232 is Spanish, poor and uneducated. School #269 is poor and integrated.
School #283 is Black, poor, uneducated and crime-ridden. (Notice its sur-
prising improvement of reading scores.) School #308 is integratedland
crime-riddemn. Least-squares estimates of the effectiveness of teachers and expendi-
tures reported in Table 7 vary unbelievably from school to school. Teachers are

estimated to have a very deleterious affect in the white wealthy school, but a strong
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positive effect in the poor, black school. This is an example of what happens
if you "overfit," that is, if you select a parameterization thatvis too
rich to be supported by the given data. The overfitting problem is cured
by the use of a proper prior distribution, and the Bayes estimates vary
little from school to school, especially so when compared to their standard
errors. The standard errors on the teacher effects are large, and the
Bayesian method has done little more than select a sensible point from a
large confidence set. The standard errors for the expenditure effects are
smaller, and the Bayes estimates are sometimes farther than two sample
standard errors from the least-squares estimates, even though the prior
for this coefficient is rather diffuse. This occurs often in collinear data
sets because prior information about Bl can have a large impact on the
estimate of 62' It is for this reason that informal inspection of the
least-squares results can be very misleading. I have included in Table 7
the stepwise estimates, which also purport to have cured the overfitting
problem. In the sense of not varying much from school to school, they
are successful. But, to my way of thinking, they overestimate the expendi-~
ture effect and underestimate the teacher effect (i.e. zero). As explained
in the introduction, this is an expected feature of stepwise procedures.
Everything that has been reported to this point is arbitrary and whimsi-
cal. The Bayes estimates'and the least-squares estimates are based on two
specific prior distributions, neither of which represents my opinions. I
certainly don't have the diffuse, uninformed prior which is implicit in
least-squares. The Bayes estimates are built on a prior distribution that I
selected to approximate my beliefs, but there are an infinity of other dis-

tributions that could do as well or better. Accordingly, I will now report
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a sensitivity analysis which is intended to show whether inferences hold up
to reasonable changes in the prior mean vector and the prior covariance
matrix.

Table 8 contains the derivatives of the Bayes estimates with respect to
the twenty-four prior means described in Table 5. These derivatives are
multiplied by the prior standard errors to show what happens when the prior
mean changes by a reasonable amount. Blanks indicate small numbers. Take,

for example, the crime variable which has a Bayes estimate with the wrong

sign, .22, The derivative with respect to the prior mean on the total

Black effect is -.04 in units of the prior staﬁdard error. If you are
willing to raise the prior Black effect by .5 (one standard error), you can
lower the crime effect by .04. I am unwilling to do that because I don't
think Blacks increase learning rates. I might raise the prior mean for
income or education but that would only make more positive the crime coef-
ficient. I am also willing to have a negative prior mean for crime and a
positive mean for stability, both of which reduce the crime estimate, but I
am unwilling to change these means by enough to change the sign of the crime
estimate. I conclude that I can't change this sign by a reasonable change
in the prior means. Generally speaking, the Bayes estimates seem relatively
insensitive to choice of the prior mean.

The sensitivity of the coefficient on previous score with respect to
the prior variance matrix is reported in Table 9. The upper bound and
lower bound for the prior variance matrix are UﬁV and OiV where V is the
prior variance defined in Table 3. Theorem 3 is then used to bound the set
of estimates from which the extremes are selected. If oﬁ - o: there is

~ 2 ~

only one covariance matrix V that satisfies the bound OLV V< OEV, namely

A
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~

V= ogv. Then there is only one Bayes estimate. The diagonal of the matrix
reported in Table 9 therefore contains various Bayes estimates as the prior
covariance is scaled up and down. The lower right 1s the least-squares
estimate, ,21. The upper left is the prior estimate, 1, and the center is
the Bayes estimate ,25. As we move from the center to the upper right, the
upper bound for the prior covariance matrix is increasing and the lower
bound is decreasing. At the extreme upper right corner, the prior covariance
matrix can be anything. 1In that event, there is a covariance matrix which
generates a Bayes estimate as large as 1.04 or as small as .17. It is
impossible to get estimates outside that range. These estimates are actually
constrained least-squares estimates using linear combinations of the prior
constraints.

From my perspective, the family of all prior covariance matrices is
much too wide a set of as;umptions and I feel confident that I can credibly
eliminate many. I suppose I could live with a prior that is twice as dif-
fuse as mine, or twice as sharp, but not too much farther away. In that
event, the bound in the box in Table 9 applies. Estimates could range from
-23 to .32, a fairly tight interval. What I can learn from the data set is
that there is not nearly as much year-to-year retention of reading scores as
I had expected. That, unfortunately, is about all that I can learn from
this data set,

Bounds for the linear combinations of coefficients are reported in Table
10. Except for the previous score coefficient and the black derivative, these
bounds are uselessly wide. For example, if o, = % and Ob = 2, the estimate
of the teacher coefficient could be as largé as 235 or as small as -188. The
extreme bound, -1250 to 1260 is absolutely enormous. Similar conclusions

apply to all but one of these linear combinations. The black derivative
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is barely restricted to be negative, although the lower bound of -.592

is higher than the lower bound for Spanish or Asian. An estimate of -5
implies that an all black school receives a reading score 50 units less
than an all white school. A 50 unit change in y implies a percentile
change from 33 to 50 to 66 (see Table 1), which seems like a large
.difference. ‘The upper bound of -.08 implies an effect which though small
is not negligible.

Table 10 should be contrasted with Table 5. As I read Table 5, I conclude
from the insensitivity of the estimates to method of estimation that blacks
have a perceptibly negative effect on learning and that family income,
adult education, pupil stability and expenditures have a perceptibly
positive effect. However, as revealed in Table 10, only the black
derivative stands up to a sensitivity analysis with respect to the prior
covariance matrix. Table 5 is a very inadequate way of reporting the
sensitivity of inferences to choice of assumptions, because you see es-
timates based on only four specific sets of assumptions, three of which
are obviously incredible. The column headed @

L

reports estimates based on an infinity of alternative assumptions, most

= ) Oy = 2 in Table 10

of which are credible to me. An infinity of alternative assumptions are
excluded as well, but most of these are incredible to me.

Things may not be quite as bleak as they appear because there are wide
ranges of priors that do yield determinate signs. For example, Table 11
reports the bounds for the expenditure effect. Both the lower right and
the upper left of this matrix contain only positive élements. Thus 1if you

are willing to state that your prior is certainly much more diffuse than mine
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in the sense that your O, = 2, or if you are willing to state that your
prior is much more concentrated than mine in the sense that your OU =1/32,
then you can conclude that your estimate of the expenditure effect will

be positive. The sign is also positive if o = 1 and Oy = 2; Some of
this kind of information is summarized in Table 13. You will notice that
both the expenditures and the pupil stability have positive effects for
wide ranges of priors, in particular those with o = 2,

Estimates and bounds for the third and fourth grade data are reported in
Tables 12 and 13. The general conclusions are the same as before: the reten-
tion of reading percentiles from year-to-year is small; schools with large
percentages of Blacks have lower rates of accumulation of reading skills.
(This latter conclusion does not apply to the third grade.) Incidentally,

I would have expected the coefficient on last years score to increase with

the grade level, but the opposite seems to be the case.
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4.0 Conclusion

My primary purpose has been to convince you that Bayesian methods can
profitably be used to study data sets. The principal road blocks that have
prevented Bayesian methods from being used in the past have been the cost
to the researcher of forming a prior distribution and the incredulity that
éreets a prior once it has been formalized. Both of these road blocks are
substantially eliminated by an analysis indicating the sensitivity of
inferences to choice of prior. When the inferences are reasonably insensi-
tive to choice of prior, you need spend little effort precisely defining the
prior and you need be little concerned that any particular distribution is
incredible. When the inferences are sensitive to choice of prior, as I have
demonstrated for the reading score data, you are forced to find ways to define
more sharply your prior distribution, or you must obtain better data, or you
must suspend inference. In the case of the reading scores I have no other
data available, and since I am not an expert on the subject I have only
vaguely held prior judgements and am unable to define more precisely my
prior. I, unhappily but honestly, admit that there is little I have
learned from this data set. I have learned that the retention of reading
success from year-to-year is much lower than I expected, and I conclude
that there is a large schooling value-added. I have also learned that
schools with large proportions of Blacks have somewhat lower rates of learn-
ing. But that is all.

The alternative to the Bayesian method, which I have suggested might
have led to the stepwise estimates in Table 4, apparently yields sharp results.
But a data analyst who selected these estimates for reporting purposes is

either fooling himself, fooling his clients or both.
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There are two important shortcomings of this analysis of reading scores.
First it is estimation oriented. I have produced bounds for the estimated
Black effect, but have not attached measures of uncertainty to these bounds.
What would be more interesting is bounds for the probability that the Black
effect is less than some number. When the estimates are limited to be less
than zero, you can conclude that the probability that the coefficient is
less than zero is greater than one-half. This is not particularly useful.

The other shortcoming is the dependence on the assumption of normality
for both the prior and the sampling process. There do not yet exist computer
routines for dealing with non-normal priors but there are many 'data-analytic"
methods for dealing with non-normal sampling processes. These methods
can produce "robust" estimates of the coefficients and covariance matrix
which can then be used as input into a Bayesian analysis. Although this
is not a fully correct procedure, I doubt that the distortion is great.

I am worried in particular about the improvement in the reading scores
for school #308 and I wonder how this and other unusual schools affect

the least-squares estimates, and the subsequent Bayesian analysis.



TABLE 1

Reading scores S and Percentiles P
S = 100P/ (100-P)

Equal changes in ln S

S P
12.5 1
25 20
50 33

100 50
200 66
400 80
800 | 89
1600 94
3200 96.9

Equal changes in§

S P

50 33
100 50
150 60
200 66
250 71
300 75
350 78

400 80



TABLE 2
Variables

COOP reading percentile score of grade i, Sprimg 1973.

COOP reading percentile score of grade i-1, Spring 1972,
Teacher-pupil ratio, Fall 1972,

Non-instructional expenditures ($'s) per pupil, special plus regular
district funds, 1972-1973.

Constant.

% Spanish surname pupils, Fall 1972.

% Black pupils, Fall 1972.

% Asian pupils, Fall 1972.

Logarithm of family income, 1970 Census.

Adult educational attainment: (100)-1[6(2 attaining 6th grade)

+ 9(% attaining 7th to llth grade) + 13(% attaining grade 12 to Jr.
Coll.) + 16(% attaining college diploma)].

Total crimes per 1,000 pupils (robberies, assaults, sex offenses,
burglaries, thefts, vandalism, arson, narcotics, loitering and tres-
passing), 1972-1973.

Pupil stability (percent of students who stay in school from fall to
spring), 1972-73, 0 < zq < 100.

Market value of homes. '

% funds spent on instruction.

Student body income.

Parent volunteers.

% pupils on free lunch.

% pupils on AFDC.



% Spanish surname teachers.

% Black teachers.

% Asian teachers.

2 American Indian teachers.
Pupii school-year transiency (leavers + arrivers/enrollment)
% American Indian pupils.

# Books in library.

# Professional booksin library.
# Eight MM films.

# Film strips.

# Recordings.

# Teacher transfer requests.

# Certified teachers.

% Absent.



TABLE 3

Prior Information

Parameter Mean 2(Stnd. Error) Explanation

) 1 .2 Scores vary little over short intervals.

8o 0 © The constant depends on functional form
approximation about which little is
known.

ds/dz1 0 1 When the percent Spanish varies by 1,
scores vary by + 1.

dS/dz2 0 1l When the percent Black varies by 1,
scores vary by + 1.

dS/dz3 0 1 When the percent Asian varies by 1,
scores vary by + 1.

dS/dz4 0 50 When family income changes by 10%,
scores vary by + 5.

dS/dz5 0 10 When adult education varies by omne
grade, scores vary by + 10.

dS/dz6 0 5 When crimes per 1,000 pupils varies by
1, scores vary by + 5.

dS/dz7 0 1 When the percent stable increases by 1,
scores vary by + 1.

ds/dln x; 25 50 When teacher/pupil increases by 10%,
scores increase by 2.5 + 5.

ds/din X%, 12.5 50 When expend./pupil increases by 10%,
scores increase by 1.25 + 5.

91 0 .1

62 0 .1

93 0 .1

' .1 times standard error for ds/dzi

64 0 5 (See text)

65 0 1

66 0 .5

] 0 .1



TABLE 3 (Continued)

Parameter Mean 2(Stnd. Error) Explanation

vy 0 .05

Yy 0 .05

Y3 - 0 .05

Y, 0 2.5 2gzet::::)standard error for dS/dz1
Yg 0 .5

Ye 0 .25

Y" 0 05
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o. 0

1/32

1/16

1/8

1/4

1/2

16

32

1/32
1.00
.96

.97
.97

TABLE 9

Bounds for Coefficient on Previous Score - Second Grade

Prior Variance Matrix Bounded between UiV and o%v,

1/16
1.00
.88

.97
.88

.88
.88

Where V Is the Selected Variance Matrix

1/8
1.01
.68

.97
.68

.88
.69

.69
.69

1/4
1.01
.45

.98
.45

.89
.45

45

.46
.46

1/2 1 2 4 8

16

1.02 1.02 1.02 1,03 1.03 1.03

.30 .23 21 .20 .19

.98 .99 99 .99 .99
.30 .23 21 .20 .19

.90 .90 90 .90 .90
.30 .23 .21 .20 .20

.70 .70 71 .71 71
.30 .24 .22 .21 .20

.46 47 47 47 4T
.31 .25 .22 .21 .21

.31 .32 321 .32 .32
.31 .25 23 .22 .21

.25 .26 .26 .26
.25 .23 .22 .22

.23 .23 .24

.23 .22 .22
.23 .23

.23 .22

.22

.22

.19

.99
.19

91
.19

.20

47
.20

.32
.21

.26
.21

.24
.21

.22

.22
I22

.22
.22

32
1.03
.18

1.00
.18

91
.19

.19

48
.20

.32
.21

.26
.21

.24
.21

.21

.22
.21

.22
.21

.22

1.04
.17

1.00
.18

.92
.18

.18

A48
.19

.20

.26
.20

.24
.21

.23
.21

.23
.21

.22
.21

.22
.21

.21
.21
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