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0.0 Abstract

Assume that observations A i=1,...,m are drawn independently from a
distribution of the form f(yi;fi’é’g) - cg exp{-g(yi - fig)} vhere 8 is a
(k x 1) vector of regression parameters, x, is a (k x 1) vector of known
numbers, cg is a normalizing constant, and g € G a space of functions. We
investigate here the set of alternative maximum 1ikelihood estimates for the
regression parameter vector, based on alternative choices for g with
gEG= {g]n3'+ Ig; g has a continuous derivative, g(0) = 0, g(x) = g(-x),
g is strictly convex}. It is shown that the set of estimates is a finite
union of convex polytopes, the set is connected and contractible, and the
set may not be convex. ﬁsing this information, we develop an efficient
algorithm to completely delineate the boundary of the set in two dimensions,
Finally, an example is given and a comparison is made between the set of

"folded" estimates and classical normal theory confidence ellipsoids,



1.0 Introduction

The assumption of normality is clearly convenient but is usually
incredible as well. Nonetheless, the assumption may be made without
concern when the inferences drawn from a data set do not depend critically
on it. The results in this paper are intended to identify cases when the
assumption of normality is critical. Rather than normality, we assume only
that the density is symmetric and unimodé&l with tails that die at least as
fast as a double exponential distribution. Given a data set, each density
in this family selects a particular maximum likelihood estimate. When this
set of maximum likelihood estimates is small, the convenient but incredible
assumption of normality is aléo inconsequential, and does not require
scrutiny. When the set of estimates is large, the assumption does require
scrutiny; in particular, the equivalent of a prior demsity over the family

of densities is required.

We consider here the familiar problem of estimating a vector of unknown
regression parameters, §, from a sgmple of observations on random variables

Yl,...,Ym drawn independently from a distribution

where x, : 1 = 1,...,m are the rows of a known design matrix X and the

b3 | (mxk)
distribution F is not precisely known. We will assume that F has a density

of the form
» = - - '
£(yy3 %;,8,8) = c exp{-g(y; - x/B)}

where cg is a normalizing constant and g € G a space of functions. The

restrictions we place on G will be made specific below.



A maximum likelihood estimate B8 is a solution to the problem of mini-

mizing the function

m
b (8) = El glyy - x;8) ,

i
that is

h (8) = wia hy(6) -

-~

We will be concerned with the set of maximum likelihood estimates

B(C) = {8 [h (B) = m;n ho(8), g € G}

~

where G is the following space of functions: G = {gl]fl+ ]fk g has a continu-
ous derivative, g(0) = 0, g(x) = g(-x), g 1s strictly convex}. The family

of distributions corresponding to g € G is a set of distributions with

symmetric, unimodal densities which have tails that die at least as fast
as the tails of the double exponential distribution. Since g has been
assumed differentiable, the solution to the minimization problem can be
found by solving simultaneously the normal equations:

m

' - ' = -
151 xijg (yi gig) 0 =1, ..., k.

We assume throughout that the design matrix X is of full rank k so that
this system of equations always has a unique solutionm.

Interest in the set B(G) derives on the one hand from the improbability
of precise prior knowledge of g, and on the other from the difficulty
of adequately dealing in a statistical sense with the infinite dimensional

nuisance parameter g. Furthermore, after an experiment or study is completed




the data set is fixed. Examination of the set B(G) is tantamount to
passing many different models over the data and examining the set of possible
estimates that could be supported by the data. In this way we can examine
the impact of our assumptions on the estimate. For instance we could compare
the set B(G) to a confidence region generated from some assumed distribu-
tion, i.e. a normal distribution. If the set B(G) 1is large compared to
the confidence region, then it is clear that the assumption of a particular
distribution has a strong influence on the particular estimate we report.

In that case it will be important to utilize prior information about the
distribution or to use the data to create an adaptive estimate. On the
other hand, if the set B(G) 1is small compared to the confidence region,
then we can see that the error arising from the uncertainty of the sampling

distribution is overwhelmed by the standard error of the estimate.

Huber (1964, 1973) introduced the concept of M-estimates for robust
estimation of a location parameter or more generally of a regression para-
meter vector. He suggested solving the equations

m .

iflxijwyi - ﬁg) =0 =1, ..., k
simultaneously to find an estimate g, where Y is some function of the
investigator's choosing. For robustness { should not give too much weight
to large values of |x|. One objection to this method is that the choice
of Y may have a strong effect on the estimates g. The set B(G) bounds
the ambiguity of the possible M-estimates for the class of Yy functions
which are required to be continuous, monotone increasing, and satisfy
V(x) = Y(-x).

The title of this paper, "'Folded' Estimates of Regression,' refers

to the fact that for a special case B(G) is the set of all weighted



averages of the folded 1 . o

verag olded sample points. If Y(l)’ Y(2)’ ’ Y(m) are the
order statistics found from the sample Yl, cesy Ym’ then the folded sample
is the set of midranges Mi = (Y(i) + Y(n+1-i))/2 i= 1’2"ff’ [(n+1)/2].
Leamer (1981) has shown that if X, is the scalar one for all observationms,

that is, if we are estimating the location of the density, then B(G) =

{B|min Mi < B <max M.} unless min M, = max M, in which case B(G) reduces
1 1 1 1 1ot

to this point. The concept of folding a sample does not generalize intuitively
to the regression setting, but our mathematical minimization problem does
generalize. This same kind of device has been used by Koenker and Bassett
(1978) to produce regression "quantiles." It must be pointed out, however,
that these generalizations are not unique because there are many minimization
problems which produce as solutions the folded estimates (and also sample

quantiles).

The problem of identifying the set B(G) is essentially the same as the
problem discussed by Dybvig and Ross (1977) of identifying the set of
feasible portfolios for classes of utility functions. Although it is not
possible to give an analytic description of the region B(G) as a function
of the data points, it is possible to construct an efficient algorithm to
determine the boundaries in the two-dimensional case. Section 2 describes
a method for testing if a particular E € B(G). The technique leads to a
general characterization of the set. Further properties of the set are
developed in section 3 and some modifications are considered in section 4.
The algorithm is described in section 5 of this paper and several examples
are reported in section 6. Finally, in gection 4, the algorithm is described
and an eﬁample is giyen'in vhich a comparison is made between the set of
“folded™ :egression eétimates and classical normal theory confidence

ellipsoids.



2.0 The Feasibility of a Regression Estimate

In this section, we will show that a given estimate, g, is in the
set of "folded" estimates if and only if a related linear pragram has a
solution. The linear programming formulation will lead toLa general
characterization of the set of "folded" estimates as a finite union of convex

polytopes. We will illustrate this result with a simple example.

Given the data set and design matrix, we say that an estimate § is
feasible if there exists a g € G such that for the distribution implied
by g,§ is the maximum likelihood estimate, that is, if § € B(G). The theorem
below shows that the feasibility of a given 9 may be determined by solving

a linear program.

Definition 2.1. If u = (ui) € Rp, then

(1) u is nonnegative, written u>0, if uy 2 0 for all 4,

(i1) u is positive, written u > 0, if uy >0 for all 1,

~

(iii) u is semipositive, written u 20, if u >0 but u # 0.

m
If uy, vE R, we write u 2V, u>v, u>v according as u - v is non-

negative, positive, or semipositive, respectively.

>

Theorem 2.1. Let the residual vector implied by a given B be e and assume

?

that g # 0. Order the subscripts i so that 0 g.léll |é [ ces < |8

Let s, = sgn e, S = diag{sl, cees sm}, and

1 0 L L B KO ) 0
L= 1 1 - :
Dot . o
1 i oooo’n. 1

Define .¥ to be the subset of the first m integers for which

|€i| = Iai—ll’ & 9f0. Then the given vector 8 € B(G), if and only

if the following linear program has a solution:



xtsvx =0
Y20

~

yi-o «+ie S

Proof. The residual vector & with the subscripts ordered as given above
can be written

& = sLo

A

vwhere 6 > 0, 6, = |é i=1,,.,mand 6, =0« 1ic S The

AR LY

cone
C={ele=5Ly, Y20, v, =0 «+1ie¥}

is the set of all vectors e which have the same signs and same ordering
of absolute values as §.

If E £ B(G)g thend g € G such that th'(g) = (, where g'(g) represents the
vector (g'(é‘l), g'(éz), ceey g'(é‘m))t. Since g' is monotone strictly in-
creasing and g'(x) = -g'(-x), the vector g'(€) € C. This implies there is
a solution to the linear program.

To prove the converse, let i satisfy the linear program and let
S* = SLi; then g* € C. Since § and S* have the same signs and same
ordering of absolute values, =g € G such that g'(é) = g*. Then XtSLi = 0 implies

t

Xte* = 0 or X*g'(e) = 0. So B 1is feasible. [ |

We therefore have the problem: Determine if there exists a semipositive
vector Y such that A*Y = 0 where A* = xtSL and Yy = 0+« 1i€d
Since possibly for some 1's Y1 = 0, the program may be reduced by removing
the ith columns of X'SL for i € &. Then the problem becomes: Determine
if there exists a positive vector Y such that AY = 0 where A is the reduced

A* matrix.



The m-dimensional cone defined by the signs and ordering of the absolute

values of the ei's will be denoted by

c(p, 8) "{gllepi 5.|ep1+1|, 1=1, ...,m-1; e, >0}

where p is a permutation of the first m integers and s is a vector of positive
and negative ones and zeros. A given parameter vector B selects a cone in the

-~

sense that

y - X € c(p(®), s(B)),

where B(E) and g(@) indicate the ordering and signs of y- x@. The pre-
ceding theorem asserts that the feasibility of § depends only on the cone
selected by @: C(g(g), E(E)). Thus if E is feasible, then any other value
of E, which selects the same cone, is also feasible.

The space R" is therefore partitioned by the m2 hyperplanes defined by

e =e i=1, ..., m

3 j#t1
e, = -ej j=1, e, m
ei = i=1, ..., m

The set B(G) is the finite union of the convex polytopes defined ﬁy tﬁe
linear mapping of the feasible cones in K" into the parameter spaceRk.
In principle, we could check each of these cones individually. However,
since there are 2°m! cones, even modestly large m would present numerical

difficulties which would tax all but the most extravagent computer budgets.




Example 1 Consider the model y = Bl + Bzx with data values (xi,yi)
given by (-2, -3), (0, 0), (2, 1), and (3, 4). Figure 1l 1uugt:ates
the separating lines and the set B(G) for this example. Coﬁ@utations
of the feasibility of several points in this set are carried out below

in the counterexample showing that the set is not convex.
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Figure 1. Separating lines and set of maximum likelihood estimates
for Example 1.

B(G) outlined and shaded.
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3.0 Topological Properties of B(G)

We now investigate some of the topological properties of the set B(G).
These properties will further define the nature of the set and will form
the basis for an algorithm to completely delineate the boundary of the
set B(G) iﬂ the two-dimensional case. We show below that the set is con-
nected and that there are examples of the set which are not convex. Since
the set need not be convex we will show that B(G) 1is contractible, a
result which will be important in the development of the algorithm.

We then investigate the boundary of the set and give a result on the
invariance of the set under location and scale changes of the data vector
and reparameterization of the design matrix. The proofs of Theorems 3.1
and 3.3 which are technical in nature are not given below. The reader

is referred to Gilstein (1980) for the details of these proofs.

Theorem 3.1. The set B(G) is connected.

The proof of this theorem involves investigating the mapping ¢ from
G > B(G) which maps the function g into the corresponding maximum likeli-
hood estimate. It can be shown that this mapping is continuous. Then,
since the space of functions G is connected, B(G), being the continuous
image of a connected set, is connected. We mnext prove by example that the

set B(G) may not be convex.

Theorem 3.2. There exist data vectors y and design matrices X for which

-~

the set B(G) is not convex.
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Proof. We examine the example above where the model is y = B, + B,x and
the data points (xi, yi) are (-2, -3), (0, 0), (2, 1), and (3, 4). Wwe

will use the linear program formulation to test the feasibility of three
values of ?. We will show that (-.2, 1.38) ¢ B(G), (-.6,1.32) € B(G),

but that (-.4, 1.35) ¢ B(G). For (-.2, 1.38) ey | < le, | < le,| < e, 1,

<0,e >0,e,>0,e, <0,

s | 4 2 3

0 1 0 -1
X'SL =
3 1 -2 -2
and Y' = (2, 4, 1, 4) satisfies X'SLYy = 0. For (-.6, 1.32)

ley| < leyl < le,] < ley,

e, >0, e, >0,e, >0, e, <O,

2 4

2 1 0 -1
X'SL =
-1 1 1 -1

and Y' = (2, 1, 11, 5) satisfies X'SLy = 0. However, for (-.4, 1.35)

1 3

ley| < leyl < leyl < legl,

e, >0,e, >0,e, >0, e, < 0,

1 4 2 3

2 1l 0 ~1
X'SLY = =
T \-1 1 -2 -2/~

has no positive solution since subtracting the second equation from the first

implies 3y, + 2y, + v, = 0. []
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Since these sets may not be convex their shape is t;o ill-defined
at this point to attempt to create an algorithm to determine the boundaries
of these sets. The following theorem is important because it implies that
there is only one continuous border of the set and that the set cannot

have holes in it. That is the set is a solid.

Theorem 3.3. The set B(G) is contractible.

For a proof see Gilstein (1980).

We now investigate the boundary of the set. 1In particular we would
like to know if the boundary of the set is included in the set or not.
The set B(G) 1is a finite union of convex polytopes. The question then
is whether the exterior faces, edges, and vertices are part of the set.
The answer in general is in the negative, however there is a necessary
condition for this to be the case and it is possible to design data
vectors and design matrices for which this condition is not satisfied.
For a given E to be an element of the set there must be a positive solu-
tion to a linear program of the form A*y = 0 where A* = X'SL. It has been
noted above that the constraints that some Yi = 0 allows for the deletion
of the corresponding columns grom A*, Let the reduced A* matrix be denoted
by A. Note that if § is on a face or edge of a polytope then some of
the Yi's are equal to zero and there will be a reduction in the A* matrix.
Recall that the hyperplanes e, = 0 i=1, ..., m, e, = ej, e, = --ej
i, =1, ..., m 1i# j partition Rk into a finite collection of convex
polytopes. If E implies equality in one or more of these equations then
E is contained in a polytope of degree less than k. This polytope is

contained in a number of k dimensional polytopes. The following theorem

gives a sufficient condition for the boundary of the set not to be included in

the set.
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Theorem 3.4. 1If § is contained in a polytope, P, defined by the
appropriate set of hyperplanes; if the degree of P 1s less thaﬁ k; if
the corresponding matrix Ap is of full rank k; and if there exists a
positive solution to APZ = 0; then there exists a positive solution to
AI = 0 for the corresponding A matrix for every higher dimensional poly-

tope that contains P.

Definition 3.1. A boundary polytope of the set B(G) is a polytope

which intersects a polytope of greater degree contained in B(G) and a poly-
tope of greater degree not contained in B(G).

Corollary 3.4. If the matrix A corresponding to a boundary polytope

of B(G) is of full rank k, then the boundary polytope is not contained in

B(G).

For proofs of Theorem 3.4 and Corollary 3.4, see Gilstein (1980).

In general, if m is much larger than k, then it is unlikely that the A
matrix will be of less than full rank at a boundary polytope. Thus in
general the set B(G) will not contain its boundary and is therefore &n
open set. As noted above, however, it is possible to construct
examples where this will not be the case. We give here one example.

Example 2. Consider the model y = Bl + Bzx with data points
(xi,yi) = (0,0),(1,2),(2,1),(3,5), and consider the set B(G). The point
(gl,gz) = (0,1.5) implies

0= lej| < leyl = le,| < ley] -
+ + -

1 -1

2 _2) is of rank 1 < k = 2, There is a positive

The reduced matrix X'SL -(
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solution to X'SLY = 0 so this vertex is part of B(G). However the two adja-
cent polygons 0 < Iell < |e2| < |e4| < le3l and 0 < Iell < |e4| < Iezl < |e I
are not in B(G) while the two adjacent polygons 0 < Iell < |e4| < Iezl < |e3|
and 0 < lell < |e2| < |e4| < |e3| are in B(G). The set has a butterfly

shape (see Figure 2a).

We now give a theorem describing the invariance properties of the
set B(G). These properties allow for changes in scale and location of
the data vector y -and reparameterization of the design matrix X. These
changes may make computations more convenient. To emphasize the dependence

on the data vector and design matrix we write B(G,y,X) for B(G).

Theorem 3.5. 1If § € B(G,y,X) then the following are elements of

the solution of the specified transformed problems:

(1) A8 + b € B(G,)y + Xb,X) be R, Ae (0,
_lA
(11) A 78 € B(G,y,XA) A, nmonsingular

Proof: Left to reader.

Remark. Theorem 3.5 implies that under the specified transformatioms

the new set i(G) may be obtained by making the appropriate transformation

on the vertices of B(G).

Similar results to those given in this Section and the previous Section
can be derived under slightly weaker conditions on the space of functioms, G.
If we relax the assumption of strict convexity to convexity, for instance, a

linear program can again be used to test the feasibility of an estimate of §.
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Figure 2b.

B(8) for Example 3.
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Let B(G) denote the set of :egréssion estimates under the'Conveiity'Assﬁmptibn.
Clearly B(G) is at least as large as B(G). It may in fact be much larger.

B(G) is illustrated in Figure 2b for the data of Example 2. One important
implicatiqn of the convexity assumption is that the resultant set B(&) is open,
that is, it never contains its boundary polytopes. For further discussion of

modifications of G and proofs of these properties see Gilstein (1980).
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4.0 Example

In this section, we will discuss an example involving 14 observations
on two regressors and a response variable. To delineate the boundaries of
the set of "folded" estimates in two dimensions, we have developed an ef-
ficient edge-tracing algorithm. Before discussing the example, we will
briefly describe the algorithm.

Recall that the set B(G) is a finite union of convex polytopes and
that the set is connected and contractible. In two dimensions, these prop-
erties imply that B(G) 1is a union of polygons and that B(G) has a single
plecewise linear boundary.

The algorithm separates into two sections. The first objective is to
find the edge of the set by finding a line segment which separates a non=
feasible polygon from a feasible one. After the edge of the set has been
found, the objective is to follow the edge around the set until we return
to the original segment. To find an edge segment, we starf.with a point
inside the set, say the least-squares point, and move in one direction, say
the direction of increasing B8, checking the feasibility of the polygons
we enter by using the linear programming test given in Theorem 2.1. When
a nonfeasible polygon is found, then the line segment that was crossed to
enter this polygon has been found to be an edge segment. To follow the
edge of the set, we test the feasibility of polygons adjacent to the one
containing the previously determined edge segment. By so testing, we can
determine the adjacent line segment which separates a feasible polygon from
a nonfeasible polygon. Ihe process can be -continued until a return is made
to the original segment. The details of the algorithm are described in

Gilstein (1980).
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The algorithm described above is designed for determining the "folded"
set of estimates for two regression parameters. In higher dimensions, the
problem is substantially more complicated (especially because the set is not
convex) and we have not developed an algorithm to completely delineate the
boundary of the set for the case of more than two parameters. In multiple
,regression settings, the above algorithm can be used to determine the set
of estimates for two of the parameters after fixing the value of the re-
maining parameters. In the example discussed below, we have set the inter-
cept value to the least-squares estimate and determined the set of estimates
for the two regression parameters.

The example we will examine is a gasoline demand function estimated
with data from Maddala (1977, p. 129). The dependent variable g is the
number of gallons of gasoline consumed per person, per year. The explanatory
variables are p, the retail price of gasoline divided by the consumer
price index (1953 = 100), and I, per-capita disposable income in 1958
dollars. The least-squares estimate using the fourteen annual observations
(1947-1960) is:

g =799.1 - 2,563 p + 0616 I ,
(77.5) (.706) (.0015)
where standard errors are reported in parentheses. This equation suggests
that a ten percent relative increase in the price of gasoline that raised
the index from 100 to 110 would reduce per capita consumption by 26 gallons
with a standard error of 7 gallonms.

The sensitivity of this conclusion to the assumption of normality
is revealed by the set of "folded" estimates shown in Figure 3. The lines
which cross in the middle of the figure are the major axes of the 50%

confidence ellipsoid based on the normal assumption., The least absolute-
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The Set of Maximum Likelihood Estimates: Gasoline Demand Example
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error point (*), which is necessarily in the closure of B(G), is also shown.
In this example, the set of "folded" estimates is very similar to the
50% ellipsoid. The shape of these two regions can be expected to be similar
because both require the residual vector e to be small, In this case the
traditional 95% ellipsoid would completely capture the folded set and it
may be concluded that sampling uncertainty is more important than "speci-
fication uncertainty", in other éxamples, it has been noticed that small
samples yield 95% confidence ellipsoids that are generally larger than the
sets of folded estimates, while large samples yield the reverse. The
tendency for the sampling uncertainty to converge to zero more rapidly than
the specification uncertainty has been studied in detail for the location
parameter problem in Gilstein (1981). There it is shown that while the
confidence ellipsoid may shrink at a r;te 0(iNm) the set B(G) cannot shrink
at a rate faster than roughly 0(1/log n)‘%or any distribution determined

for g e G.
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5.0 Summary and Concluding Remarks

We have proposed in this paper a method for studying the robustness of
least-squares estimates to choice of error distribution. We compute a set
of alternative estimates based on alternative assumptions about the error
distribution. When this set of estimates is small, the choice of a particu-
lar distribution is inconsequential. When the set is too large to be useful,
either estimation from the given data set is suspended, or a narrower family
of distributions must be identified.

In the one-dimensional location case the set of estimates is the inter-
val between the smallest and largest folded sample point. Algorithms for
encompassing the set in higher dimensions are difficult because the set is
not necessarily convex. We have presented an edge-~tracing algorithm for
the two-dimensional case, and we have shown generally that the feasibility
of any particular estimate can be established by a linear programming al-
gorithm. A grid search is therefore possible for the higher dimensional
problems, but will necessarily suffer from the non-convexity of the set.

The alternative, which we have illustrated here, is to fix all but two
of the parameters at their least-squares values and to generate the

"folded" set for the remaining couple. Though this is neither a slice
nor a projection of the set B(G), it doesAusefully indicate cases when

the assumption of normality is consequential.

It is fair to object that the set of distributions we have considered
here is either too narrow or too wide. Assymetric distributions have been
excluded, as have distributions with fatter tails than normals (e.g. Cauchy).
Distributions with thin tails (e.g. Uniform) have been included. We think

it is interesting both to enlarge and to shrink the set of distributions
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and to study the resulting sets of estimates. The intent would be to iden-
tify maximal sets of distributions which admit usefully small sets of esti-~

mates. For results based on other sets of distributions see Leamer (1981),

Gilstein and Leamer (1981) and Gilstein (1980).

The results which we have presented are bounds for point estimates.
We would like also to be able to provide bounds for interval estimates, or
more ideally for posterior probabilities. Because the mapping from distri-
butional assumptions into posterior probabilities is quite complex, we are

not altogether hopeful that this important problem can be solved.
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