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1. INTRODUCTION

This paper studies the strategic aspects of investment by firms in
a single industry. An important part of this problem is the way in
which firms forecast the future return on investment. In an open-loop
equilibrium firms have perfect foresight but do not believe that rivals
will respond to deviations from the equilibrium path even though it would
be in their best interest to do so. This type of equilibrium has been
studied by Flaherty [l].. In a closed-loop equilibrium firms have perfect
foresight and realize that rivals will reoptimize in response to devia-
tions. This is similar to Selten [14]'s notion of the "perfect" equili-~
brium of an extensive form game. It was first studied in a continuous
time framework by Starr/Ho [17] and in the investment problem by Spence
[16] and by Fudenberg/Tirole [5].

In this paper I am interested in closed-loop equilibrium without
perfect foresight. I investigate equilibria in which firms use simple
rules-of-thumb and in which it is not costly for them to do so. I note
that other authors--~Friedman [4], Laitner [10] and Smale [15]--~have
studied rules-of-thumb in similar problems but in a direction orthogonal
to this paper.

The type of environment in which simple rules can be expected to work
well for forecasting is one of gradual change--a worldin which tomorrow
is only slightly different than today. In section four I give a precise
definition of gradual change. This imposes two restrictions on the
environment. First, the exogenous data--the conditions of cost and
demand--must permit gradual change. For example, if the marginal cost

of investment is low, the return high and if the return changes errati-



cally as the capital stock varies, then the future return can't be
accurately forecast by simple extrapolation. Second, attention must be
restricted to those equilibria which change gradually. Despite

the data it may be desirable for each firm to choose an erratic invest-

ment plan, given that its rivals are doing so.

The idea that extrapolation rules should work well is captured by
the notion of an e-extrapolative equilibrium, which I define in section
three. This is similar to Radner [12]'s notion of an €-equilibrium: the
_gain to replacing the rule-of-thumb with perfect foresight can't exceed
€. In section five I use dynamic programming to characterize €-extrapo-
lative equilibria in an environment of gradual change.

To analyze choice among alternative rules I introduce costs of using
them and a minimax criterion for choosing among them (section six). This
enables me to characterize the circumstances favoring a particular rule.
An important aspect of the gradual change environment is that simple
rules have approximate uniqueness and dominance properties (section
seven). This means that equilibrium paths aren't too sensitive to the
types of rules firms use, and is important since there is a great deal
of arbitrariness in singling out particular rules.

I also study extrapolative equilibrium paths when firms are identi-
cal. In section eight I explore conditions which cause asymmetries in
initial conditions to lead to long run differences between firms. In
section nine I study how steady state capital varieswith the type of

extrapolation used. Section ten concludes the paper.



2. THE MODEL

I study the strategic investment of a fixed set of firms i=1,...,N
in a single industry. The capital stock of firm i is measured in loga-
rithmic units and is denoted by xlelR. The vector of capital stocks of
all firms is denoted by x = éxi):=l € 1R®. The technical artifice of
measuring capital in logArithmic units eliminates the possiblity of
entry and exit by forcing all firms to have positive levels of capital.
This restricts attention to the behavior of existing firms in an industry
free from threat of entry. The net investment of firm 1 is denoted by

yiis so that ii=yi.
The instantaneous profit of firm i is a function Hi(x,yi) which

depends only on the capital vector and firm i's investment rate. Thus
investment externalities are ruled out. This isn't entirely realistic—-
if one firm is liquidating its capital stock by scrapping and selling it,
rival firms are probably able to snap up the used capital at bargain-
basement prices. While allowing "mild" externalities won't change my
results, they would require an unreasonable increase in notation,

The instantaneous profit functions are assumed to smooth. Implicitly
this presumes a unique product market equilibrium which depends smoothly
on the capital stock. It is possible to impose restrictions on cost and
demand which insure this. For a detailed analysis see Flaherty[3].
Partial derivatives are denoted by subscripts so that H; = BHilaxj,

H; = BHilayi, and so forth,

The profit function is assumed to be concave in yi. In fact I make

the stronger assumptions that for scalar constants a>0 and A>1
-1 i -1

. . A > =1 > o

Thus a-l measures the curvature of Hi with respect to yi and A measures



the extent to which Hi_fails to be quadratic in yi. Assumption (2.1)
insures that there is a unique investment rate Yi(x,z) which equates the
marginal cost of investing with the rate of return z; which solves the
equation H;(x,yi) +z =0,

1 assume that all firms face a common interest rate. For notational
convenience time will be measured in units such that the interest rate
is one.

The assumptions of a common interest rate, that each firm has one
kind of capital and that profits don't depend on time are all made for

pedagogical reasons. Extension to more general cases 1is straightforward.



3. EXTRAPOLATION

The objects of choice by firms are conﬁingency plans or closed-loop
strategies yi=fi(x) giving the investment rate as a function of the
capital vector. I wish to examine the behavior of firm i holding the

strategies of other firms fixed. An extrapolation rule for firm 1 is a

real valued (smooth) function PiG(x), where G is used to distinguish
between rules. It is firm i's estimate of the maximum present value it
can get starting at x.

Firm i's estimated rate of return on investment is PiG the rate of
increase in present value in response to a change in the capital stock.
It chooses its strategy to equate the estimated rate of return with the
marginal cost of investment: it chooses fiG so that H;{x,fic) + PiG(x) = 0.

By the concavity assumption (2.1) this has a unique solution

(3.1) y' = %0 = vt .

A consequence of Bellman's principle and the concavity assumption is that
if the estimate PiG is correct then the extrapolative strategy fiG is
optimal.

Hereafter I fix a vector of rules PiG, one for each firm. Correspond-
ing to these are the strategies fiG given-in (3.1). Of equal importance
is dtG(x) which is the capital vector of time t when the initial vector

is x and firms play the strategies fiG. It is called the capital flow.

The capital flow, in other words, is the solution of the initial value

problem
tG
(3.2) agt - fG(dtG(x))
¢°G(x) =x .

There is also the profit flow IIiG(x) SIIi(x,fiG(x)), and the present value




function

(3.3) pic

) = /% m))e e
I can now define the notions of €-optimality and €-equilibrium. An
E-optimal extrapolation rule guarantees that the gain from switching to

another extrapolation rule doesn't exceed € regardless of initial

conditions,

Definition (3.1): PiG is €-optimal against PjG j#1 1ff for every x and

~ ~
alternative rule pif (PjH=PjG J#1) PiH(x)jyic(x)+e.

If all firms are using €-optimal rules this is an e-equilibrium

. iG
Definition (3.2): P i=1,...,N is an €~-extrapolative equilibrium iff

for all firms 1 PiG is €-optimal against PjG J#i

A O-optimal rule and O-equilibrium are called optimal and an equilibrium

respectively.

An e-equilibrium is a continuous time version of a concept due to
Radner [12]. One interpretation is as a closed-loop equilibrium: each
firm has rational expectations about its rivals' responses to deviatioms
from the equilibrium path, but makes errors (no larger than €) in comput-
ing its 8wn optimum. Actually, this doesn't make too much sense: why
if everyone has rational expectations do they suboptimize? An alternative
interpretation, and one relevant to this paper, is that firms optimize
fully, but make small expectational errors. This latter interpretation
blurs the distinction between open and closed-loop equilibrium to some
extent--an open-loop equilibrium can be an extrapolative equilibrium in
which the expectational errors arise from the (incorrect) assumption
ﬁhat rivals won't respond to deviations.

I will be particularly interested in four specific rules. The null

extrapolation rulé is PiNE « This is useful for comparative purposes,




for if a rule is any good at all it should at least outperform the null

rule.

The myopic extrapolation rule is to forecast future profit equal to

today's brofit under the assumption that all firms' strategies are derived

from following the null extrapolative rule; to set

(3.4) piMex) = f:HiN(x)e_tdt - %) = rhex, £

1Nsyi(x,PiN). Note that the null and myopic

where recall from (3.1) that f
rules are really open-loop concepts--firms do not consider each other's

responses.

The linear extrapolation rule is to forecast future profits by fitting

a linear trend under the assumptions that all firms follow the myopic rule.

Denote the time rate of change of HiG by HtG = ZH?ijG
3

. The linear rule is

(3.5) pil(x) = f:[HiM(x) + HtM(x)t]e-tdt = M) + HiM(x) .

This is not an open-loop concept: firms explicitly consider that they
have some effect on rivals' capital.

Both the myopic and linear rules are based soley on the use of local
information--low order taylor expansions of the exogenous data. An impor-
tant part of what follows will be the introductions of assumptions which
guarantee that local information is indeed relevént in the proximate future.

Finally, the perfect forésight rule serves as an upper bound on how

accurate extrapolation can be. It is denoted by PiF and characterized by

the condition that Prr=pif,



4, DEFINITION OF GRADUAL CHANGE

Simple extrapolation rules do not work well in all environments.
They ought to work in an environment which changes only gradually, however.
An example clarifies what I mean by this. Suppose that profits are linear
in x; that

(4.1) o olex,yd) = zn§xj + mieo,yH
j

where the H} are fixed constants. This linear world has an important
property: the decision problem of firms do not depend on the initial
capital vector. This is because Hi(xo+Ax,yi) and Hi(xl+Ax,yi) differ

only by the fixed constant §H§(xg-xi), and adding a constant to the objec-
tive function doesn't change the decision problem.

In an environment like this it is natural to look for static equili-

bria in which investment plans don't depend on the capital vector, in
which fi(x)=fi a constant. It is easy to prove that there is a unique

static equilibrium given by

(4.2) £l < yi(o,ni) .

I call the static equilibrium in a linear model an environment of no
change, for given the strategies of rival firms tomorrow looks exactly
like today. An environment of no change requires two restrictions: the
profit functions have the linear form (4.1) and the equilibrium is static.

Although I don't know if non-static equilibria can exist in this
model, the restriction to static equilibria is not innocuous. The linear
game is similar in certain respects to a repeated matrix game with a one-
period dominant strategy equilibrium (such as the prisoners' dilemma).

In both cases the decision problem of firms is independent of history and



the current decisions of rival firms. John Bryant [2] has pointed out

that firms repeatedly playing their dominant strategies no matter what

is the unique static equilibrium in the matrix case. However, repeated

games also have non-static perfect equilibria as demonstrated by Rubinstein
[13], for example. In the current context only static equilibria have the no
change property. They involve considerably less guesswork and computation
than other equilibria. Myopic and linear extrapolation work perfectly as

do any other extrapolation rules based on fitting a reasonable class of

" functions to the data. This cannot be true in other than an environment of
no change.

Any function looks locally like the linear form (4.1). The curvature
of Hi measures how rapidly this local picture changes as x changes. If the
net investment rate is small relative to this curvature then the local pic-
ture is valid in the proximate future, while discounting implies that firms
don't much care about the distant future. This is what I mean by an en-
vironment of gradual change: intuitively, tomorrow looks only a little dif-
ferent than today.

To make this precise requires that the net investment rate and curvature
of the present value function be bounded. First, a bound on the return to

net investment (measured myopically) is given in

Definition (4.1): The maximum absolute return, or return, is

R = supIH;(x,yi)|+ SUPIH;(X,O)I

The second term is the marginal cost of maintaining the capital stock at its

current level,
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Next I give a bound on how the return changes in response to the capital

vector

Definition (4.2): The curvature of the IIi is

- i i
K = sup {[ijl,lnykl}

The net investment rate is roughly aR where a = sule;y|-1 was defined
in (2.1). Roughly, gradual change requires that aRK is small. To give
an exact definition let 0< B< 1 and B = 1/(1-B) be scalar constants.
These numbers Qill serve as fixed bounds through the rest of the paper, B8
being smaller than the interest rate (which is one) and B being less than

infinity., Also define the constants

(4.3) e, = B2[(n+1) 1]°F°

Definition (4.3): The vector of pairs (Hi,PiG) i=1,...,N 1is an

environment of gradual change (of order m) provided

(8) A< B
() sup |TH < (B-1)k 3< n<m
ai,-.., n - -
a, € {1,...,N,y}
© sup [Pt < B-1) (R n=1
jia'-csjn -
' K n=2
sup |1t | 3<ngm
3 se0era)
aie {1,...,N,y}
(D) aR< B-1

(E) Ch3 aKS B



11

Part (A) is merely a convenience - it requirés that X defined in (2.1) be
smaller than B. 'Part (B) requires that the IIi have a high degree of dif-
ferentiability and that higher order derivatives are not greatly in excess
of the second derivatives. This is essential if extrapolation based on
local information is to work. Actual markets are not egspecially smooth and
have all kinds of random fluctuations. As a practical matter extrapolation
must be based on averaging out these fluctuations. I regard the Hi as
the approximation that results after fluctuations have been smoothed away.
The requirement that thitd (or higher) derivatives can't be much larger
than the second derivatives means that the second derivatives can't fluctuate
rapidly between their upper and lower bounds. For example, the function
a sin (xla-;A) has small second and large third derivatives when o is small.
Functions like this with ripples in their second and higher order derivatives
are ruled out. It seems reasonable that when firms smooth out random fluctu-
ations to obtain the approximations Hi they smooth out ripples at the same time.

Part (C) requires that the derivatives of the PiG

don't greatly exceed
those of the Hi. This is a restriction on the equilibrium which insures that
only equilibria of gradual change are considered. Since it isn't true that
optimal strategies are necessarily smooth it remains to be seen whether € -
equilibria of gradual change exist for small €., However, if rivals play
strategies which aren't smooth, extrapolation isn't going to work.

Part (D) like the other parts requires that derivatives be bounded at
infinity. For a model of a stationary market of finite extent I think this is
acceptable. Otherwise, like part (A), part (D) is merely a convenience.

Part (E) requires ak be small and rules out many cases of possible interest.
It is needed in proving that the present value function is differentiable, and

it seems sensible to assume at least enough gradual change to make the mathe-

matics work out.



How gradual is change in an environmenﬁ of gradual change? In computing
this it is useful to let C's denote constants which may depend on B, but on
nothing else. The subscript indicates the equation in which the constant
first appéars so that 023 appears first in equation 4.3, for example. Each
constant is a complicated polynomial in B (with positive integer coefficients)

and I won't write down its exact value unless it has some special significance.

Lemma (4.1): In an environment of gradual change

(4.4) €46 < ¢, ar

|f§(l;,...,jn|5 czzl ak < B/2N 1<ng ol
(4.5) III;G]g Cts R

|H;f,...,jn|$ Cys 2sng ml
(4.6) Il'[t?l’.“’jnl < C26 aRK 1< n< m-2

Fquation (4.4) shows how gradual change restricts the extrapolative
strategies, It implies that the capital flow étG exists for all =»< t< ®
and grows no faster than linearly.

Equation (4.5) shows that the profit flow HiG = Hi(x,fiG) has derivatives
with bounds similar to those on the Hi.

Finally equation (4.6) shows that aR< is indeed a measure of how gradual
change is. For example, when n=1, it says that the time rate of change ok
the (myopic) rate of return is 027 aRx.

Since lemma (4.1) is as plausible as it is tedious to compute the various
bounds, I omit the proof.

An important consequence of (4.4) (which follows from part (E) of gradual

12
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change) is that the present value function is twice continuously differentiable.

Corollary (4.1.1): 1In an environment of gradual change

(4.7) |P1G| G, R for m > 2
i 2
le 047 K for m>3.
Proof: I bound Pic, $1G ig gimilar. From (3.3) the present value

derivative is ? 16 . f [ZHk (étG)éktG]e—tdt provided that the integrand is

absolutely integrable. By lemma (4.1) IH;G|;$ CiS R giving the bound

ktG}.

1816 < ncto R /7 sup B5%C e tat. Let ¢stG be the matrix {¢ This is
3 45 R 1o 8uP 14 3

given by the variational equation ¢;G = exp[f f (¢ )ds], from which it can

ktGI

be computed that |¢ < exp[t N suplf?l]. In other words |f;l < B/N 1is a

sufficient condition that the derivative of the flow grows more slowly than the

ktGl -

interest rate, and that f supld Y4t < B. I note that the stronger condition

in (4.4) that |fj| < B/2N 1is required to bound P?ﬁ since the integrand has

‘dktGIZ

a term of the form Q.E.D.

In the previous section I defined three simple rules: the null, myopic
(in (3.4)) and linear (in (3.5)) rules. When are these rules consistent with

gradual change? A direct computation shows that

Corollary (4.1.2): 1f D™ 1/5[(m+2)!]-2m-12 and
(4) A< D"
y
i
(B) sup |1'Ial’.“’§nl < (O"-1)K 3¢ n< mH

a € {1,...,N,y}
(D) aR< D'-1

(E) Cyy 3K S B
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then for G = N, M, L the vector (Hi,PiG) satisfies gradual change

(of order m).

If the conditions of this corollary are satisfied I will say that Hi

is almost linear (to order m).

It is essential to know that there are interesting models that are almost
linear, Obviously the linear form (4.1) satisfies this since k = 0. There is
an instructive technique for constructing more general Hi which are almost
1linear. Suppose that Hi(x,y) hgs bounded derivatives (except H;).and satis-
fies the concavity assumption (2.1). Many such functions exist. Then the

function
(4.8) mx,yh) - atyh? @ >0

satisfies part (A)-(D) of gradual change for B sufficiently large, and has

R, K bounded above Iindependent of o. However, by taking o small enough, a

can be made as small as desired so that part (E) is also satisfied. Thus

for arbitrary Hi and o sufficiently small (4.8) is amost linear. This has an
economic interpretation: if the cost of net (not gross) investment is large
enough the exogenous data is consistent with gradual change. This construction
shows that profits can depend on the capital stock in virtually any manner
desired. For example, (4.8), unlike the linear form (4.1), can have Hi bounded

above, which is an obvious restriction from an economic viewpoint.
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5. CRITERIA FOR NEAR OPTIMALITY

To compare the merits of different extrapolation rules I give a bound
on how badly they perform. Since Bellman's principle says that the perfect
foresight rule P1F = ﬁiF is optimal I develop the obvious corollary: the
degree of optimality of a rule can be measured by how close PiG and @iG are,

Corresponding to the rule PiG is the Hamiltonian

(5.1) 8%,yh = rhax,yh) + 8%yt + z 28 .
31

giving total momentary profits: dividends plus capital gains.

If the environment is one of order two gradual change Qi is continuously
differentiable by corollary (4.1.1) and the Welerstrass formula asserts that
the gain from using PiH in place of PiG starting at x is given by the time

integral of the difference in momentary profits
A A -
(5.2) eiG(x,PiH) - f: [HiG(étH’fiH) _ HiG(¢tH,fiG)]e tie .

MG NG
This is discussed, for example, in Young [18]. Let f  maximize H'~ and

let QtG be the corresponding capital flow. It follows from (5.2) that

A A A A A A A N -
(5.3)  sup [8°%Ge, 816 - €0k, £10] > sup 1€ > /oategte, 210 | fl6 Qe ¢16) g,

while repeated application of Taylor's remainder formula shows that for some

i —i
yx: yx
A A A
5.4) #6716 - §1C(4,£16)
i i eyl ;o =i, ;=1 ,A1G _1iG. .2
= -(llz)nyy(x’yx){Inyy(xsyx)] (Pi - Pi )} .
Since by (2.1) Xa-l > -Hi > a'-1
iG - AG 1G, 2
(5.5) e £ C55 a sup (Pi - Pi ) .

To find a lower bound on the degree of optimality use (5.3) and (5.4)
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to compute

- A -
(5.6) sup eiG_Z (1/2)A 2 °°|P:'_G- Piclz e "

de .

A
The possibility that Pic and PiG are far apart while their integral is close
is ruléd out by assuming gradual change of order three. In this case the

greatest rate of decrease of IP l is

A
(5.7) 2 sup |B1€ - #16| : 5] 15 - PS80 < oy are sup [PLC - £1C),

A
which follows from lemma (4.1) and corollary (4.1.1). Thus at worst |PiG - PiGIZ

declines linearly to zero at time given by its. initial value divided by (5.7).

This makes it possible to find as a lower bound on (5.6)

iG

(5.8) sup 1€ > (c gm0 HBLC - £l

i



6. CHOICE AMONG EXTRAPOLATIVE RULES

The drawback of extrapolation is that it doesn't do as well as complete
optimization., The advantage is that it requires less information and computa-
tion. I will now examine this tradeoff in more detail,

I will evaluate the choice by firm i among the rules G = N, M, L and F
assuming that the rules of firms j # i are held fixed at some PjG. By
SiG I mean the present value of savings on information and computation
when i uses the rule G in place of the perfect foresight rule F. Thus
SiF = 0 and I assume 0< Sil'< SiM<< SiN so that less complicated rules are
cheaper. The null rule N which requires no computation saves the most, the
myopic rule which requires the firm know only its own profit function saves
less, and the linear rule requiring knowledge of all profit functions saves
the least. Note that the units in which the profits I[i are measured are now
fixed.

I also assume that firm i's knowledge about the loss it incurs when it
uses G in place of perfect foresight takes the form of an upper bound EiG.
Naturally EiF = 0, Given this information the firm uses a minimax criterion to
evaluate rules - it chooses the rule for which the greatest possible loss is
least, It chooses, in other words, the rule for which EiG - SiG is smallest.

An upper bound on the loss to using a rule can also be computed from the
results of previous sections. To complete the model I assume rational expec-
tations ~ the firm uses the same bounds generated by my computations, To
do so the firm requires some global information: it must know a, R and K.
However, it seems reasonable to suppose that it is easier to estimate upper

bounds on profit derivatives from past experience than to figure out the entire

profit functions.



There are legitimate criticisms of this model of choice among extrapolation

rules. The firm may try to pin down the loss to using a rule more precisely
than an upper bound: it may try to find a lower bound, or probability distri-
bution over the loss. It may also be able to obtain more refined bounds than
my crude computations. However, the model is pedagogically useful: it
brings out the environmental considerations which will tend to favor one rule
over another,

First I will compare the rules N, M and F, leaving the linear rule L
for later. About other firms j # 1 I assume only that their rules satisfy

gradual change of order m. The environment is assumed to be almost linear of

18

order m, so when firm i plays either N or M (or L) by corollary (4.1.2) the total

environment including i1 is one of gradual change of order m.

How badly does the null rule PiN = 0 do? For m > 2 by corollary (4.1.1)
iN iN AiN 1
(6.1) |’1§i =P | = [B{| < CgR .

By (5.5) the corresponding loss is

A —
(6.2) eiN_s CSSa sup |P1N- PiNIZ < CNaR2 = eiN.

iN _—iIN

If aR2 is small enough that S - € > 0 the completely naive rule N

dominates perfect foresight! This does make sense. When aR2 is small
profitability isn't very sensitive to what i does and he might as well minimize
his informational and computational costs by using N.

iM _ AN

The myopic rule M is given in (3.4) as P Using a first order

taylor expansion it follows that for some 0< s(t)< t

AiM 0o iM kMt -t iM ) iG, ,Gs
(6.3) Py Jg LT éi e "dt = I + fo E ka(d )é

kGt

. &%t e tar,

that is the present value of profits equals the current level plus the integral



of the difference between future and current profits (evaluated as a rate of
change times time by the mean value theorem). The first term HiM is the direct
effect of firm 1i's capital on its profits., This is (roughly) what is captured
by the myopic rule. The second (integral) term is the indirect effect i's in-
vestment has on future profits by changing the investment plans of rivals..
The key fact about gradual change with m > 3 is that (by lemma (4.1) and the
proof of corollary (4.1.1)) the second term has a bound of order aRc. When
change (aRk) 1is gradual enough the direct effect of i's investment is more
important than the indirect effect on rivals' plans - the interactions between
firms are small (they vanish in the linear/static case). This is the source of
all substantive theorems in this paper., As a formal matter, it is easy to

show

(6.4) [P . M ¢ ¢

i 1 | £ G2k

which combines with (5.5) to yield the loss

(6.5) ems M a3g%2 = TiM .

Thus, the myopic rule is in error only insofar as the rate of change of the
system as measured by a3R2K2 is large. If this is zero, the future is static
and myopic (static) expectations work perfectly.

Now let's compare N, M and F. The null rule is best iff

iN - EiG = iN

sV - c®ar? > max {siF - FAF, oiM _ giM)

(6.6) S

= max {0, siM _ Mt a3R2|<2} .

A sufficient condition for (6.6) is

(6.7) ar? < (siN _ g1M) /N

In other words, if your profit doesn't depend much on what you do, don't put

19
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effort into figuring out what to do.

Sufficient conditions for the myopic rule to be best are

(6.8) ar? > siV/cn

aZKZ < N iM/cM iN ;
The first condition says that it must pay to put some effort into figuring
out what to do, the second that if the rate of return doesn't depend too
heavily on what you do (k small) there is no point in expending resources
to. figure out exactly how the rate of return varies.

An instructive way to compare N, M and F is to fix a and plot the values
of R? and Kz for which each rule is best. As figure (6-1) shows small values
of R favor N, small values of k favor M and large values of both favor F.

Let us now examine the linear rule L given in (3.5) as PiL = HiM + HtM

Reasoning as-in (6.3), but using a second order taylor expansion, shows that for

m> 4

(6.9) |{’\1L - PiLl <L C69[aR<(aR + ak) + ak sup ng PJM| + aR sup IPJG PJMI]
£ LC64 aRu,

From (5.5)

(6.10) LCMES 22 _ LEiM

so that (compare (6.5)) in general the linear rule is worse than the simpler

myopic rule. Remember - the linear rule anticipates opponents responses by

assuming they are myopic. If opponents don't play myopically, or nearly so,

this assumption is misleading and degrades the performance of the rule. However,
—iM 1—iM

if M works well so that € is small C & = will also be small. In other words,

even if opponents aren't myopic the firm stands to make no great loss if it

assumes they are,
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Figure (6-1): Choice Among the Rules N, M and F
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Suppose on the other hand that 6pponents are using either the myopic

rule or the linear rule. Lemma (4.1) implies

1
(6.11) |P§L le < Cgpq aR
|p3L - M) 061 k(aR + ak)

ik
and it follows from (6.9) and (5.5) that

(6.12) el < cladr%?(ar + a&)? = T

1]
™

Thus, if i1 is willing to assume rivals are using either M or L (which I

show in the next section isn't a bad assumption), he won't lose more than

EiL. Under this assumption when is L best? This is most easily answered by

example: let R=x = 3-374. Then E-F = 4CLa1/2, M Mg TV - Na-llz.
Thus for small enough a, L will be best., The relevant case, in other words,

is R and «1large, but a_l larger still,
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7. EXISTENCE, DOMINANCE AND UNIQUENESS

1 propose that €-extrapolative equilibrium of gradual change is an
appropriate solution concept in an almost linear environment. Some basic
theoretical questions about these equilibria remain unanswered, however.
One is the question of existence. I don't know whether almost linearity
guarantees the existence of perfect foresight equilibria, let alone ones of
gradual change (although this is true in the special case where the Hi
are quadratic). Are there at least €-equilibria of gradual change for small
values of €? An immediate implication of (6.5) and (6.12) is that when

a, R and K are small the answer is affirmative.
Theorem (7.1) [Existence]: If the Hi are almost linear of order m

(A) if m > 3 the PiM are an €M;extrapolative equilibrium of

gradual change of order m with eM = CMa3R2K2.

(B) if m > 4 the PiL are an eL-extrapolative equilibrium of

gradual change of order m with €L = CLa3R2K2(aR + aK)2 .

wWhile theorem (7.1) asserts the existence of the type of equilibrium we
are interested in it is not entirely adequate. Suppose opponents use rules
which aren't M or .. Does this degrade the performance of M and.L, or do they
have dominance properties? Are there extrapolative equilibrium strategies with
different qualitative features, or are they approximately unique? I consider

the myopic case first.

Theorem (7-2) [Myopic Dominance and Uniqueness]: If the Hi are almost linear

of order m > 3 and the PiG satisfy gradual change of order m then

PiM is eM;optimal against the PiG

(B) if the PiG are an EM-equilibrium IfiG - fiMI < CMUaznc.

(A)
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Part (A) is a direct consequence of (6.5) wﬁich required only gradual change
by opponents. Myopic works equally well no matter how rational or irrational
opponents, provided they move gradually. Note the nature of this result.

The rule M loses no more than eM when compared with any alternative strategy

and when opponents are restricted to rules of gradual change.

Proof of (B): The lower bound on € (5.8) implies

(7.1) M = MR > (erar” B - pl6)3

As in (6.3) a first order taylor expansion shows

AiG iG iM iG iG iGt —t
(7.2) Pi - Pi Pi - Pi + Hi + f Z Hkt dt.
Reasoning as in (6.4) and making use of (7.1) shows
iG iM
(7.3) |1=i -P, | < C,5aRK .
iG iM i iG i iM i_ i.-1
Since £~ - £ Y (x,Pi ) - Y (x,Pi )} and Y, = -(Hyy)
the mean value theorem and the concavity assumption (2.1) imply (B). Q.E.D.
iG iM 1
By lemma (4.1) gradual change implies only that |f £ lg_C44aR. Thus

if ak is small (B) means that EMLequilibria are closer to M, and thus each other,
than they are to arbitrary rules of gradual change. In this sense eM—equilibria
are approximately unique when ak is small.

I now consider the linear case.

Theorem (7.3)[Linear Dominance and Uniqueness]: If the Hi are almost linear

of order m > 4, the PiG satisfy gradual change of order m and elﬂs EM

PiL iG

(A) is CLEM;optimal against the P .
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(B) if the PiG are an EM—equilibrium PiL is eLD-optimal
against the PJG with ELD = CLDa3R2K2(aR + asz) .
(c) 1f the P'€ are an e'-equilibrium |£1¢ - £1L] ¢ cWa?Re(ar + ac)2/3

Part (A) restates (6.10) and says that the linear rule does pretty well

against anything gradual by opponents,

Proof of part (B): Part (B) will follow from (5.5) and (6.9) provided that

there are constants C74, C75 with
i6 _ M
(7.4) |1>j P | < C,,aRx
36 _ JiM '
(7.5) lpjk ij|5 C,5K 43R &

In other words I must show that all eMLequilibria are close to M in both
first and second derivative. Equation (7.3) implies (7.4) with C74 = C73.
Lemma (4.1) implies

ic iM i
(7.6) ]Pju - Pjul S Copk

I claim that (7.4) and (7.6) together imply (7.5): that the second derivative
of a function can be bounded by its first and third derivatives (compare (5.7)

and (5.8)). Consideration of directional derivatives shows that (7.5) follows

from

Lemma (7.4): If h: R + IR 1is twice continuously differentiable with

|h| < # and |h"| < H, then |n'| < \[ 8HH, .

Lemma (7.4) can be verified from the fundamental theorem of calculus.
Q.E.D.

From this we see that when aR and ak are small and rivals are rational to the
extent that they do at least as well as myopically firm i does better playing L

than playing M. 1In this sense L is good even if opponents use good extrapolation
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rules other than M and L.

aRk while as

Proof of part (C): Equation (7.3) implies lPiG - PiLl < 2073

in (7.6) |P§1§L - pghl < Cyk o+ Thus by lemma (7.4)

j¢  .iL
(7.7) Iij - ijl < Cpok \/aR .

These inequalities, the lower bound (5.8), the analog of (7.2) using a second
order taylor expansion, lemma (4.1) and the proof of corollary (4.1.2) imply

. the analog of (7.3)

/3

(7.8) |p1C - p1L] < ¢ aRk(aR + a)?

i i 78

Q.E.D.

Thus when aR and ak are small and sI‘_<_ eM, eL-equilibria (and perfect fore-

sight equilibria if they exist) are closer to each other than they are to M.
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8. SYMMETRY AND ASYMMETRY

Extrapolative equilibria of gradual change exist and are approximately
unique in almost linear environments. What do they look like? One way of
examining this issue is to ask when firms, beginning with different capital
stocks but otherwise identical, will differ in the long run. This is a
question examined by previous authors studying strategic investment:
Flaherty [3], Fudenberg/Tirole [5] and Spence [16].

Hereafter I assume all firms have an identical technology, so that

1 i 1

Hi(x geeeyX ,ooo) = Hl(xi,ooo,x ,con)’ for example. The H.i are fixed

smooth profit functions almost linear to order m>3. I shall study the space

of rules PG with corresponding strategies fG which satisfy

F1. The PG are a smooth, symmetric EM—equilibrium of gradual

change of order m.

Thus I limit attention to rules that do as well as M and in addition I assume
i

that the errors of firms are symmetric, so that Pi(xl,...,x seve)

1

Pl(xi,...,x seve) and so forth, This assumption is satisfied by M itself and

by L if e- < e,

F2. [boundedness] ~ For some SG,ZG>' 4]
xiz 28 implies g16 < -6
xi < ZG implies fiGZ GG

This means that there is a capital stock so small that it will always be
profitable to invest and so large that it will be profitable to disinvest,
I shall examine later the economic and strategic issues in requiring (F2).

A steady state iG is such that no firm following G will choose to move,

such that fG(iG) = 0., The variational matrix is

(8.1) A%(x) fiG(x) ee fblf(x)

NG, .
fl (x) eee .
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F3. [regularity] At steady states iG the real parts of eigenvalues of

Ap(xG) don't vanish.

Arguments from differential topology show that under (F2) and (F3) there are only
finitely many steady states. Furthermore, in a topological sense, 'almost all"
equilibria which satisfy (Fl) and (F2) satisfy (F3), so that it should not
be regarded as a stong restriction. Details on these types of argument can be
found in Guillemin/Pollack [6] or Hirsch [7].

There are three questions about the symmetry and asymmetry of steady states
which I wish to pose. First, what mathematical conditions on the fG give rise
to symmetry and asymmetry? Second, from what economic conditions do these
derive? Finally, when do all equilibria in F share the same symmetric or
asymmetric character?

To mathematically describe fG requires index theory which is developed in
G

Cuillemin/Pollack [6] or Hirsch [7]. An invariant manifold VG of fG has dtG(x) eV

{xl\xil < ZG} is

Hl

whenever x € VG and t>0, For example, by (FZ), the set ZG

invariant as is the symretry axis S = {x\xl = x2 = Lee = xN}. If VG is an

invariant manifold and xG € VG is a steady state then the index of xG in VG

G, G
ind(xG,VG) is the sign of the products of those eigenvalues of A (x") which have

generalized eigenspaces contained in the (complexification) of the tangent space

to VG at xG. If VG = ZG this reduces to the sign of the determinant of Ag since

the tangent space to Ag equals all of nf‘. 1f VG = § then the tangent space to

i
S is spanned by the symmetric vector e = (1,1,000,1) . When x € S it is easily

shown that the eigenvalues of Ag are fiG + (N-—l)f;G with eigenspace spanned by
e, and fiG - f;c with eigenspace equal to the orthogonal complement of e. Thus

iG,_ G

ind (xG,S) = ggn [fic(xc) + (N—I)fj (x’)]. The key theorem in index theory is
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Index Theorem: If VG is compact and convex with steady states % then

G
G dim(V)
Z ind(x ,V ) = (-1) .
k xk

Corollary (8.1): There is a symmetric steady state stable with respect

to symmetric changes in the initial conditions.

Proof: VG =S 0N ZG satisfies the hypothesis of the index theorem and

dim(VG) = 1. So there must be at least one steady state xG with ind(xG,VG) = -1,

Above we computed that this implies at xG fiG + (N-l)f;'G < 0 which following
Hirsch/Smale [8] is precisely the condition for the stability of the one dimen-

sional dynamical system derived from restricting fG to VG.

Q.E.D.

If the symmetric steady state is actually to be stable then the second eigenvalue

fiG - fiG must also be negative: this eigenvalue corresponds to perturbations

i ]
orthogonal to the symmetry axis. If conversely

(A) f -f,7> 0 on SNZ

long run asymmetric behavior might be anticipated.

Corollary (8.2): Under (A) all symmetric steady states are unstable and there

are at least ZN -~ 2 asymmetric steady states.

Proof: Let q be a non-void proper subset of {1,...,N}, and define

v = {x]| xi = xj ifi,jeq ori,j ¢ q} N ZG, that is, unless i € q and

j € q (or vice versa) xi = xj. These are two dimensional manifolds, invariant
by the symmetry of fG. If q and q' are complements vl = Vq', if not Vi Vq' =
S f\ZG. Thus there are 2N-l-1 such manifolds meeting only on the symmetry axis.

Each V% satisfies the hypothesis of the index theorem. I will complete the proof
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by showing each has at least two asymmetric steady states. Indeed, let

q
3

By (A) ind(xz,s) = ind(xi,vq) since all the asymmetric eigenvalues of xi are

S be the symmetric steady states and x; the asymmetric steady states in Vq.
X

positive. From the index theorem since dim(Vq) =2

(8.2) I ind(xp,S) = -1
k

(8.3) I ind(x},S) + I ind(xd, v =
k h|

S .q q .4
I ind(x ,V') + £ ind(x,,V') =1 .
A j 3

Combining (8.2) and (8.3) gives § ind(xg,Vq)'= 2 meaning at least two asymmetric
steady states in Vq.

Q.E.D,
Corollary (8.2) does not and cannot say anything about the stability of asymmetric
steady states. Unfortunately not every equilibrium path is necessarily converging
to a steady state: some may cycle or exhibit even more complicated asymptotic
behavior (even generically). If, however, every path converges to a steady state
and a generic technical condition due to Kupka-Smale and described in Irwin [9]

i1s satisfied then

Corollary (8.3): Under (A) and the condition above there at at least N

stable asymmetric steady states,

Proof: By the Morse inequalities there is at least one stable steady state. By
corollary (8.2) it isn't symmetric, and by interchanging the roles of firms there

must be at least N.
Q-E oDo



We see then that condition (A) means that initial asymmetries will result
in long run asymmetries. Roughly what is required is that fic should be large
(positive) and that fiG should be small (negative) along S: increases in i's

capital should lead him to invest faster and his rivals more slowly.

iG
>
i

What economic assumptions will lead to fiG - f 0? Let us assume

mi. H}i,(x,—Y-) = 0 so that Yi(x,O) =y
that is the optimal depreciation rate doesn't depend on x. Also
I2. Il =0 j#1i.

so that the cost to i of investing isn't affected by j's capital stock. Then

compute
iG i ,-1,.1 iG
(8.4) fi _[Hyy] (IIyi + Pii)
iG i ,-1 _1iG
8.5 f = - P i .
(8.5) j [Hyy] 13 j#i

G

; are large: if increases in

Thus we see that fic will be large if H;i and Pi
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i's capital lower his cost of investment and raise his rate of return. If G =M

then Pig = Ilii and this is just the myopic rate of returm. Also f;G will be
small provided Pi? is small: if increases in j's capital lower 1i's return on
investment. All in all this makes good economic sense: if increases in i's
capital improve his position to the detriment of his rivals then when he’ begins
with a slight edge he will tend to reinforce it over time.
In fact if firms begin with unequal capital stocks the ranking of capital

stocks must remain unchanged for all time. If not, then some firm 1 would have
to catch up to some other firm j.creating a tie. Once tied by symmetry both

firms capital would remain equal for all time, This would mean that the system

would have to hit the invariant manifold where xi = xj in finite time. But
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reversing the direction of time shows that no point on this manifold can

be reached from outside it in finite time,

Suppose now that for some GM,ZM> 0

3. x> 2 implies T} g -6"
xi_s M implies Hi?_ &M

so that the return on capital drops to negative when the capital stock his

large enough or positive when small enough. Since by (Il1) fiN =Y a constant

.this implies (F2) for G = M. Suppose also that for some GMA> 0

i S

M
i ii 13 for x€ SNZ, S

M4, I

so that by (8.4) and (8.5) (A) is satisfied for G = M. In other words I1-l[4

are sufficient conditions on the economic data that at least one €M—equilibrium
of gradual change, namely M, satisfies also (F2) and the asymmetry condition (A).
Can we conclude from this that all EM-equilibria of gradual change G exhibit

asymmetric tendencies? Certainly, provided for some 0 < u <1 \PiG - PiMl < uSM

iG iM MA iG iM
and \Pij Pij | s u8 /2. Looking back to (7.3) we see lPi - Py | < C,yaRK
and from (7.5) \Pig - Pi?\ < C75i< slaR . Putting this together we see that
(I11)-(14) and
5. C,q aRe < w8
¢, kVak < us"/2

mean that all EM-equilibria of gradual change tend towards asymmetry. Note
incidentally that gradual change alone forces GM of order R and GMA of order

K, but no more,
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9. COMMITMENT AND CAPITAL

The preceding section examined the shared properties of all EM—
equilibria of gradual change. This section shall instead contrast the
myopic equilibrium with the linear and related equilibria.

As before all firms are identical - in addition I now assume they are
ijdentical in initial conditions., I shall only be interested in steady
states on the symmetry axis S. Furthermore I assume strong properties of

. the profit functions:
i i
cl. tie,yh = 1ie,0 +0 (0,50

so that profits are additively separable in capital and investment. Profits
equal gross profits Hi(x,O) minus investment cost —Hi(O,yi). Equivalently
the optimal investment rate Yi(x,z) = Yi(Z) depends only on the rate of

return and not the capital stock.
c2. IIi(O,yi) is maximal at yi =0

so that the optimal depreciation rate Yi(O) = 0, Equivalently the null rule
has the corresponding strategy fiN = 0 of not investing at all.
An important consequence of (C1)-(C2) is the implication it has for the

myopic rule. Since fiN =0, fiM

= YiQIi(x,O)) and xM is a steady state if

and only ifIﬁ:(xM,O) = 0, This is exactly the first order for the static

Nash equilibrium of the one period simultaneous move game with strategies xi

and payoffsrﬁ'(x,O). The myopic rule is a continuous version of the "behavioral"
dynamic for this static game: it says to move in the direction that increases
own profits taking opponents capital as given. Unlike the discrete time full

optimization version of this rule, which makes little sense, the myopic dynamic

emerges as almost optimal behavior when adjustment costs Hi(O,yi) are large.
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The final simplifying assumption is

i 3 k|
ii’IIji’ IIi < 0 and there exists

a symmetric steady state xM.

c3. On the symmetry axis S 1l

Thus increases in i's capital decrease everyone's rate of return and lower the
absolute level of rivals' profits. The existence of a symmetric steady state
can be guaranteed by a more primitive assumption such as (II3) of the last
section, if desired.

Is steady state capital larger or smaller when everyone plays L than
when they play M? Since the change itself is small (when change is suffi-
ciently gradual), by the myopic uniqueness theorem the steady state condition

fL(xL) = 0 can be approximated by
(9.1) AMe 1= + P - M) N 0.

solving for xL-xM and using fM(xM) = 0 shows

L M .

(9.2) X - ~ : Hi

b2 4 )

i i
Hii+(N-l)Hij

where by (2.1) and (C3) the bracketed expression is positive., Furthermore,

when £1=10

i

9.3) £l = i@t 4 pit
1

i
ti)

N DU S R g
Y((Nl)Hj(Hyy) Hij)>0

proving that the symmetric steady state capital is larger under L than under M.
It is equally true that under L capital is larger than in static Nash equilibrium.
Furthermore, by the linear uniqueness theorem, when EL ﬁ_eM and a, R and K are

all small all symmetric EI‘-equilibria of gradual change must have symmetric

steady state capital greater than the static Nash level. It 1s easy to show
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under (C3) that this actually makes firms worse off. This, apparently, 1is
perverse - the extra effort of firms to find the optimum by using EL-optimal
rules in place of the thoptimal rule M actually lowers their profits!

This result, however perverse it may seem, merely recognizes the nature
of capital as commitment. Because it is costly to undo investment changing

capital is credible as a threat., Assumption (C3) means that each firm can

force its rivals to reduce their capital by committing itself to

increasing its own capital. It is optimal to make this commitment,

ceteris paribus, whether or not rivals are known to be making similar

commitments. Under rule M corresponding to static Nash behavior firms

do not recognize this opportunity to influence rivals' behavior. Under the

rule L, or any other rule which does as well, they do, and by means of simul-

taneous commitment make each other worse off. This is reminiscent of the

Stackleberg warfare discussed by Bishop [1]. It is even more closely related

to the work on oligopoly with overlapping commitment done by Maskin/Tirole [11].
In general simultaneous commitment need not make all firms worse off -

indeed commitment to strategies of punishment and reward will typically lead to

pareto improvements., The rule L is importént because, unlike M, it captures

the incentives created by the possibility of commitment.



10. CONCLUSION

I think that perfect nash equilibrium can be legitimately criticized
on three grounds. First, the costs of gathering the information required for
optimization and of computing the optimum can be quite large. Second, if
opponents make errors it is better to exploit those errors than to assume that
they optimizé - indeed a strategy based on optimization by opponents can do
quite badly if they make mistakes., Third, if there are multiple equilibria
how can a firm know which equilibrium étrategy its rivals will play? On the
other hand simple rules-of-thumb can be legitimately criticized on the grounds
that if they do very badly there is a large incentive for firms to try and
find better rules.

The conclusion of this paper is that in an environment of gradual change
none of these objections have any force. Simple rules-of-thumb don't do badly,
they do well. Consequently the cost of finding nearly optimal strategies is
small. The dominance properties of near equilibrium strategies insures that
there is little to be gained by exploiting opponents errors, while uniqueness
means that there is no ambiguity about which equilibrium opponents will choose.

Furthermore it doesn't matter whether open—- or closed-loop equilibrium occurs.

Because gradual change forces the effect of a firm's investment on rivals future

capital to be less important than the effect on its own future capital the
strategic interactions between firms is small. It is this which gives rise

to such pleasant conclusions.

36



[1)

(2]

[3]

[4]

[5]

(6]

[7]

(8]

[91

[10]

[11]

[12]

37

REFERENCES

Robert Bishop, "Duopoly, Collusion or Warfare?" American Economic

Review, December 1960.

John Bryant, "A Note on Perfection and the Infinite Horizon," Rice

University, December 1981.

Theresa Flaherty, "Industry Structure and Cost Reducing Investment,"

Econometrica, July 1980.

James Friedman

Fudenberg/Tirole, "Capital as Commitment," Mimeo, UC Berkeley, 1980.

Guillemin/Pollack, Differential Topology, Prentice-Hall, 1974.

Hirsch, Differential Topology, Springer-Verlag, 1976.

Hirsch/Smale, Differential Equations, Dynamical Systems and Linear Algebra,

‘Academic Press, 1974,

M.C. Irwin, Smooth Dynamical Systems, Academic Press, 1980.

John Laitner, "'Rational' Duopoly Equilibria," Quarterly Journal of

Economics, December 1980,

Maskin/Tirole, "Dynamics of Oligopoly,"

Roy Radner, "Collusive Behavior in €-Equilibria,” Journal of Economic

Theory, April 1980.



[13]

[14]

[15]

[16]

[17]

[18]

38

Ariel Rubinstein, "Equilibrium in Supergames with the Overtaking

Criterion," Journal of Economic Theory, 21, pp. 1-9.

R. Selten, "A Re-examination of the Perfectness Concept,"

International Journal of Game Theory, 4, pp. 25-55.

Stephen Smale, "The Prisoner's Dilemma and Dynamical Systems Associated

to Non-Cooperative Games,”" Econometrica, November 1980,

A. Michael Spence, "Investment Strategy and Growth in a New Market,"

Bell Journal, Spring 1979.

Starr/Ho, "Non-zero Sum Differential Games," [two parts], Journal of

Optimization Theory and Applications, 1969.

L.C. Young, Lectures. on the Calculus of Vanations and Optimal Control

Theory, Saunders, 1969.



