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Econometricians would like to project the image of agricultural
experimenters who divide a farm into a set of smaller plots of land and who
select randomly the level of fertilizer to be used on each plot. If some
plots are assigned a certain amount of fertilizer while others are assigned
none, then the difference between the mean yield of the fertilized plots and
the mean yield of the unfertilized plots is a measure of the effect of fer-
tilizer on agricultural yields. The econometrician's humble job is only to
determine if that difference is large enough to suggest a real effect of

fertilizer.

This image of the applied econometrician's art is grossly misleading and
I would like to suggest a more accurate one. The applied econometrician is
1ike a farmer who notices that the yield is somewhat higher under trees where
birds roost,and he uses this as evidence that bird droppings increase yields.
However, when he presents this finding at the annual meeting of the American
Ecological Association, another farmer in the audience objects that he used
the same data but came up with the conclusion that moderate amounts of shade
increase yields. A bright chap in the back of the room then observes that these
two hypotheses are indistinguishable, given the available data. He mentions
the phrase "identification problem," which, though no one knows quite what he

meana, is said with such authority that it is totally convincing. The meeting



reconvenes in the halls and in the bars, with heated discussion whether this
is the kind of work that merits promotion from Associate to Full Farmer, the
Luminists strongly opposed to promotion and the Aviophiles equally strongly
in favor.

Please don't jump to the conclusion that there is necessarily a substantive
difference between drawing inferences from experimental as opposed to non-
experimental data. The images I have drawn are deliberately prejuidicial., First
we had the experimental scientist with hair neatly combed, wide eyes peering
out of horn rimmed glasses, a white coat, and an electronic calculator for
genergting the random assignment of fertilizer treatment to plots of land. This
seems sharply to contrast with the nonexperimental farmer with overalls, un;
kempt hair and bird droppings on his boots. Another image, drawn by Orcutt,
is even more damaging: ''Doing econometrics is like trying to learn the laws

of electricity by playing the radio." However, we need not now submit to

the tyranny of images, as many of us have in the past.

I. Is Randomization Essential?

What is the real difference between these two settings? Randomization seems
to be the answer. In the experimental setting, the fertilizer treatment is
"randomly" assigned to plots of land, whereas in the other case nature did the
assignment. Now it is the tyranny of words that me must resist. 'Random" does
not mean adequately mixed in every sample. It only means that on the average
the fertilizer treatments are adequately mixed. Randomization implies that the
1éast—squares estimator is "unbiased,'" but that definitely does not mean that
for each sample the estimate is correct. Sometimes the estimate is too high,
sometimes too low. I am reminded of the lawyer who remarked that "when I was
a young man I lost many cases that I should have won, but when I grew older I

won many that I should have lost, so on the average justice was done."



In particular, it is possible for the randomized assignment to lead to
exactly the same allocation as the non-random assignment, namely with treated
plots of land all being under trees and with non-treated plots of land all

being away from trees. I submit to you that, if this is the outcome of the

randomization, then the randomized experiment and the non-randomized experiment
are exactly the same. Many econometricians would insist that there is a dif-
ference, because the randomized experiment generates "unbiased" estimates.
But all that means is that, if this particular experiment yields a gross over-
estimate, some other experiment yields a gross underestimate,

Randomization thus does not assure that each and every experiment is
"adequately mixed," but randomization does make "adequate mixing" probable.
In order to make clear what I believe to be the true value of randomization,

let me refer to the model

(1) Yi = o+ BFi + YLi + Ui .
where
Yi = yield of plot 1
Fi = fertilizer assigned to plot i
Li = 1light falling on plot i
Ui = unspecified influence on the yield of plot i,

and where B, the fertilizer effect, is the object of the inferential exercise.
We may suppose to begin the argument that the light level is expensive to
measure and that it is decided to base an estimate of B initially only on

measurement of Yi and Fi' We may assume also that the natural experiment

produces values for F with expected values E(Uil Fi) =0,

1 Li and Ui

and E(LiIFi) =rgtr F,. In the more familiar parlance, it is assumed that

the fertilizer level and the residual effects are uncorrelated, but the fer-

tilizer level and the light level are possibly correlated. As every beginning



econometrics student knows, if you omit from a model a variable which is cor-
related with included variables, bad things happen. These bad things are re-

vealed to the econometrician by computing the conditional mean of Y given F

but not L:
(2) E(Y|F) = @ + BF + YE(L|F)

= o+ BF + Y(ro + rlF)

= (@+0) + (B+BOHF
where

* —
a = Yro
B* = yr; .

The linear regression of Y on F provides estimates of the parameters of the
conditional distribution of Y given F, and in this case the regression co-
efficients are estimates not of o and B but rather of o + a* and B + B*. The
parameters a* and B* measure the bias in the least-squares estimates. This
bias could be due to left—out variables, or to measurement errors in F, or to
simultaneity.

When observing a non experiment the bias parameters a* and B* can be
thought to be small, but they cannot sensibly be treafed as exact zeroes. The
notion that the bias parameters are small can be captured by the assumption
that a* and B* are drawn from a normal distribution with zero means and co-

variance matrix M. The model can then be written as

Y = a+BF+¢

* %
where € is the sum of three random variables: U+ a + B F. Because the error
term € is not spherical, the proper way to estimate o and B is generalized least-

squares. Leamer (1974) demonstrates that if (a,b) represent the least-squares
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estimates of (a,B) then the generalized least-squares estimates (3,8) are also

equal to (a,b)

(3) (

and if S represents the sample covariance matrix for the least-squares
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estimates, then the sample covariance matrix for (a,R) is
A
(4) var@,8) = s+M |,

where M is the covariance matrix of (a*,B*).

The meaning of equation (3) 1is that unless one knows the direction of
the bias, the possibility of bias does not call for any adjustment to the
estimates. The possibility of bias does require an adjustment to the covari-
ance matrix (4). The uncertainty is composed of two parts: the usual sampling
uncertainty S plus the misspecification uncertainty M, As sample size grows,
the sampling uncertainty S ever decreases, but the misspecification uncertainty M
remains ever constant. The micspecificatfonmatrix M that we must add to the least-
squares variance matrix is just the (prior) variance of the bias coefficients (a*,B*),
If this variance matrix is small, the least-squares bias is likely to be
small, If M is large, it is correspondingly probable that (a*,B*) is large.

It would be a remarkablé boot strap if we could determine the extent of the
misspecification from the data. The data in fact contain no information about
the size of the bias, a point which is revealed by studying the likelihood
function. The misspecification matrix M is therefore a pure prior concept,

One must decide independent of the data how good the nonexperiment is.



The formal difference between a randomized experiment and a natural ex-
periment is measured by the matrix M., If the treatment is randomized, the bias
parameters (a*,B*) are exactly zero, or, equivalently, the matrix M is a zero
matrix. If M is zero, the least-squares estimates are consistent. If M is
not zero, as in the natural experiment, there remains a fixed amount of speci-

fication uncertainty, independent of sample size.

There is therefore a sharp difference between inference from randomized
experiments and inference from natural experiments, This seems to draw a
sharp distinction between economics where randomized experiments are rare and
"science" where experiments are routinely done. But the fact of the matter is
that no one has ever designed an experiment that is free of bias, and no one
can. As it turns out, the technician who was assigning fertilizer levels to
plots of land, took his calculator into the fields, and when he was out in the
sun the calculator got heated up and generated large "random" numbers, which
the technician took to mean no fertilizer; and when he stood under the shade of
the trees, his cool calculator produced small numbers, and these plots received
fertilizer.

You may object that this story is rather fanciful, but I need only make
you think it is possible, to force you to set M # 0. Or if you think a com-
puter can really produce random numbers (calculated by a mathematical formula
and therefore perfectly predictable!), I will bring up mismeasurement of the
fertilizer level, or human error in carrying out the computer instructions.
Thus, the attempt to randomize and the attempt to measure accurately ensures
that M is small, but not zero, and the difference between scientific experiments
and natural experiments is difference in degree but not in kind. Admittedly
however, the misspecification uncertainty in many experimental settings may be
so small that it is well approximated by zero. This can very rarely be said in

nonexperimental settings,



Examples may be ultimately convincing. There is a great deal of empirical
knowledge in the science of astronomy, yet there are no experiments. Medical
knowledge is another good example. I was struck by a headline in the January
5, 1982 New York Times: '"Life Saving Benefits of Low~Cholesterol Diet Affirmed
in Rigorous Study'" The article describes a randomized experiment with a control
group and a treated group. '""Rigorous" is therefore interpreted as '"randomized."

As a matter of fact, there was a great deal of evidence suggesting a link be-
tween heart disease and diet before any experiments were performed on humans.
There were cross—~cultural comparisons and there were animal studies. Actually, the
only reason for performing the randomized experiment was that someone believed
there was pretty clear nonexperimental evidence to begin with. The nonexperi-
mental evidence was of course inconclusive, which in my language means that the
misspecification uncertainty M remained uncomfortably large. The fact that

the Japanese have both less incidence of heart disease and also diets lower in
cholesterol, compared to Americans, is not convincing evidence because there are
so many other factors that remain unaccounted for. The fact that pigs on a high
cholesterol diet develop occluded arteries is also not convincing because the
similarity in physiology in pigs and humans can be questioned.

When the sampling uncertainty S gets small compared to the misspecification
uncertainty M, it is time to look for othgr forms of evidence, experiments or non-
experiments. Suppose I am interested in measuring the width of a coin, and I
equip everyone in this room with a ruler. After each has reported a number, I
compute the mean and standard deviation, and I conclude that the coin has width
1.325 millimeters with a standard error of .0l13. Since this amount of uncer-
tainty is not to my liking, I propose to find three other rooms full of volunteers,
thereby multiplying the sample size by four, and dividing the standard error in
half. That is a silly way to get a more accurate measurement, because I have al-
ready reached the point where the sampling uncertainty S is very small compared

with the misspecification uncertainty M. If I want to increase the true accuracy



of my estimate, it is time for me to consider using a micrometer. So too in the
case of diet and heart disease. Medical researchers had more or less exhausted
the vein of nonexperimental evidence, and it became time to switch to the
more expensive but richer vein of experimental evidence.

In economics, too, we are switching to experimental evidence. There are the
laboratory experiments of Plott and Smith (1978) and Smith (1980), and there
are the field experiments such és the Seattle/Denver income maintenance experi=-

ment. Another way to limit the misspecification error M is to gather different kinds

of nonexperiments. Formally speaking, we will say that experiment 1 is quali-
tatively different from experiment 2 if the bias parameters (aI,Bf) are distributed
independenitly of the bias parameters (a*,B?). In that event, simple averaging of
the data from the two experiments yields average bias parameters (af + af ,

Bf + 85)/2 with mis-specification variance matrix M/2, half as large as the
(common) individual variances, Friedman's study of the permanent income hypothesis
is the best example of this that I know. Other examples are hard to come by.

I believe we need to put much more effort into identifying qualitatively

different and convincing kinds of evidence.

Parenthetically, I note that traditional econometric theory, which does not
admit experimental bias, as a consequence also admits no "hard core" propositions.
Demand curves can be shown to be positively sloped. Utility can be shown not to
be maximized. Econometric evidence of a positively sloped demand curve would,
as a matter of fact, be routinely explained in terms of simultaneity bias. If
utility seems not to have been maximized, it is only that the econometrician has
misspeéified the utility function. Formally speaking, the misspecification
matrix M forms Lakatos' ''protective belt" which protects certain '"“hard core"

propositions from falsification.



II. Is Control Essential?

The experimental scientist who notices that the fertilizer treatment is
correlated with the light level can correct his experimental design, He can
control the light level or he can allocate the fertilizer treatment in such a

way that the fertilizer level and the light level are not perfectly correlated.

The nonexperimental scientist by definition cannot control the levels of
extraneous influences such as light. But he can control for the variable
light level by including light in the estimating equation. Provided nature
does not select values for light and values for fertilizer levels that are
perfectly correlated, the effect of fertilizer on yields can be estimated with
a multiple regression. The collinearity in naturally selected treatment
variables may mean that the data evidence is weak, but it does not invalidate
in any way the usual least-squares estimates. Here, again, there is no essential

difference between experimental inference and nonexperimental inference.

III. Are the Degrees of Freedom Inadequate with Nonexperimental Data?

As a substitute for experimental control, the nonexperimental researcher
is obligated to include in the regression equation all variables that might have
an important effect. The NBER data banks contain time series data on two thousand
macro-economic variables. A model explaining gross national product in terms
of all these variables would face a severe degrees-of-freedom deficit since the
number of annual observations is less than thirty. Though the number of ob-
servations of any phenomenon is clearly limited, the number of explanatory
variables is logically unlimited. If a polynomial could have a degree as high
as k, it would usually be admitted that the degree could be k+l as well. A
theory that allows k lagged explanatory variables would ordinarily allow k+l,
If the level of money might affect GNP, then why not the number of Presidential

sneezes, or the size of the polar ice cap?
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The number of explanatory variables is unlimited in a nonexperimental
setting, but it is also unlimited in an experimental setting. Consider again
the fertilizer example in which the farmer randomly decides either to apply F0
pounds of fertilizer per acre or zero pounds, and obtains the data illustrated

in Figure 1. These data admit the inference that fertilizer level F0 produces

higher yields than no fertilizer. But the farmer is interested in selecting
the fertilizer level that maximizes profits, If it is hypothesized that yield
is a linear function of the fertilizer intensity Y = a + BF + U, then profits

are
Profits = pA(ax + BF +U) - pFAF

where A is total acreage, p is the product price, and Py is the price per
pound of fertilizer. This profit function is linear in F with slope
A(Bp - pF). The farmer maximizes profits therefore by using no fertilizer
if the price of fertilizer is high Bp < Pps and using an unlimited amount of
fertilizer if the price is low Bp > Ppe It is to be expected that you will
find this answer unacceptable for one of several reasons:
1. When the farmer tries to buy an unlimited amount of fertilizer,

he will drive up its price, and the problem should be reformulated to make
Py @ function of F.

2. Uncertainty in the fertilizer effect P causes uncertainty in profits,
Variance(profits) = pzAzFZVar(B), and risk aversion will limit the level of
fertilizer applied.

3. The yield function is non-linear.

Economic theorists doubtless find reasons one and two compelling, but I
suspect that the real reason farmers don't use huge ameunts of fertilizer is
that the marginal increase in the yield eventually decreases., Plants don't

grow in fertilizer alone,
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So let us suppose that yield is a quadratic function of fertilizer inten-
sity, Y = o + BlF + BZFZ + u, and suppose we have only the data illustrated
in Figure 1. Unfortunately, there are an infinite number of quadratic
functions all of which fit the data equally well, three of which are drawn.

If there were no other information available, we could conclude only that the

yield is higher at Fl than at zero. Formally speaking, there is an
identification problem, which can be solved by altering the experimental design.
The yield must be observed at a third point, as in Figure 2. 1In this figure
I have drawn the least-squares estimated quadratic function and I have indicated
the fertilizer intensity Fm that maximizes the yield, I expect that most peo-
Ple would question whether these data admit the inference that the yield is
maximized at Fm. Actually, after inspection of this figure, I don't think
anything can be inferred except that the yield at F2 is higher than at Fl,
which in turn is higher than at zero. Thus T don't believe the function is
quadratic, If it is allowed to be a cubic then again there is an identifica-
tion problem.

This kind of logic can be extended indefinitely, I can always find a set
of observations that will make the inferences implied by a polynomiél of degree
p seem silly. This is true regardless of the degree p. Thus no model with

a finite number of parameters is actually believed, whether the data are

experimental or nonexperimental.

IITI. Do We Need Prior Information?

A model withan infinite number of parameters will allow inference from a
finite data set only if there is some prior information that effectively
constrains the ranges of the parameters. In Figure 3 I have depicted another
hypothetical sequence of observations and three estimated relationships
between yield and fertilizer. I believe the solid line A is a better repre-

sentation of the relationship than either of the other two. The piecewise



Yield -
per e
Acre = * -
. T
// "’f.‘ ~ 3
z-/’/ff' | *
E 0 F Fertilizer per Acre

Figure 1: Hypothetical Data and Three Estimated Quadratic Functions

. .
‘ L ]
[ Py .
e .
//": L]
0 Fl F2 Fm

Figure 2: Hypothetical Data and Estimated Quadratic Function



D

“

Yield
per .
hore S S
v b / ‘
' 4 N Y
. FJ‘ . ) . - e @ —
3 . . - .
3 »
oy s .
L ; \
-~ 3 ~ .
B N ; N N .
I ,‘/ L4 0\ \
| AN ¢
*
. .
A s w !
r -t ~
Fertilizer
per
Acre

Figure 3

Hypothetical Data and Three Estimated Functions



12

linear form B fits the data better, but I think this peculiar meandering
function is highly unlikely on an a priori basis. Though B and C fit the

data equally well, I believe that B is much more likely than A, What I am

revealing is the a priori opinion that the function is likely to be smooth
and single peaked,

What should now be clear is that data alone cannot reveal the relation-
ship between yield and fertilizer intensity. Data can reveal the yield
at sampled values of fertilizer intensities, but in order to interpolate
between these sampled values we must resort to subjective prior information.

Economists have inherited from the physical sciences the myth that
scientific inference is objective, and free of personal prejudice. This is
utter nonsense, All knowledge is human belief, more accurately human
opinion. What often happens in the physical sciences is that there is a high
degree of conformity of opinion. When this occurs, the opinion held by most
is asserted to be an objective fact, and those who doubt it are labelled "nuts."
But history is replete with examples of opinions losing majority status, with
once objective "truths" shrinking into the dark corners of social intercourse.
To give a trivial example, coming now from California I am unsure whether fat
ties or thin ties are aesthetically more pleasing.

The false idol of objectivity has done great damage to
economic science. Theoretical econometricians have interpreted scientific
objectivity to mean that an economist must identify exactly the variables in
the model, the functional form and the distribution of the errors. Given
these assumptions, and given a data set, the econometric method produces an
objective inference from a data set, unencumbered by the subjective opinions of

the researcher.
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This advice could be treated as ludicrous, except that it fills
all the econometric textbooks. Fortunately, it is ignored by applied econo-
metricians. The econometric art as it is practiced at the computer terminal
involves fitting many, perhaps thousands, of statistical models. One or several
that the researcher finds pleasing are selected for reporting purposes,

This searching for a model is often well intentioned, but there can be no
doubt that such a specification search invalidates the traditional theories

of inference. The concepts of unbiasedness, consistency, efficiency, maximum
likelihood estimation, in fact all the concepts of traditional theory, utterly
lose their meaning by the time an applied researcher pulls from the bramble

of computer output the one thorn of a model he likes best, the one he chooses
to portray as a rose. The consuming public is hardly fooled by this chicanery.
The econometrician's shabby art is humorously and disparagingly labelled "data
mining," "fishing," "grubbing," "number crunching.”" A joke evokes the
Inquisition: "If you torture the data long enough, Nature will confess." (Coase)
Another suggests methodological fickleness: "Econometricians, like artists,
tend to fall in love with their models." (wag unknown)

This is a sad and decidedly unscientific state of affairs we find our-
selves in. Hardly anyone takes data analyses seriously. Or perhaps more
accurately, hardly anyone takes anyone else's data analyses seriously. Like
elaborately plumed birds who have long since lost the ability to precreate

but not the desire, we preen and strut and display our t-values,

If we want to make progress, the first step we must take is to discard

the counterproductive goal of objective inference. The dictionary

defines an inference as a logical conclusion based on a set of facts. The
"facts" used for statistical inference about 0 are first the data, symbolized

by x, second a conditional probability density, known as a sampling distribution,

f(xle), and, third, explicitly for a Bayesian and implicitly for 'all others’',
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a marginal or prior probability density function f(8). Because both the sampling
distribution and the prior distribution are actually opinions and not facts,

a statistical inference is and must forever remain an oginion.

A fact is merely an opinion held by all, or at least held by a set of
people you regard to be a close approximation to all.1 For some that set
includes only one person., I myself have the opinion that Andrew Jackson was
the sixteenth president of the United States. If many in the room agree I
may take it to be a fact. Actually I am most likely to regard it to be a fact
if the authors of one or more books say it is so.

The difference between a fact and an opinion for purposes of decision-
making and inference is that when I use opinions I get uncomfortable., I am
not too uncomfortable with the opinion that error terms are normally
distributed because most of you make use of that assumption. This observation

has deluded me into thinking that the opinion that error terms are normal

may be a fact, when I know deep‘inside that you actually are using normals only

for convenience. In contrast I am quite uncomfortable using a prior
distribution, mostly I suspect because hardly anyone uses them. If convenient
prior distributions were used as often as convenient sampling distributions,
I suspect that priors would be regarded to be just as factual as sampling
distributions.

In order to impress upon your minds this hierarchy of statements, I dis-

play them in a stack:

truths
facts
opinions
conventions
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You will see that I have added to the top of the list the category 'truths."
This will appeal to those of you who feel compelled to believe in such
things. At the bottom are conventions. In practice, it may be difficult
to distinguish a fact from a convention, but when facts are clearly un-
available, we must strongly resist the deceit or delusion that conventions
can represent.

What troubles me about using opinions is their whimsical nature. Some
mornings when I arise, I have the opinion that Raisin Bran is better than
eggs. By the time I get to the kitchen, I may well decide on eggs. Or
oatmeal. I usually do recall that the sixteenth president distinguished
himself. Sometimes I think he was Jackson; often I think he was Lincoln.

A data analysis is similar. Sometimes I will take the error terms to
be correlated, sometimes uncorrelated; sometimes normal, sometimes non-
normal; sometimes I will include observations from the decade of the
fifties, sometimes I will exclude them; sometimes the equation will be
linear, sometimes non-linear; sometimes I will control for variable z,
sometimes I won't. It all depends on whether I had Raisin Bran for break-
fast.

As I see it, the fundamental problem facing econometrics is how

adequately to control the whimsical character of inference, how sensibly to

base inferences on opinions when facts are unavailable. At least a partial
solution to this problem has already been formed by practicing econometri-
cians. A common reporting style is to record the inferences implied by
alternative sets of opinions. It is not unusual to find tables that show
how an inference changes as variables are added or deleted from the equa-
tion. This kind of sensitivity analysis reports special features of the

mapping from the space of assumptions to the space of inferences.
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The defect of this style is that the coverage of assumptions is infinitesi-
mal, in fact a zero volume set in the space of assumptions. What is needed
instead is a more complete, but still economical way to report the mapping
of assumptions into inferences. What I propose to do is to develop a cor-
respondence between regions in the assumption space and regions in the
inference space. I will report that all assumptions in a certain set lead
to essentially the same inference. Or I will report that there are assump-
tions within the set under consideration that lead to radically different
inferences. 1In the latter case I will suspend inference and decision, or I
will work harder to narrow the set of assumptions.

Thus what I am asserting is that the choice of a particular sampling
distribution or a particular prior distribution is inherently whimsical.
But statements such as "The sampling distribution is symmetric and unimodal"
and "My prior is located at the origin" are not necessarily whimsical, and
in certain circumstances do not make me uncomfortable.

To put this somewhat differently, an inference is not believable if it
is fragile, if it can be reversed by minor changes in assumptions. As con-
sumers of research we correctly reserve judgment on an inference until it
stands up to a study of fragility, usually by other researchers advocating
opposite opinions. It is, however, much more efficient for individual re-
searchers to perform their own sensitivity analyses, and we ought to be
demanding much more complete and more honest reporting of the fragility of

claimed inferences.
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The job of a researcher is then to report economically and informatively
the mappingAfrom assumptions into inferences. In a slogan "The mapping is
the message." The mapping does not depend on opinions (assumptions), but
reporting the mapping economically and informatively does. A researcher
has to decide which assumptions or which sets of alternative assumptions
are worth reporting. A researcher is therefore forced either to anticipate the
opinions of his consuming public, or to recommend his own opinioms. It is
actually a good idea to do both, and a serious defect of current practice is
that it concentrates excessively on convincing one self and as a consequence
fails to convince the general professional audience.

The whimsical character of econometric inference has been partially
controlled in the past by an incomplete sensitivity analysis. It has also
been controlled by the use of conventions. The normal distribution is now
so common that there is nothing at all whimsical in its use. 1In some areas
of study, the list of variables is partially conventional, often based on
whatever list the first researcher happened to select. Even conventional
prior distributions have been proposed and are used with nonnegligible fre-
quency. I am referring to Shiller's (1973) smoothness prior for distributed
lag analysis and to Hoerl and Kennard's (1970) ridge regression prior. It
used to aggravate me that these methods seem to find public favor whereas
overt and complete Bayesian methods such as my own proposals (1972) for
distributed lag priors are generally ignored. However, there is a very
good reason for this: the attempt to form a prior distribution from
scratch involves an untold number of partly arbitrary decisionms. The
public is rightfully resistant to the whimsical inferences which result,

but at the same time is receptive to the use of priors in ways that control
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the whimsy. Though the use of conventions does control the whimsy, it can
do so at the cost of relevance. Inferences based on Hoerl and Kennard's
(1970) conventional "ridge regression" prior are usually irrelevant because
it is rarely sensible to take the prior to be spherical and located at the
origin, and because a closer approximation to prior belief can be suspected
to lead to substantially different inferences. In contrast, the conven-
tional assumption of normality at least uses a distribution which usually
cannot be ruled out altogether. Still, we may properly demand a demonstra-

tion that the inferences are insensitive to this distributional assumption.

The Horizon Problem: Sherlock Holmes Inference

Conventions are not to be ruled out altogether, however. You will go
mad trying to report completely the mapping from assumptions into inferences
since the space of assumptions is infinite dimensionmal. A formal statisti-
cal analysis therefore has to be done within the limits of a reasonable
horizon. An informed convention can usefully limit this horizon. If it
turned out that sensible neighborhoods of distributions around the normal
distribution ninety-nine times out of a hundred produced the same inference,
then we could all agree that there are other more important things to worry
about, and we may properly adopt the convention of normality. The con-
sistency of least—squares‘estimates under wide sets of assumptions is used
improperly as support for this convention, since the inferences from a
given finite sample may nonetheless be quite sensitive to the normality
'assumption.

The truly sharp distinction between inference from experimental and

inference from nonexperimental data is that experimental inference sensibly
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admits a conventional horizon in a critical dimension, namely the choice of
explanatory variables. If fertilizer is randomly assigned to plots of
land, it is conventional to rgstrict attention to the relationship between
yield and fertilizer, and to proceed as if the model were perfectly specified,
which in my notation means that the misspeéification matrix M is the zero
matrix. There is only a small risk that when you present your findings,
someone will object that fertilizer and light level are correlated, and
there is an even smaller risk that the conventional zero value for M will
lead to inappropriate inferences. In contrast, it would be foolhardy to
adopt such a limited horizon with nonexperimental data. But if you decide
to include light level in your horizon, then why not rainfall; and if rain-
fall then why not temperature; and if temperature then why not soil depth,
and if soil depth then why not the soil grade; etc., etc. Though this list
is neverending, it can be made so long that a nonexperimental researcher
can feel as comfortable as an experimental researcher that the risk of
having his findings upset by an extension of the horizon is very low. The
exact point where the list is terminated must be whimsical, but the infer-
ences can be expected not to be sensitive to the termination point if the

horizon is wide enough.

Still, the horizon within which we all do our statistical analyses has
to be ultimately troublesome, since there is ho formal way to know what
inferential monsters lurk beyond our immediate field of vision. '"Diag-
nostic" tests with explicit alternative hypotheses such as the Durbin-
Watson test for first order autocorrelation do not truly ask if the horizon
should be extended, since first order autocorrelation is explicitly identi-

fied and clearly in our field of vision. "Diagnostic" tests such as good-
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ness-of-fit tests, without explicit alternative hypotheses, are useless
since, if the sample size is large enough, any maintained hypothesis will
be rejected. (E.g., no observed distribution is exactly normal.) Such
tests therefore degenerate into elaborate rituals for measuring the effec-
tive sample size.

The only way I know to ask the question whether the horizon is wide
enough is to study the anomalies of the data. 1In the words of the physiolo-

gist Bernard (1927, 137-8):

A great surgeon performs operations for stones by a single method;
later he makes a statistical summary of deaths and recoveries, and
he concludes from these statistics that the mortality law for this
operation is two out of five. Well, I say that this ratio means
literally nothing scientifically, and gives no certainty in per-
forming the next operation. What really should be done, instead of
gathering facts empirically, is to study them more accurately, each
in its special determinism...by statistics, we get a conjecture of
greater or less probability about a given case, but never any cer-
tainty, never any absolute determinism...only basing itself on experi-
mental determinism can medicine become a true science.

A study of the anomalies of the data is what I have called "Sherlock
Holmes" inference, since Holmes turns statistical inference on its head:
"It is a capital mistake to theorize before you have all the evidence. It
biases the judgements." Statistical theory counsels us to begin with an
elicitation of opinions about the sampling process and its parameters, the
theory, in other words. "After that, data may be studied in a purely mechanical
way. Holmes warns that this biases the judgements, meaning that a theory con-
structed before seeing the facts can be disastrously inappropriate and
psychologically difficult to discard. But if theories are constructed after
having studied the data, it is difficult to establish by how much, if at all,
the data favor the data-instigated hypothesis. For example, suppose I think

that a certain coefficient ought to be positive, and my reaction to the
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anomalous result of a negative estimate is to find another variable to
include in the equation so that the estimate is positive. Have I found
evidence that the coefficient is positive? It would seem that we should
require evidence that is more convincing than the traditional standard. 1
(1974) have proposed a method for discounting such evidence. Initially,
when you regress yield on fertilizer as in Equation (4), you are required

to assess a prior distribution for the experimental bias parameter B*, i.e.,
you must select the misspecification matrix M. Then, when the least-squares
estimate of B turns out to be negative, and you decide to include in the
equation the light level as well as the fertilizer level, you are obligated
to form a prior for the light coefficient Yy consistent with the prior for

is the regression coefficient of light on

B*, given that R* = yr., where r

1 1

fertilizer.

This method for discounting the output of exploratory data analysis
requires a discipline that is lacking even in its author. It is conse-
quently important that we reduce the risk of Holmesian discoveries by ex-
tending the horizon reasonably far. The degree of a polynomial or the
order of a distributed lag need not be data-instigated since the horizon is
easily extended to include high degrees and high orders. It is similarly
wise to ask yourself before examining the data what you would do if the
estimate of your favorige coefficient had the wrong sign. If that makes
you think of a specific left-out variable, it is better to include it from
the beginning.

Though it is wise to select a wide horizon to reduce the risk of
Holmesian discoveries, it is mistaken then to analyze a data set as if the
horizon were wide enough. Within the limits of a horizon, no revolutionary

inference can be made, since all possible inferences are predicted in
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advance (admittedly, some with low probabilities). Within the horizon,
inference and decision can be turned over completely to a computer. But
the great human revolutionary discoveries are made when the horizon is ex-
tended for reasons that cannot be predicted in advance and cannot be com-
puterized. If you wish to make such discoveries, you will have to poke at

the horizon, and poke again.

IV. An Example

You are understandably tired of all this talk. Methodology, like sex,
is better demonstrated than discussed, thovgh often better anticipated than
experienced. Accordingly, let me give you an example of what all this
ranting and raving is about. I trust you will find it even better in the
experience than in the anticipation. A problem of considerable policy
importance is whether or not to have capital punishment, If capital
punishment had no deterrent value, most of us would prefer not to impose
such an irreversible punishment, though, for a significant minority, the
pure joy of vengeance is reason enough. The deterrent value of capital
punishment is, of course, an empirical issue. The unresolved debate over
its effectiveness began when evolution was judging the survival value of
the vengeance gene. Nature was unable to make a decisive judgment. Pos-
.sibly econometricians can.

In Table 1, you will find a list of variables that are hypothesized to
influence the murder rate.5 The data to be examined are state-by-state
murder rates in 1950. The variables are divided into three sets. There
are four deterrent variables that characterize the criminal justice system,
or in economic parlance, the expected out-of-pocket cost of crime. There

are four economic variables that measure the opportunity cost of crime.
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And there are four social/environmental variables that possibly condition
the taste for crime. This leaves unmeasured only the expected rewards for
criminal behavior, though these are possibly related to the economic and

social variables and are otherwise assumed not to vary from state to state.

A simple regression of the murder rate on all these variables leads to
the conclusion that each extra execution deters 13 murders, with a standard error
of 7. That seems like such a healthy rate of return, we might want just to
randomly draft executees from the population at large. I expect now to see all
the macroeconomists raise their hands, and object that such a change in policy
would change the coefficients -~ rational expectations and all that.

The issue I would like to address instead is whether this conclusion is
fragile or not. Does it hold up if the list of variables in the model is
changed? 1Individuals with different experiences and different training will
find different subsets of the variables to be candidates for omission from the
equation, Five different lists of doubtful variables are reported in Table 2.
A right winger expects the punishment variables to have an effect, but treats
all other variables as doubtful. He wants to know whether the data still favor
the large deterrent effect, if he omits some of these doubtful variables. The
rational-maximizer takes the variables that measure the expected economic re-

turn of crime as important, but treats the taste variables as doubtful. The

eye-for-an-eye prior treats all variables as aoubtful except the probability
of execution. An individual with the bleeding-heart prior sees murder as the
result of economic impoverishment. finally, if murder is thought to be a
crime of passion then the punishment variables are doubtful.

In Table 3 I have listed the extreme estimates that could be found

by each of these groups of researchers. The right-winger minimum of -22.56
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means that a regression of the murder rate data on the three punishment variables
and a suitably selected linear combination of the other variables yields an
estimate of the deterrent effect equal to 22,56 lives per execution. It is
possible also to find an estimate of -.86, Anything between these two ex-
tremes can be similarly obtained; but no estimate outside this interval can be
generated no matter how the doubtful variables are manipulated (linearly).
Thus the right winger can report that the inference from this data set that
executions deter murders is not fragile. The rational maximizer similarly
finds that conclusion insensitive to choice of model, but the other three
priors allow execution actually to encourage murder, possibly by a brutalizing
efféct on society.

I come away from a study of Table 3 with the feeling that any inference
from these data about the deterrent effect of capital punishment is too fragile
to be believed. It is possible credibly to narrow the set of assumptions, but
I do not think that a credibly large set of alternative assumptions will lead
to a sharp set of estimates. In another paper (Leamer (1982)), a narrower
set of priors still leads to inconclusive inferences. And I have ignored the
important simultaneity issue (the dealth penalty may have been imposed in
crime ridden states to deter murder) which is often a source of great

inferential fragility.
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Table 1

Variables Used in the Analysis

Dependent Variable

M:

Murder rate per 100,000, FBI estimate.

Independent Deterrent Variables

PC:

PX:

XPOS:

(Conditional) Probability of Conviction for murder given commis-
sion. Defined by PC = C/a, where C = convictions for murder,

a =M ¢« NS, NS = state population. This is to correct for the
fact that MUR is an estimate based on a sample from each state.
(Conditional) Probability of execution given conviction (average

number of executions 1946-1950 divided by C).

Median time served in months for murder by prisoners released in

1951.

A dummy equal to 1 if PX > O,

Independent Economic Variables

W:

Médian income of families in 1949. -
Percent of families in 1949 with less than one-half W.
Unemployment Rate.

Labor Force participation Rate.

Independent Social and Environmental Variables

MALE:

Percent non-white.
Percent 15-24 years old.
Percent Urban.

Percent male.
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Table 1 (Continued)

e.

FAMHO: Percent of families that are husband and wife both present
families.

SOUTH: A dymmy equal to 1 for southern states (Ala., Ark., Del.,
Fla., Kent., La., Md., Miss., N.C., Okla., S.C., Tenn., Tex.,

Va., W. Va.)

Weighting Variable
SQRINF: Square root of the population of the FBI reporting region.
Note that weighting is done by multiplying variables by

SQRTNF.

Level of Observation

Observations are for 44 states, 35 executing and 9 non-executing. The
executing states are: Ala., Ariz., Ark., Calif., Colo., Conn., Det.,
Fla., I11., Ind., Iowa, Kans., Kent., La.; Mﬂ., Mass., Miss., Mo.,
Nebr., Nev., N.J., N. Mex., N.Y., N.C., Ohio, Okla., Ore., Penn., S.C.,
S.D., Tenn., Tex.{ Va., Wash., W. Va.

The non-executing states are: Id., Me., Minn., Mont., N.H., R.I., Ut.,

Wisc., Wy.
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Table 3: Extreme Estimates of the Effect of
Executions on Murders
Prior Minimum Estimate Maximum Estimate

Right Winger

Rational-Maximizer

Eye-for-an-Eye

Bleeding-Heart

Crime-of-Passion

—22.56

-15.91

—28'66

-25a59

-17.32

""086

-10.24

1.91

12,37

4.10

Least-squares is

-13.22 with a standard error of 7.2.
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V. Conclusions

There are two words that I would like to introduce into econometric
discourse: whimsy and fragility. In order to draw inferences from data as
described by econometric texts, it is necessary to make whimsical assump-
tions. The professional audience consequently and properly withholds belief
until an inference is shown to be adequately insensitive to the choice of
assumptions. The haphazard way we individually and collectively study the
fragility of inferences leaves most of us unconvinced that any inference 1is
believable. If we are to make effective use of our scarce data resource,
it is therefore important that we study fragility in a much more systematic
way. If it turns out that almost all inferences from economic data are
fragile, I suppose we shall have to revert to our old methods lest we lose

our customers in government, business and on the boardwalk at Atlantic City.
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Footnotes

*Professor of Economics, U.C.L.A. This paper was a public lecture
presented at the University of Toronto, January 1982. The writing of this
paper was partially supported by NSF grant S0C78-09479. Comments from

Robert Clower are gratefully acknowledged.

lThis notion of "truth by consensus" is espoused by Kuhn (1962) and
Polanyi (1964). Oscar Wilde agrees by dissent "A truth cases to be true

when more than one person believes it."

2 . . ‘s

In particular, least-squares estimates are completely sensitive to the
independence assumption, since by choice of sample covariance matrix a
generalized least-squares estimate can be made to assume any value whatso-

ever, Leamer (1981).

3In a randomized experiment with r., = 0, the constraint B* = YTy is

1
irrelevant, and you are free to play these exploratory games without penalty.
This is a very critical difference between randomized experiments and non-

randomized non-experiments.

4This material is taken from a study by a student of mine, McManus

(1982).
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