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OPTIMAL AGGREGATION OF LINEAR SYSTEMS

Edward E. Leamer

The econometric analysis of highly disaggregated systems can produce
estimated coefficients in such an abundance that consumers of research
results find themselves jnundated in details. An effective aggregation
scheme reduces the complexity of such a system without however unduly
reducing its accuracy. In this article it is assumed that an econometric
system is to be used for forecasting, and the inaccuracy of the system is
measured by the expected squared prediction error.

The increased inaccuracy due to aggregation has to be weighed against
the benefits of increased simplicity, but a precise quantitative description
of these simplicity benefits is mnot likely to be available in practice.

We will consequently quantify the inaccuracy cost of aggregation but leave
unquantified the simplicity benefit. This is analogous to reporting the
reduction in the R2 caused by the omission of a set of variables from a
linear regression. Given a suitable list of assumptions, the R2 measures
the predictive accuracy of a model, and a researcher, who reports that a
restricted model with a fewer number of explanatory variables has an R2
almost as large as the.complete model, is telling you that the inaccuracy
cost is low, but is leaving unstated the simplicity benefit.

More formally the problem considered is how to aggregate a multivariate
regression process given past data on the vector of m dependent variables
and the vector of k explanatory variables. The object is to predict all
m components given the future values of the k explanatory variables, with
the inaccuracy of the prediction measured by the sum of squares of the

component prediction errors. Assumptions are made which imply that the



optimal conditional prediction is formed by regressing each of the m
components on the k explanatory variables. This optimal conditional
prediction is compared with the predictions generated by aggregated systems
in which predictions of the components are functions of predictions of

the aggregates. This in effect imposes restrictions across equations in
the multivariate system.

The intent of the aggregation described here is to pfoduce a simple
representation of reality which works well for prediction purposes. The
disaggregated system has k times m coefficients whereas the fully
aggregated system has k + m coefficients, k in the regression of the
aggregate on the k explanatory variables plus m for translating the
single aggregate into the m components. For example, a system of demand
equations for related products (red Cherolets, blue Chevrolets, red Buicks,

etc.) might be written as

Dl = 0o + ? 61ij + Y% + 81M
D2 = q, + ? GZij + Yo + 82M
Dm = o + ; ijPj + Y, X + BmM ,

J

where Pj (3 = 1,.ee.,m) are the prices of the m commodities, x 1s
price of a composite alternative commodity and M is money income. A much
simpler aggregated system which may work almost as well for prediction pur-

poses is



D = ZD, = oa+2X6,P+vyx+BM
] k|
h| J
D1 = eln
D2 = GZD
Dm = 6mD ’

where D is the total demand and Gj is the share of commodity j in

total demand. The accuracy of the aggregated system depends.on the coeffi-~
cients in the disaggregated system. If the coefficients in tﬁe m disaggre-
gated equations are proportional to each other, values for the coefficients in
the aggregate system can be selected so that the two systems produce identical
forecasts, Although it is not to be expected that the coefficients on the
price variables, 6ij’ are proportional across equations, relative prices

may vary so little that the aggregate system is nearly as accurate as the

disaggregated system.

The aggregation method presented here has its source in a loss function
which penalizes complexity. Another source of aggregation methods is prior
information which asserts that the equations can be aggregated without
error because the coefficient vectors of the m different equations are
similar. In the terminology of Leamer (1978), the problem treated here is
a "simplification search," whereas, were prior information the source of
the desire to aggregate, the estimation difficulties could give rise to an
"interpretive" search. In a series of papers, Chipman (1977a, 1977b)

has presented results on aggregation as an "interpretive search" problem,



including tests of the hypothesis that the system admits perfect aggregation.

The proportionality constraints across equationms used to form a fully
aggregated system are the same as the proportionality constraints in the
MIMIC model of Joreskog and Goldberger (1975), with a latent variable equal
to the aggregate and with each component being a linear function of the

aggregate,

Most of the other econometric literature on aggregation deals with
the consequence; of the -misspecifications induced by éggregating both inde-
pendent and dependent variables, e.g., Theil (1954), Grunfeld and Griliches
(1960) and Aigner and Goldfeld (1974). 1In this paper, the micro variables
are the same in each equation and there is no misspecification caused by
aggregation.

The econometric details are discussed in Section 1. An application to

international trade data is presented in Section 2. The fifty-six two-digit
SITC trade categories are aggregated into nine classes with only a seven
percent increase in expected prediction error. In contrast, the nine one-
digit SITC categories imply a fifty-five percent increase in the prediction

loss compared with the fully disaggregated system.



1. The Aggregation Problem

The multivariate process is written as

(1) Xt = g}it + Et t = O’OOQ’T

where Yt is a vector of m observables which depend on the vector of k

~

observables xt and ut is a multivariate normal random vector with

moments

E(Bt) = 9 t=1,...,T
0t # t*
E(u u’,) = -
tt T t=t*

The problem is to predict YT given Xp and (Yt’xt)’ t = 0,00e,T - 1,
collected into the T Xm matrix Y and the T Xk matrix X. The

loss is assumed to be a function of the prediction QT and the actual YT
- A ] A
L= (p =Y Qp -1y -

The analysis to follow can be easily amended to deal with general quad-
ratic loss functions. One which may be appropriate in some settings is the
A A

weighted sum of squares (YT - YT)' D (Y, - YT

diagonal matrix. For example, if the vector Y has components with non-

) where D 1is a positive

comparable units such as heads of lettuce, cans of peas, quarts of orange

juice, etc., the unweighted loss function seems to make little sense, and in

any case the aggregation method would depend on whether you measured orange

juice in quarts or gallons. A better approach would take as a prediction goal
the value of each commodity, in which case the weights in D would be the square:
of commodity prices. Equivalently, equation (1) can be premultiplied by P%.

Another way to standardize the units is to weight by the inverses



of the sampling variances.

. Using the unweighted loss function, we can write the expected loss as
E(L|Y7,%,,B,5) = E(Bxy + up - Y,)"(Bxy + up - Yo)

= - \J -
(Bx Y ' (Bxy - Yp) + trl

This expected loss is conditional on four arrays, all of which are unknown

to the predictor; B, and L. The matrices B and ¥ are clearly

XT’ ?ST’
unknown, although the data (Y,X) contain information about them. The un-
certainty about B and I is summarized in a posterior distribution. In

particular, the posterior moments of B are

B = E(B[(Y,X))

W=E(B-B"'3B-B[EX) - Ivar (8;]Y,%)

~

where Bi is a row of E. Henceforth, all expectations are understood to be
conditional on the data (Zt’ft)’ t= O0yeee,T = 1, although this conditioning
statement is suppressed for ease of notation.

The prediction g and the future explanatory variables X, are also
assumed to be unknown, Before observing Xy We are required to select a
predicting function ?T(ET) indicating the conditional predictions of Yoo
If this function can be selected without restriction, there is no cost to

selecting it before x,, 1is observed. But the imposition of aggregation re-

T
strictions on the predicting function does involve costs which depend partly on
what we expect x,, to be. It is important to understand that the problem con-

sidered is conditional prediction but unconditional aggregation. The real

goal of this paper is the identification of a simple system Y(xT), and the



prediction problem is selected as a sensible setting in which to measure
the costs of simplicity. If aggregation as well as prediction were conditioned

on X we would have merely a problem of clustering a set of predictions

~T’
and no aggregate system ?T(XT) would be sought.

A

I

We assume that x

T without YT does not contain information about B.

We may therefore write the expected loss as

~ o)

E(L|Yp,%p,0) = E(Bxy - Bxp + Bxy = Yp) "(Bxp = Bxp * Bxp = Yp)

+ trl

E(xp(B - §>'(§ - -..ﬁ)l"r) + @’ET - XT)'(R‘T - Y0

+ trl

This expected loss is minimized if the conditional prediction of YT given

X is §T = ﬁ'xT. Generally, we restrict the prediction Y, to be a linear

function of XT

Yp = Bx, ’

and let the predictive moments of Xy be

3= EGpxp .

Then the expected predicted loss becomes

(2) E(L|YT,Z) = trWS + tr(B - B)'(B - B)S + trl



1.1 Full Aggregation

The expected loss (2) is minimized by setting B equal to B. In a

fully aggregated system the prediction is constrained to take the form

AN

Y = 68'x,,

where B is a k X 1 vector chosen such that B' T predicts the aggregate,

o~

and e is an m x 1 vector chosen such that eis Xp predicts the ith

component. The addition to the expected loss due to this simplification is

pE(L) = tx(B - 68")" (B - 68")S

AI\I\

= trB'BS - 26 BSB + B Sge's

~ A ~ A ~ e A~

The vectors 8 and 9 may be chosen to minimize this quantity by setting

to zero the derivatives

AN A

aAE(L)/BB = -2SB e + 2SRB'6 =

~owony A

AN ~

aAE(L)/ae = -2BSB + zeB'sB = 0 .

Assuming S is invertible these can be rearranged to form

td )

§ = lg/e'

1|

8 = BSB/B'SE .

s

If the second equation is used in the first we obtain an equation for B

~

BB SB" BSB = B' BSBB SB . or

~a A ~ e e

E'Bs - A - 0

where A = B SB BSB/B SB In words, B is an eigenvector of B'BS.

~ v A
~ e



Using this condition, the addition to the expected loss can be written

as a function of the eigenvalue A,

(3) AE(L) = tr §' S - 2 g'

which is minimized for A maximized. Accordingly B is the eigenvector

of B'BS corresponding to the largest eigenvalue, a result which has its

~ aray

analog in Joreskog and Goldberger's (1975) maximum likelihood estimation

of the MIMIC system. Since trB'BS is the sum of the eigenvalues, AE(L)

~ o~

is the sum of all but the largest eigenvalues of V = BSB'.

v

The problem with using an eigenvector ¢ to form a model for the aggregate

~

is that c'xT is not an optimal conditional prediction of any obvious aggre-
gated quantity, and the interpretive simplicity of the resulting system is
rather badly damaged. Accordingly, I now impose the restriction that B'x

is the optimal predictor of the aggregate 1'YT. This implies that

B-31,

D >
\

= BSB'1/1'BSB'1 ,

L L VR L

and the increment to the expected loss is

(%) AE(L) = trB BS - 1'BSB'BSB'1/1'BSB'1

~ ey Gerver N A A

= trV - 1' V21/1 'Vl

N ")

where

V = BSB'.

~

2



10

Both (3) and (4) are measures of the discordance among the rows of

B. 1If the coefficients are proportional across equations with B = 6B'

~

both (3) and (4) take on the value zero, (3) because B'BS has rank
one and only one non-zero eigenvalue. The loss (4) can be thought to be

an approximation to (3) since 1im 1'an/l'Vn-l 1= Amax' To assist in

interpreting (4) it is useful to consider the case of two equations with

- - . _ EveR
rows of § equal to §1 and B2, and with inner products cij §i§§j

-~

weighted by the expected variability of the explanatary variables, S.

Then a small amount of algebra yields

. _ 2

(5) AE(L) = 2(022011 - c12)/(cll + ¢y + 2c12)

= 2(1 - p2 Y conCoi/(Caqs + Coy + 2.,)

N 127 722711 11 22 12
where piz is the squared cosine of the angle between El and §2:
ciZ/clICIZ' The corresponding value of the share vector is
/\' _

(6) B' = (cqy + cpn gy + 01/ (egy F egp ¥ 20)

What (5) reveals is that classes can be combined with little loss if

they have similar coefficients (pi2 large, 12 positive) or if they have

~

small coefficients (cll and oo small). A share ei can be negative

if 1o is negative, although the loss (5) creates a preference for

positive Cype A negative share causes interpretive difficulties and

in the application below I have disallowed aggregation if it creates

negative shares.



11

These measure of the discordance among the coefficient vectors
include the constants in the regressions. For many applications it may
be more meaningful to ignore the constants. We can eliminate the

constants from consideration by letting the prediction vector have its

own set of constants
~ ~ A
Y. =4+ B x

Then & can be selected to minimize the expected loss

~

= . _ —A A~
E[(Byy - Yp)' (Bxp - Y |¥p,I0

= (G - Bxp - &' (B - By - O).

Setting to zero the derivations of this expression with respect to a
yields

0=-2(8-8) E(x)) +28 , or

8= (§ - E);{T’
where Xp = E(§Tl§) .

When this is inserted back into the formula for expected loss, we obtain
(7 E(L]YT,E) = trWS + tr(B - B)'(B - B)Q + trl

- S - [] . .

where 9 E(lcT §T)(§T §T> . This is the same form as Equation (2) and
the mathematics of aggregation need not be adjusted. The difference is
that Equation (2) uses moments about zero S whereas Equation (3) uses
moments around the means §). In particular, the constant has a zero pre-

-~

dictive variance and all the constant terms drop out of (7).
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t D>

An alternative choice for the share vector is = 1, which
requires the prediction of each of the components to be exactly the same,
For the applications I have in mind, this would not make much sense, basically

because of the scale dependence. If you did restrict § = 1, then the

optimal value of é is § =

by

'}/l'}, which is the average value of the

coefficients across equations. The corresponding increment to expected loss

is trV - l'21/}'1, which is greater than the loss incurred if only the
B

-~
restriction § = B'l1 is imposed. The restriction § =1 1is considered once

again at the end of the next section.

1.2 Partial Aggregation
The algebra of partial aggregation makes use of aggregation matrices.
An n xm matrix G of zeroes and ones is an aggregation matrix if there
is a single one in each column and one or more Ones in each row. For example,

the matrix
(8) G =

aggregates the first and second elements of a three dimensional vector.

Predictions of the aggregates GYT are taken to be GBxT.

are translated into predictions of the components via the m X n share

These predictions

matrix ©

Y, = 8GBx, .
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An additional assumption made for interpretive simplicity is that the
components are predicted from only the subaggregates to which they belong.
This implies that the non-zero elements of the share matrix 9' are located
in the same places as the non-zero elements of §° For example, with g

defined by (8) we would have 6 be

0 8,

831 851 O
86 =16y 0y O
0 0 85
and M —
81131 + )%y
- Y !
Y. =16, (B) + B))x
8., B'x

where '51 is the ith row of B.

The rows of the aggregation matrix G will be denoted by g', i=1,...,0,

and the columns of the share matrix 6 by Qi’ i=1,...,n. It has been

assumed by placement of zeroes that

' =
gigj 0 for i#j

' =
016, = 0 for 1%}

e'

~igj =0 for i # j.
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The share matrix © is selected to minimize the expected loss (2) subject

= GB, and thus to minimize

~ o~

to

T >

AE(L) = :r(§ - gd@)'(i - eg§)§
= tr(1 - 80 '(1 - 897

where V = BSB'. This increment to expected loss can be rewritten as

o~~~

9) AE(L) = trV - txG'8'V - trfGV + trG'0'oGV

oo ~ o

= trV - 2trGVe + tr6'6GVG'

~ o~ ~ A A

n n
= trV - 2 I GV, + I GIVG0!0
S

because 6'0 is a diagonal matrix with 6'9i on the diagonal. The deriva-

tive of (9) with respect to Gi is

- '
2V6, + 261758,

Only the components corresponding to the non-zero elements of €, are set

to zero. To do this, define the m X m diagonal matrix

P, = diag{gi} R
and let
= '
(10) 8y = B4VC/G;VG;-

Given these values of Gi, the increase in expected loss becomes

= - \J \J
(11) AE(L) = tr¥ igiygiygilgiygi
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The preceding discussion has to be altered if the shares are
restricted to be equal, that is, if each of the components of an

aggregate has to have the same prediction. This amounts to the restriction

D>

that 8 1is the transpose of an aggregation matrix, = G'. The predic-

tion can then be written as QT G! Bx where B is an n X k matrix

~ ~~~

selected to minimize

AE(L) = tr(B-G'B)'(B-G'8)s
= tr(I-G'R) '(I-G'R)V
where é = RB . This can be written as

trV - trR'GV - trG'RV + trR'GG'RV

~ o e ~ v ~ A ons

AE(L)

trV - 2trGVR' + trGG'RVR'

~rsny LY T N

- '
trV 229 YB. + i(Gigi)R VRi

since GG' is an n X n diagonal matrix with the number of components
in each aggregate on the diagonal. The derivative of the expression with
respect to Ri the ith row of R, 1is set of zero, 0 = =2 Giv + 2(G'Gi)R%V,

to minimize the loss. Thus, with V assumed invertible, we have

-1
= t
R, =G;(6";6)
R = (G'G)’lc
= ' Y
Tp = 6'(¢ G) G B xp
(12) AE(L) = trV - z G! VG, /G!G
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1.3 Choice of Measures of Uncertainty

Last it is necessary to specify §, s and W in (2) and Q in (7). These
are moments of a posterior distribution which we will now form with the
assumption that the prior is diffuse. For a similar treatment of the simpli-
fication of a single equation see Lindley (1968) or Leamer (1978, pp. 208-
214). The T past observations of the m dependent variables are collected
in the (T X m) matrix Z, and the T past observations on the k ex-
planatory variables are collected in the (T x k) matrix X. Given a
diffuse prior distribution, the posterior mean of E is equal to the least
squares matrix, which, assuming that (§'§) is invertible, can be written

as

B = Y'X(x'x)'l

where each row of the m X k matrix B contains the regression coefficients
from one of the m equations. The posterior variance of each row of B

is equal to the sampling variance
- 2yl
Var(B,) = 0;(X'X)

where 02

i is a diagonal element of I. Furthermore, if the vectors x

~t

are assumed to come independently from a normal population, we would have

the predictive moments approximately equal to
= M = \
5 = EGxpxpl®) = X'X/T.

0 = EGryBxy) GyeBry) = X'X/T - X'L 1T

Depending on whether the constants are constrained across equations, V

-~

becomes either
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o~~~

or v = BB = v ey - v11wr

where I have assumed that one of the columns of X is the vector of omes,

-1

which implies 1'X(X'X) “X' = 1'.

~

~

The minimum expected loss (2) with B = B becomes

EL|L) = tr(Zoi(X'X)—l)X'X/T + trl
PRER g o
= Zoi (}% + 1)
i

Again, using the diffuseness assumptions we would have

2

2=v - |"1| =
E(0)) = Y{(I - XX'DTXIL/N(T -k =s;

where Yi is the ith column of Y, Then the minimum expected loss is
_ 2, k
E(L) (Zsi)(T +1).

1.4 Computer Algorithms

The number of n X m aggregation matrices is on the order of nm,
which for the problem considered in the next section with m = 56 and
n =9 is the huge number 2.7 X 1053. The calculation costs of a global
minimization of (11) or (12) for most problems will accordingly be unacceptably
high. What can be done at reasonable cost is to find locally optimal aggre-
gates by transfering components between aggregates one at a time to reduce
(12) until all possibilities of further reductions are exhausted, as is

done by Hartigan's (1975, p. 84) "K-means algorithm." The initial starting

point for this local optimization algorithm is the set of n aggregates
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formed by sequentially coupling pairs of aggregates until only n remain.

At each step, the pair of aggregates is coupled which causes the smallest

increase in expected loss.

A final defect of the solution just presented is that the share vectors

(10) are not necessarily positive, although they do add to one. A negative

share can be interpreted to mean that the component behaves the opposite of the
aggregate, and allowing negative shares therefore destroys the meaning of an

aggregate. Accordingly, the local optimization procedure described in the

previous paragraph is altered to allow only positive shares, with components

shifted among aggregates when a negative share occurs.



19

2. Aggregation of Trade Data

This section reports an aggregation of the fifty-six two-digit SITC
trade categories. The dependent variables are the net exports in thousands
of dollars of these commodities in 1975 by thirty-four countries (OECD plus

selected developing countries). The explanatory variables are:

Capital = capital stock in millions of 1966 dollars,
formed by accumulating and discounting in-
vestment flows

Ll = thousands of professional/technical workers

L2 = thousands of literate nonprofessional workers

L3 = thousands of illiterate workers, assuming the
worker literacy rate is the same as the popula-
tion literacy rate

Tl = thousands of hectares of land area, tropical-
rainy climate

T2 = thousands of hectares of land area, humid meso-
thermal climate

T3 = thousands of hectares of land area, humid

micro-thermal climate

The capital stock figures are derived from World Bank Tables 1976, the labor

variables from ILO, Labor Force Projections 1965-1985, and the land area

variables from FAO, Production Yearbook and U.S. Air Force, Climatic Chart

. of the World. The theoretical underpinning of this equation comes from the

Heckscher-Ohlin-Samuelson trade model with Vének's (1968) assumption of identical

homothetic tastes., If the number of immobile factors equals the number of
commodities then trade is a linear function of the endowments. Otherwise,

the function theoretically is non-linear and the estimated equation should

be thought to be a linear approximation.
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The percentage increase in expected loss due to aggregation is graphed
as a function of the number of aggregates in Figure 1. If the system with
ten aggregates is selected, the expected squared prediction error increases
by only six percent. The marginal effect of further aggregation does not
become too large until the number of aggregates is four or less. If a
single aggregate is selected, the expected prediction loss increases by 172
percent.

The locally optimal system with nine aggregates can be compared with
the one-digit SITC system. The one-digit SITC system with nine aggregates
implies a fifty-five percent increase in expected loss, which compares very
unfavorably to the seven percent increase implied by the locally optimal
system. The composition of the locally optimal aggregates is indicated in
Table 1, and the shares calculated by formula (10) for the SITC scheme are
indicated in Table 2. Two of these SITC shares are negative, suggesting
strongly that SITC 09 (Miscellaneous Food Preparations) and SITC 35
(Electric Energy) are misclassified.

The locally optimal scheme suggests many other misclassifications as
well. SITC 11 and 12 are not important enough to form an aggregate by
themselves. SITC 11, beverages, behaves most like the labor intensive
manufactured products such as clothing and footwear. SITC 12, Tobacco, is
more like cereals. SITC 41, 42 and 43 should also be split up, with 41,
animal oils and fats, combining with cereals, and 42, fixed vegetable oils,
fats, and 43, processed animal oils, moving to chemicals. SITC 25, pulp
and waste paper, and SITC 64, paper and paperboard, should be combined.
Actually, the one class which stays reasonably intact is SITC 5, chemicals,

to which the locally optimal scheme adds SITC 71, nonelectrical machinery.
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This optimal aggregation scheme imposes proportionality constraints on the
constants as well as the slopes. The analysis has also been done with the
constants ignored, that is with 8 replacing § in the calculations. The
resulting expected losses are only slightly less than the ones recorded in
Figure 1. Also the nine aggregate classes are virtually the same as those
reported in Table 1. The four commodities which are reallocated are indi-
cated in Table 1 with brackets containing the aggregate to which they are
assigned: SITC 29 to aggregate 1, SITC 42 to aggregate 9, SITC 83 to
aggregate 5 and SITC 23 to aggregate 2.

At a formal statistical level the aggregation scheme reported in Table
1 does significantly better than the one-digit SITC scheme. But my inter-
est in forming the aggregates was not of course to predict the net exports
of some hypothetical randomly selected country, but rather to collapse the
fifty-six two-digit commodities into a manageable number which reveal as
clearly as possible, the salient aspects of international trade. I think
this has been very well achieved.

The aggregates reported in Table 1 can be thought to be composed of
commodities for which the sources of comparative advantage are similar.

The attainment of this goal depends on the completeness of the list of
factor endowments which are used as explanatory variables. Given that this

list is not especially inclusive, the aggregation seems remarkably successful.

There are two aggregates (1 and 2) of raw materials, two of farm products
(3 and 4) and five of manufactured products (5 to 9). The raw materials
are (1) petroleum and (2) wood and ores. (I am neglecting to mention the
smaller components). The farm products are (3) meat, fruit, vegetables

and sugar and (4) cereals, etc. The manufactured aggregates, arranged in
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rough order of technological complexity are (5) paper, pulp and non-ferous
metals, (6) clothing and footwear, (7) iron, steel, textiles, (8) electri-
cal machinery and transport equipment, and (9) chemicals and non-electrical
machinery. The only obvious misclassifications of commodities of signifi-
cant size are the assignment of (03) Fish and (07) Coffee to Aggregate 6,
the labor intensive manufactured commodities. If a system of ten aggre-
gates is selected, the only change that occurs is that SITCO6, sugar, and
SITCO7, coffee, are combined to form the tenth aggregate. This leaves

only SITCO3 having a fishy assignment, though it is not obvious to which of
the aggregates it can be sensibly assigned.

The least squares coefficients of the nine aggregates are reported in
Table 3. Countries which are scarce in land tend to have comparative ad-
vantage in the last three manufactured aggregates (all the coefficients are
negative). Two of the manufactured aggregates (5 and 6) tend to be exported
by countries which are abundant in land, though the coefficients are small.
The land with moderate climate (T2) has generally the largest coefficients,
especially so for the two farm products (3 and 4). Land with the cooler

climate (T.) does confer comparative advantage in cereals (4) but not

3
fruits and vegetables (3). The first manufactured aggregate (5), paper and
pulp, is associated with the cool land (T3), which I take to reflect
soft-wood forest resources. -

Capital abundance confers comparative advantage in the last three
manufactured aggregates. Abundance in professional/technical workers some-
what surprisingly is a disadvantage for the exports of all the manufactured

aggregates. Cereals, especially, but also wood and ores, are associated

with professional/technical workers. This, I suspect, is due to the "dumb-
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bell" effect of the U.S., which is a cereal exporter and has an abundance
of professional/technical workers. The abundance of literate nonprofession-

al workers (L.) is associated with the exporting of the manufactured

2
aggregates 6, 7, and 8. The relative importance of capital versus labor is
measured by a comparison of the capital coefficients divided by the labor

(L coefficients. In that sense, aggregate (6), clothing and footwear,

9)
is the most labor intensive manufactured commodity since the capital coef-
ficient is negative, and aggregate (9), chemicals and non-electrical
machinery, is the most capital intensive because the labor coefficient is
negative. Also (8), electrical machinery and transport equipment, is more
capital intensive than (7), iron, steel and textiles (19.8/235 > 5.8/184).
This conforms exceptionally well with capital intensities computed from
input/output tables.

What seems to be the only puzzle in Table 3 is the set of coefficients

for L the illiterate work force. Most of the countries in the sample

3°
have similarly high literacy rates, and L3 is almost a linear combination
of Ll and L2. The coefficients on L3 are accordingly very inaccurate
and not much should be made of these values in Table 2.

To conclude, a regression analysis of the fifty-six two-digit SITC
commodity classes produces a bewildering array of estimates. By setting up
a formal aggregation problem, I have combined similar and small classes to
form nine aggregates, the same number as the two-digit SITC aggregation
scheme. This optimal scheme is much more accurate than the two-digit scheme.

It also provides a rather clear picture of the sources of international

comparative advantage.
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It is possible to find fault with the aggregation scheme presented
here, and séme reallocations might be done if they improved the interpretive
clarity of the aggregates without unduly increasing the expected loss.
Reallocations of small categories should not affect the general conclusions

about the sources of comparative advantage, however.
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Aggregate 1

Aggregate 2

Aggregate 3

Aggregate 4

SITC

33

00
24
26
27
28

29

01
02
05
06
42

83

04
08
12
21
22
32
35
41

56

TABLE 1

Composition of Nine Aggregates

Description

Petroleum, Petroleum Products

Live Animals

Wood, Lumber, Cork

Textile Fibres

Crude Fertilizers, Materials
Metalliferous Ores, Scrap

Crude Animal, Vegetable Materials [1]

Meat, Meat Preparations

Dairy Products, Eggs

Fruit, Vegetables

Sugar, Sugar Preparations, Honey
Fixed Vegetable 0Oils, Fats [9]

Travel Goods, Handbags, Etc. [6]

Cereals

Feeding Stuff for Animals
Tobacco, Tobacco Manufactures
Hides, Skins, Furskins, Undressed
Oil-seeds, 0il-nuts, Oil-kernals
Coal, Coke, Briquettes

Electric Energy

Animal Oils, Fats

Fertilizers, Manufactured

Share

1.000

.036
.305
.153
.056
421

.030

452
.067
.222
.232
.009

.016

457
.056
.073
.037
.193
.150
.002

.021

.010

26



Aggregate 5

Aggregate 6

Aggregate 7

Aggregate 8

SITC
23
25
34
64

68

03
07
11
61
63
66
84

85

62
65
67
81
82

89

69
72

73

TABLE 1 (Continued)

Description

Crude Rubber [2]

Pulp, Waste Paper

Gas, Natural and Manufactured
Paper, paperboard

Non-ferrous metals

Fish, Fish Preparations

Coffee, Tea, Cocoa, Spices, Etc.
Beverages

Leather, Dressed Furskins

Wood, Cork Manufactures
Non-metallic Mineral Manufactures
Clothing

Footwear

Rubber Manufactures, NES

Textile Yarn, Fabrics, etc.

Iron, steel

Sanitary, etc., Fixtures, Fittings
Furniture

Misc. Manuf. Articles, NES

Manufactures of Metal
Electrical Machinery

Transport Equipment

Share
.017
.185
.116
.280

.402

.135
.243
.087
.016
.064
.099
.236

.120

.045
.253
.459
.008
.027

.209

.097
.310

.592



Aggregate 9

SITC

09

43

51

52

53

54

55

57

58

59

71

86

TABLE 1 (Continued)

Description

Miscellaneous Food Preparations

Animal, Vegetable 0ils, Fats, Proc.

Chemical Elements, Compounds
Mineral Tar, Crude Chemicals
Dyeing, Tanning, Coloring Mat.
Medicinal, Pharmaceutical Pro.
Essential 0Oils, Perfume Materials
Explosives, Pyrotechnic Products
Plastic Materials, Cellulose, Etc.
Chemical Materials, Products, NES
Machinery, Other than Electric

Prof., etc., Instruments, etc.

Share
.008
.002
.076
.001
.023
.032
.010
.001
.073
.040
.650

.084
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TABLE 2

Share Vectors: SITC One-digit Aggregation

SITC Share SITC Share SITC Share
00 .034 32 .029 61 .007
01 .273 33 .921 62 .032
02 .054 34 .052 63 .043
03 .082 35 -.001 64 .069
04 .089 65 .200
05 .129 C 4l .536 66 .082
06 .130 42 .408 67 411
07 .183 43 .056 68 .060
08 .033 69 .096
09 -.006 51 .291

52 .005 71 .409
11 .967 53 .089 72 .216
12 .033 54 .125 73 .375
55 .038
21 .036 56 .028 81 .009
22 .100 57 .003 82 .052
23 .008 58 .265 83 .032

24 244 59 .156 - 84 .329
25 .078 85 .181

- 26 .132 86 .043
27 .048 89 .355
28 .336

29 .020
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TABLE 3

Estimated Coefficients of the Nine Aggregates

Aggregate Capital Ll L2 L3 T1 T2 T3
1 -3.5 344 =72 14 .5 3.5 1.3
2 -3.4 870 -132 15 1.5 5.5 3.0
3 1.9 =302 =27 17 1.0 8.6 -.3
4 .8 1044 -136 9 .8 7.5 1.8
5 -.2 -143 -12 9 .1 .2 4.1
6 ~-7.5 =401 89 -15 .6 .6 4
7 5.8 -1693 184 -1.6 -1.0 -4.8 -1.7
8 19.8 -2777 235 17 -1.2 -8.0 -2.4
9 23.6 -985 -16 42 -.9 -11.4 -5.0

1. Petroleum

2. Wood and Ores

3. Meat, Fruit, Vegetables and Sugar

4, Cereals, etc.

5. Paper, pulp, and non-ferrous metals

6. Clothing and footwear

7. Iron, steel and textiles

8. Electrical machinery and transport equipment

9. Chemicals and nonelectrical machinery



TABLE 4

Coefficients for One-digit SITC Classes

SITC CAP Ll LZ L3 T1 T2 T3 Const.
0 1.16 35.9 -79.7  23.5 2.6 13.3 1.3 40991
1 -2.32 171.4 1.5 -6.3 -.1 .2 .2 -9193
2 -5.03 1249.2 -168.1 13.7 1.8 6.8 4.2 41647
3 -1.63 412.9 -104.4 22.4 .7 4.1 1.5 =105457
4 .39 -.8 -3.9 1.2 .1 .5 .0 -18050
5 7.08 -260.5 -16.0 15.0 -.3 -3.2 -1.0 37141
6 4.90 -1793.8 181.8 3.0 -1.0 -4.3 1.2 56200
7 32.6 -3090.6 201.9 40.4 -1.7 -14.5 -5.2 -123412
8 .1 -773.9 98.5 -6.3 -7 -1.2 -1.3 -20373

0. Food and Live Animals Chiefly for Food

1. Beverages and Tobacco

2. Crude Materials, Inedible, Except Fuels

3. Mineral Fuels, Lubricants and Related Materials
4. Animal and Vegetable-Oils, Fats and Waxes

5. Chemical and Related Products, N.E.S.

6. Manufactured Goods Classified Chiefly by Material
7. Machinery and Transport Equipment

8. Miscellaneous Manufactured Articles
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