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ABSTRACT

We show that sequential equilibria of infinite-
horizon games arise as limits, as T+« and 5T¢0, of sequen-
tial eT-equilibria of the game which is truncated after T
periods of play. A number of applications show that this
result provides a useful technique for analyzing the
existence and uniqueness of infinite-horizon sequential

equilibria.



1. Introduction

The idea that economic agents are sequentially rational
has been useful in understanding a wide variety of problems.
Sequential rationality was first formalized by Selten [13,
14] as "sub-game" and "trembling-hand"-perfect equilibrium.
A mathematically more convenient formalization is Kreps/
Wilson [4]'s "sequential" equilibrium. These equilibria are
ordinarily computed by backwards induction from a finite
horizon. Specification of a fixed horizon is often artifi-
cial, however, and an infinite horizon game better captures
the economics of a situation. This paper describes a method
for characterizing sequential equilibria in infinite horizon
games.

We do not consider here the most general possible
extensive-form games. We do consider a formulation which
allows simultaneous moves, and, in Section Six, uncertainty
and mixed strategies. We allow current options to be limited
by the history of play. We also allow relatively general
forms of intertemporal preference, requiring neither station-
arity nor additive separability. One restriction we do im-
pose is that agents should be impatient -- they should not
be too concerned about events in the far distant future.
While our model is somewhat restrictive, it covers many
cases considered in the economics literature and involves

substantially less notation than the most general case.



The technique we propose is to study eT-oquilibria in
the game truncated after T periods of play. Here we follow Radner
[9] in defining an e¢-equilibrium as a strategy selection
in which each player, taking opponents strategies as given,
is within e of the largest possible payoff. Our main result
says that as T+« and €T+0 the set of eT-equilibria in the
truncated games converges to the set of sequential equilib-
ria in the infinite horizon game. Because players are not
too concerned about the distant future equilibria for a long
finite horizon will "almost" be equilibria in the infinite
horizon, and conversely. Characterization of infinite
horizon equilib;ia as limit points is then made possible
by finding a suitable topology on the space of strategies.

In Section 2 we introduce a model which allows simul-
taneous moves, but not uncertainty or mixed strategies.
Section 3 contains a technical analysis of continuity and
the limiting behavior of equilibria. Section 4 considers
games with finitely many actions in each period. We show
that with perfect information perfect equilibria exist.

We also show that our results extend to the case of un-
certainty and mixed strategies. In Section 5 we discuss

the uniqueness of equilibrium. In the finite action case
we give an easily verifiable necessary and sufficient condi-
tion for the uniqueness of pure strategy equilibrium.

Using a similar technique we study a special case of

Rubinstein's [l1l] bargaining game, giving a more informative



proof of unigqueness than in the original. Section 6

reviews our findings.



2. Games, Subgames, and Equilibria

This section defines games in extensive and normal
form when there is no uncertainty. We do not consider the
most general definition of a game in extensive form.
Nevertheless, many economically important games are in the
class we study.

For our purposes a game (in extensive form) has an
infinite number of periods t = 1,2,... . Each period
all N players simultaneously choose actions from feasible
sets of actions, which we take to be subsets of IRM.

When they choose an action in period t they know the
entire history of the game until and including time t-l.3
It is possible that the set of feasible actions is
constrained by the history of play.

The outcome of the game in period T lies in ]RMN.
The way in which the outcome is made up of individual
choices is discussed below. The history of the game is
a sequence of outcomes x = (xl,xz...)e m = x:_;l ]RMN.

We will regard this as a topological space with the product
topology, an assumption we will explore in more detail in
subsequent sections. The action space of the game E is

e? c B: it is a list of all possible histories of the

game. (For technical reasons we shall always assume EA is

closed in B .) An example helps illustrate this.



Example 2-1 [McLennan's Termination Game‘]:

There are two players, one and two. Play alternates with

player one moving first. On his move a player may either
continue or terminate the game. If a player terminates
the game in period t he receives a present value of Bta
and his opponent Btb where a and b are scalars and 0<g<l
is the common discount factor. If play never terminates
both players receive zero.

Let "0" denote the option of "doing nothing” and
"1" be the option of terminating the game. Here N = 2
and M = 1: the outcome of the game is a pair (yl,yz)
where y,,y, € {0,1} © ®r?. a player must choose 0 if
it isn't his move, or if the game has already terminated.

A

Thus the action space E™ is the set of sequences of the

form ((0'0)1'(0'0)2""(1'0)t'(°’°) .) where t is odd,

t+1'°°
((0,0)1,(0,0)2,---(0,l)t.(0.0)t+1,... where t is even, or

((0,0)1,(0,0)2,...) .

It is generally useful and entails no loss of
generality to designate the outcome 0 ¢ "N the "null"
outcome "nothing happens". We require that the null
outcome always be feasible. This means that if x is
feasible then the vector x(t), truncated after t by

requiring that the null outcome occur in periods

t+l, t+2,..., is also feasible:

A
(2-1) ¥x€EP Wt x(t) T (X),Xp,....%,0,0,...) €E



Let EA(x,s) be the space of all possible outcomes
in period s consistent with the history Xy rXgreeeXg 1,
with the convention that EA(O,I) is the set of possible
first-period outcomes. By assumption (2-1) we may consider
this to be the space of vectors y such that

(xl,xz,...,xs_l,y,o,o,...)€ E® since if

z = (xl,...,xs_l,y,zs+1,zs+2,...)€ e then
z(s) = (XyreeerXg 10¥00,0,...) € £® as well.
If E® is to be the action space of a game then the

choices available to player i in period t given a prior
history x , denoted EAi(x,t), must not depend on what
other players do in period t. Thus, in addition to (2-1),
we must also require that the space of all feasible
outcomes EA(x,t) is the cartesian product of the individual
action spaces

N

Ai
j=1F (x,t) .

(2-2) ¥x¢€ EA vt EA(x,t) = X

Thus in Example 2-1 the set of possible outcomes at
time 2 if the game has not yet been terminated,
EA(O,Z) = {(0,0),(0,1)}, is the cartesian product of
e*1(0,2) = {0} ana E*%(0,2) = { 0, 1 }.

Definition 2-1: A game in extensive form E is a pair
A

C BB is a closed set satisfying (2-1)

Vv Vi, N
b 35 =
(2-2) and E (E )i-l

(EA,EV) where E

is an N-tuple of valuation functions



EVi:EA + IR assigning a value to each history of the game.

In Example 2-1 where zl

= ((100)1'(000)20000) ‘nd
22 = ((0,0),,(0,1)5,(0,0)4,...) E’(0) = (0,0);

EV(z1) = (ga,gb) and EV(2%) = (g%b,p%).

Example 2-2 [Repeated Games]:

Each agent i has a fixed set of actions 0¢ a*c ", a

i

utility function ul:A+ R where A = x§=lA and a discount

factor‘Bi. Then in our framework the repeated game has
the action space P = x:=lA so that history places no
constraints on behavior. The valuation functions are

Vi t

- % i
E' 7 (x) = 2t=l Bi u (xt).

Further examples are given in subsequent sections.

Associated with each game in extensive form are a
collection of truncated games in normal form: N(T) denotes
the normal form of the game truncated at time T by
assigning the null outcome to all periods
following time T. Let us formally describe the strategy
space of N(T). At time s player i,knowing the history
xl,xz,...,xs_l,must choose a feasible action in EA(x,s)
to undertake in period s. (Note that for now we don't allow
mixed strategies.) Let gi(x) denote this choice. Thus

for s =1 glf EAi(O,l)whilefor s > 1 g1 is a mapping
8 v s

(2-3) gi:EA(s-l) + =M with gi(x) e P (x,8)



where EA(t) denotes all possible histories to time t,

i.e. all vectors (xl,xz,...,xt,o,o,...)f EA. A complete
set of contingent choices of this type is called a strategy
and is simply a segquence (gi,gg,...,gé,o,o,...) where

gif EA(O,l) and for s > 1 gi satisfies (2-3). The set

of all such strategies is called the strategy space for
player i and is denoted NSi(T). The strategy space for
the truncated game N(T) is just the cartesian product

S1(7). Note that NS(1)enS(2)c...oN5(=).

NS(T) = x?:lN
While the truncated games depend on which action is
specified as the null action, we will iater see that this
is irrelevant for our results.

The outcome function Fxs assigns strategy selection
g € N(») the history of the game that occurs when the initial

history is XyreoorXg_ g and afterwards each player plays glz

Fxs(g) = 2 where for s > 1

(2-4) 9t(21'22"'°'zt-1'°'°'f") t > max(s,2)

We denote the history that occurs when each player plays
gi from the start by Fol(g). Note that Fog € EA follows
from the fact that E* is closed.5

To illustrate these definitions consider in Example
2-1 the strategy by player one "terminate in period

three unless player two has already terminated, after



period three don't terminate” which has the form

g = (ololg§,0'0'-..)
1
g3 = /0 X, = (0,1)
1 xz = (0,0)
and the strategy by player two "never terminate"” which

is given by

g = (0,0,...).

Then FOl(g) is the outcome that actually occurs so
Fol(g) = ((010)11(000)2'(110)31(010)41000)

while F04(g) is the outcome which occurs if the history
before time 4 is x;, =(0,0) x, =(0,0), .and x3 =(0,0) so that
F04(g) = 0. In other words if one reneges on his plan
to terminate in period 3 neither player ever terminates.

Finally if
x = ((0,0),,(0,1),,(0,0)...)

(so that two does terminate in period 2) Fo3(g) =x

and one must (and does) choose the null action in period 3.
We turn now to equilibrium in the games N(T).

Complete rationality of all players implies that whatever

the history of the game to date they should choose the

optimal course of action. More Frecisely, every decision

must be part of an optimal strategy for the remainder of



the game. As there is no uncertainty at the beginning of
each period, this rationality requirement can be imposed
using Selten [13]'s concept of a subgame-perfect Nash
equilibrium, that is, the subgame perfect and sequential
equilibrium coincide in this case. Radner's [8] concept

of a subgame-perfect e-Nash equilibrium generalizes per-
fectness by assuming players may only be able to get within

€ of the optimal payoff.7

Definition 2-2: g*¢ NS(T) is a subgame perfect e-Nash

equilibrium (or simply e-perfect) iff for each s >0,
history x, strategy g¢ NS(T) and player i
(2-5) BV (F,_(g*,g*" ) - EVi(r

xs(9%) <€ ;

that is, iff in no circumstance can player i improve his

payoff by more than e given the strategies of all players.

Note that g-i denotes the cartesian product of all

players' strategies except for that of player i. Note
also that the restriction s < T in (2-5) would be vacuous ,
since,with g,g* ¢ N(T), for t > T 9, = g{ = 0. Finally,

if € = 0 the equilibrium is simply called perfect.

One goal of this paper is to relate e-perfect
equilibria of truncated N(T) games to perfect equilibria
of the N(») game. To this end define the constants wT to
be the greatest variation in any player's payoff due

strictly to events after (T-1) :

10



(2-6) w! = sup IEVl(x) - EVi(z)l
l1<ix<N
X,z ¢ EA

xX(T=-1) = 2(T=1)

At this point W may be infinite,but we argue later that
most games of interest in economics have wT + 0as T + o,
The idea behind the limit theorem of the next section

is revealed in

Lemma 2-1:

(A) h* e-perfect in N(T) is (e+wT)-perfect in N(=)
(B) g* e-perfect in N(«) then
h* = g*(T) = (gi,gg,...,gg,o,o,...) is

(e+2wT)-perfect in N(T)

The point is that strategies in N(x) differ from strategies

in N(T) only after time T and thus by (2-6) have payoffs

within wl of the truncated strategies.

proof:
() 1let g ¢ Ns(w) and let x and s be given. Set

h = g(T) (91'92""’9T'0"")' By assumption

Vi i ,-i Vi
(2-7) E""(F g (h™,h* 7)) - E (Fug(h*)) < ¢

1l



while since h and g differ only after T by definition

T

Vi _(gi,n*"i)) - EVimintti)) < WP

(2-8) E (Fxs

Adding (2-7) to (2-8) shows

_ Vi i, *=i,, _ Vi T
(2-9) BV (R, (g% h"™)) - EVH(F  (h*)) <6+ W,

Since g, x,and s are arbitrary (2-9) implies h* is

(e+wT)-perfect.

(B) Let h€¢ N(T), and x,s be given. Since g* is g-perfect

in N(=)

vi i _#-i i
(2-10) EVI(F,_(h*,q 1)) - EVH(F, _(g%) <€ .

Since h* and g* differ only after T

vi vi T
(2-11) E (F,_(g*)) = E (F _(h*)) < w .

and also

T

")) < Wl

} Vi i #-iyy _ Vi i *
(2-12) E'N(F, (h',h*")) - BVN(F (b, g

Adding (2-10), (2-11),and (2-12) shows

(2-13) eV (r, (', 0"y - VR, () < e +aw’

and thus h* is (c+2w’)-perfect. Q.E.D.

12



3. Continuity and Limit Equilibria

This section contains our main result: a strategy

selection is perfect in N(w») if and}only if it is the

T. 0 of eT-perfect equilibria in

limit as T + = and ¢
N(T). Before proving this result we must discuss the
continuity of the valuation functions and the convergence
of equilibria. This requires that we define topologies
on E® and Ns(w).

had MN

Recall that EA c xT=1 IR = IB. The metric

(3-1) d(x,2z) = sup [(1/T)min{|x, ~ zpl,1}]
T

induces the product topology on B.b Hereafter all
statements about continuity, convergence, etc. will be

with respect to this topology (relativized to EA).

A we now discuss

continuity of the valuation function EV:EA *»:m”, which

Having introduced a topology on E

we refer to as continuity of the game. Continuity
implies events in the far distant future don't matter
very much. While this may not be a good assumption in
planning models, such as that 6f Svenson [14]), it is a
natural assumption about the preferences of individual

econonic agents.

Definition 3-1l: E is uniformly continuous if for all

x?,z" ¢ P, (x-2") + 0 implies |V (x™) - EV(z™)| + 0.

13



We shall only be interested in uniformly continuous

games. Many economically interesting games are of this type.
Recall that wt is the greatest variation in any

player's payoff due solely to events after T. The idea

that the future doesn't matter very much is captured by

requiring wT + 0.

T

Definition 3-2: E is continuous at infinity iff w™ + 0

as T = o,

A supergame has wT constant over time and is not

continuous at infinity. A repeated game (Example 2-2 )

with discount factor 1 > 8 > 0 has w’ wi 1

continuous at infinity provided wl < o,

= g and is
An important fact is that uniform continuity implies

continuity at infinity.

Lemma 3-1: E uniformly continuous implies E continuous

at infinity.

This follows simply from unwinding the definitions.

Finally, we must extend our notion of convergence
in EA to the strategy space Ns(w) (and implicitly to its
subsets NS(T) T < »). We choose a topology which captures
the notion of closeness most relevant to perfect
equilibrium : two strategies f and g are close if for
- every t and initial history x¢ EA the histories resulting

from £ and g being played are close and the history

14



resulting when any one player deviates from £ is close
to that resulting from the same deviation against g.

This topology is generated by the metric

(3-2) d(f,qg) =

s (d(Fy, (£) Fy (@), mop [a(F,, b, e7h), £ vd,g78))).

x€ED,t i, T
 nlenSip

Our motivation for choosing this topology is

revealed by the following lemmas.
Lemma 3-2: The strategy space Ns(w) is closed.

Lemma 3-3: Let gn be e-perfect in N(») and gn + g in a

continuous game. Then g is also e-perfect.

proof:

Suppose g is not e-perfect so that for some t, some x € EA,
and giE NSi(w),

Vi ~i -i Vi
E " (Fee(g”y g 7)) - E (Foe(9)) > ¢ (2-3)

Since g™ + g, for large n Fxt(él,gn°l) is close to
Fxt(§1,g-1); and as EVl is continuous, for N large

enough
Vi ~i N-i,, _ _vi
(3-4) E (Fee (9709 7)) E'7(F . (9)) > ¢

contradicting gn e-perfect. Q.E.D.

15



The lemma shows the chosen topology was fine enough
to guarantee that the e-equilibrium sets are closed. Of
course we could simply have declared these to be closed,
but then we could hardly hope to characterize infinite-
horizon equilibria as limit points. The interest in the
lemma, and the justification of the chosen topology on

Ns(m). is

Theorem 3-4 [Limit Theorem]:

Suppose E is uniformly continuous. Then

(A) A necessary and sufficient condition that g* be
perfect in N(=) is that there be a sequence {g"} of
2wT(n)-perfect in N(T(n)) such that as n + =, T(n) + =

and gn + g* (in the space N(=)),

(B) A necessary and sufficient condition that g* be
perfect in N(=) is that there be sequences e?, T(n), and gn such

gn is en-perfect in N(T(n)) and as n+», £%+0, T(n)-+>,

and gn+g*.

proof:
Since the hypothesis of (A) implies that of (B), it

suffices to show the hypothesis of (A) necessary and that

of (B) sufficient.

(A) Necessary:

We claim the sequence {g*(n)},

g*(n) = (gi,gi,...g;,o,o,..,) with T(n) = n has the

requisite property. First, since g*(n) and g* exactly

16



agree in the first n periods, d(g*(n),g*) < 1/(n+l)
(see (3-2)). Thus g*(n) + g*. By Lemma 2-1(B) we also

have g*(n) ZwT-perfect in N(n).

(B) Ssufficient:

T(n))

By Lemma 2-1(a) gn is (e +w -perfect in N(«).

Since €™ + wi(™) 4 0, for each & > 0 there is an N such

T(n) 4 ¢P < 5, whenever n > N. Thus by Lemma 3-2

that w
g* is §-perfect. Since this is true for every § > 0, g*

is in fact perfect. Q.E.D.

One application of this theorem is to infinitely re-
peated games with discounting. These games are known to
have a great multiplicity of equilibria.8 An implication
of our theorem is that there are a great multiplicity of
e-equilibria in the finite horizon. This allows a finite
horizon resolution of the prisoner's dilemma, Radner
introduced e-equilibrium for precisely this reason. Al-
though his results were for games with time averaging, our
results provide insight into why his effort was success-

ful.

17



4. Finite-Action Games

Finite-action games are games in which there are

only a finite number of possible actions in each period.

Definition 5-1: E is a finite—actionggame iff for each t
A

and history x¢ E” the set of feasible outcomes in period t

given the history x, EA(x,t), is a finite set.

First, we prove that finite-action cares have three

key properties:

(1) they are uniformly continuous if and only if they

are continuous at infinity;

(2) gn converges to g iff for any T gn and g eventually

coincide for the first T periods; and

(3) the strategy space Ns(w) is compact.

As a corollary to these results we show that in
finite-action games of perfect information perfect
equilibria always exist. In section five we use the
results of this section in conjunction with Theorem 3-4
to analyze the uniqueness of equilibrium in finite-action
gameés. To conclude the section we explain how these re-
sults can be extended to allow uncertainty and mixed

strategies.

18



It is convenient to have a concrete description of
convergence in finite-action games: convergent sequences
in E® must for any T eventually coincide for the first

T periods.

Definition 5-2: {x"} ¢ B converges finitely to x

(or f-converges) iff ¥T > 1 dN > 0 such that n >N

implies x"(T) = x(T) (i.e. for 1 < ¢t < T xp = x,).

Lemma 5-1: 1In finite-action games f-convergence and

convergence are equivalent on EA.

As an immediate consequence we have

Corollary 5-2: In finite-action games uniform continuity

and continuity at infinity are equivalent.

Just as convergent sequences of histories must
eventually coincide in finite-action games, convergent

sequences of strategies must too.

Definition 5-3: {g"} ¢ Ns(w) converges finitely to g

(or f-converges) iff ¥T > 1 &N > 0 such that n >N

implies for 1 £t<rT g: = g,

Lemma 5-3: In finite-action games f-convergence and

convergence are equivalent on Ns(w).

19



We turn now to the compactness of N'(w). A useful way
to study this problem is to observe that N'(») is the space

of sequences of maps (91’92"")' The map 9, has a finite
NM

domain, with say L, elements, and ranges inR . Thus it
NML
may be viewed simply as a vector in B{ =R t, and

N®(») ¢ IB* = xmB; in a natural way. Furthermore it is
easy to see :git the topology on Ns(w) given in (3-1) and
(3-2) is the same as the relative product topology in

B*: 1in both cases convergence means that for any fixed
horizon the sequence is eventually stationary before that
horizon. However N®(=) is the cartesian product of finite

(and thus compact) subsets of the:B; implying that it is

itself compact and proving

Lemma (5-4): In finite-action games N° (=) is compact.

We can use lemma 5-4 to prove an existence theorem.
A game of perfect information has no more than one player
making a decision in each period (who the player is may
depend on the history). 1In our notation, for each t and
history x ¢ EA, there is a player i such that EA-i(x,t) = 0;
only player i faces a decision.

It is well-known and can easily be established by
backwards induction from the horizon that a finite-horizon
finite-action game of perfect information has a perfect

equilibrium. From this we deduce

20



Corollary 5-4: Continuous (at infinity) finite-action

games of perfect information have perfect equilibria.

proof
Each finite-horizon subgame N(T) has a perfect equilibrium
gT. By Lemma 2-1(a) g7 is wl-perfect in N(»). Since

NS (w) is compact there is a subsequence {hl} € {gT}

with hT > g* ¢ Ns(w). By Theorem 3-3(B) this implies

g* is perfect in N(«), Q.E.D.

We now wish to extend the analysis of finite games to
permit the possibility of uncertainty and mixed strategies.
In each period t "nature" makes a random move Ot. Players
are only partially aware of the result of this move. Play-

. . i i M i,
er 1 observes only a signal @t e I ¢ © R whe:re@t is8 a

finite set. For simplicity'we assume Ot = (@i,@i,...,@ﬁ)
so that players would know ©¢ if they pooled their know-
ledge. Any additional uncertainty (on the part of all
players) can be incorporated directly into payoffs via
expected utility. Naturally the payoff functions EVi are
defined on @x g? where @E x> xN®i. We give

t=1 n=1
(:)x EA the product topology and define continuity at

infinity and uniform continuity over (:) x EA rather than
just EA,

Decisions by agents are based on their probability
beliefs about past and future values of et. Future beliefs
are based on a priori information; beliefs about past

values of ot are based upon private information Ot and

21



upon information revealed by the play of opponents as cap-
tured by the history of the game. Letting (:)i(T) £ xz=l(:>i
we define a system of beliefs for player i to be a sequence
of mappings Mi with domain @i(s-l) x E(s-1) and ranging
over the space of probability measures on (:)(s-l); that

is it represents beliefs about past outcomes given current
information. Since (:)(é-l) and EA(s-l) are finite ui may

be viewed as a vector in a finite dimensional vector space
M.
B_'.

An agent's play is characterized both by his beliefs
and by the strategy he plays. Analogous to our previous
definition a strategy for player i is a sequence of mappings
gi with domain (:)i(s-l) x EA(s-l). Now, however, we wish
to allow mixed strategies so that g: ranges over the space

of probability measures on EAl(x,s). Since (:)l(s-l) x EA(s-l)

and EAl(x,s) are finite sets g; may be viewed as a vector
g.
in a finite dimensional vector space le.

The overall play of an agent is called an assessment:

it is a system of beliefs (ui,u;,...) and a strategy
(gi,gé,...) for each agent i. The space of all possible
assessments is denoted by M(x). Just as N(x) ¢ x:=fB§ so
M(=) ¢ X* _XN(BEixBEi) £ B*. The product topology on B*
then izzioé:ies a8 corresponding topology on M(x). Note
that we could have introduced an economically meaningful
topology along the lines of the metric in (3-2) . However,

due to the finiteness of the game this will be identical

to the product topology. We also have the notion of

22



truncated assessment M(T) ¢ M(») in which g: places unit

probability weight on action zero for s > T. PFPinally we
may define Uéxs(M) as the expected utility accruing to
player i at time 8 when M is an assessment selection and
the expectation is taken according to i's probability
beliefs conditional on the history x and the private
information available from 0.

With this set-up we can define a sequential e-equilib-

rium, following Radner [9] and Kreps-Wilson [4].

Definition (5-4): A sequential e-equilibrium is an assess-

ment selection (u*,g*) such that
(1) The strategy g*l is e-optimal for each player given
his beliefs and the play of opponents for all i,0,x and s

i
oxs

US_(u*,gt,g* ) - U

oxs (u*,g%) < e.

(2) Agents beliefs are consistent with Bayes law in the
sense that there is a sequence (un,gn) converging to
(L*,g*) with gn placing positive weight on every possible

outcome and un derived from Bayes law.

Our goal is to show that the limit theorem (3-3) holds
for this new model with "assessments" replacing "strategies."
To do this we must reprove the truncation lemma (2-1),
lemma (3-3) showing that the set of e-equilibria is closed

and the proof theorem (3-4) itself. With the exception of

lemma (3-3) all proofs go through verbatim by merely

23



changing the notation to replace “strategies™ by "assess-
ments.” Lemma (3-3) follows quite easily from part (2) of
definition (5-4): sequential equilibria are well-behaved
with respect to limiting operations. Note that this would
not be the case had we chosen to work with *trembling-hand
perfect" equilibria.

We can now prove an existence result. Since M(x) is
the product of compact sets in the product topology it is
itself compact. From Kreps-Wilson we know there is a
sequential equilibrium m? in each M(T). Since M(») is
compact these have a subsequent converging to m* ¢ M(=).
By the limit theorem m* is a sequential equilibrium. Thus

we have demonstrated

Theorem (5-5): Continuous (at infinity) finite action

games with imperfect information have mixed-strategy

sequential equilibria.
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5. Uniqueness of the Infinite-Horizon Perfect Equilibrium

This section uses the limit theorem of section three
to study the unigueness of infinite-horizon perfect
equilibrium. The limit theorem implies that there will
be a unique equilibrium if and only if all convergent
sequences of truncated 2wT—perfect equilibria have the
same limit as T + =, As an aside, note that a necessary
condition for uniqueness is that every convergent
sequence of truncated perfect equilibria have the same
limit.

The first class of games we consider are the
finite-action games of section five. Recall that in
such games a sequence of strategies converges if and only
if it converges finitely (Lemma 5-3). This means that
there will be a unique infinite-horizon perfect
equilibrium if and only if by taking the horizon ,T, large
enough, we can ensure both that a ZwT-perfect equilibrium
exists, and that all 2wT-perfect equilibria exactly agree

in the first k periods. Formally we have

Definition 6-1: A game is finitely determined (f.d.)

iff for any k > 0 there is T > k such that

(a) there is g 2wT-perfect in N(T)

(b) if g' is 2w'-perfect in N(T) and k > t > 0 - g_ = g! .

25



Proposition 6-1: There exists a unique infinite-horizon

perfect equilibrium in a closed finite-action game that
is continuous at infinity if and only if it is finitely

determined.

Thus unigueness in finite-action games requires that
changes in strategies at the horizon not affect play in
the early periods. As an illustration, consider McClellan's
terminating game of Example 2-1 shown in Figure 6-1.
At each node, the indicated player chooses whether to
"terminate" or "continue". If the game terminates at
node k, k odd, the payoffs are 8%~l(a,b); if k is even,
they are 8¥=1(p,a); and if no player chooses to terminate,

they are (0,0).

This game is finitely determined in two cases

case (i) a > 0 a > gb

case (ii) a < 0 a < Bgb

and it is not finitely determined in the complementary

cases
case (iii) a > 0 a < Bb
case (iv) a<0 a>8b.

We show this for cases (i) and (iii). Note that a strategy
may be viewed as a choice of which nodes to stop at (if

the game hasn't stopped already). For example, if T is
even, "stop at T, T-2, T-4,..." is a strategy for player
two: it means that if the game hasn't stopped before T,

two will stop it, otherwise he chooses the null action.
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(a,b) 1

FIGURE 6-/
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Case (i) is a game which both players want to stop
as quickly as possible. Indeed, in the perfect equilibria
of the truncated game the last player to move must stop,
and in every previous period the moving player stops.
In a 2 -perfect equilibrium the last player to move can choose
to continue. However, at earlier nodes k, the minimum
loss from continuing is Bk min (a - Bza,a - gb). Thus
if ¢ < Bk min (a - Bza,a - Bb) all e-equilibria must

terminate at all times before k. Since wT + 0 with T we
anlahﬁqs‘ﬂxrme!Planxzenmxﬁxthn:Zﬁn1erﬂ:x,amnlﬂmialuwe

both players stopping before T. Thus the game is finitely

determined and both players always stop.

Case (iii) is a game of "chicken": each player wants

the game to stop, but doesn't want to end it himself. 1In
the game truncated at an even time T the unique perfect
equilibrium is for two always to stop and one always to
continue. In the game truncated at an odd time T the
unique perfect equilibrium is for one always to stop and
two always to continue. Thus the period one action by
player one isn't uniquely determined and the game isn't
finitely determined.

In finite-action games, uniqueness of the
infinite-horizon perfect equilibrium is equivalent to
the condition that changes in strategies at the horizon
have no effect on (equilibrium) play earlier. 1In

continuous-action games we need not require that such
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changes have no effect on earlier play but only that the
effect is damped out as we work backwards from the horizon.

We illustrate this point with an example.

Example 6-1 [Rubinstein's Bargaining Game with Discounting]:

This is a special case of a game due to Rubinstein [1l1].
Two players, one and two, must decide how to partition a
pie of size one. Both players have a common discount
factor B and a utility function linear in pie. In odd
periods player one proposes a partition which player two
accepts or rejects. Similarly, in even periods, two makes
proposals. Play begins with player one in period one.

Play ends when a proposal is accepted. Thus if a partition
s is accepted in period k, player one gets a present value
of Bks and two Bk(l—s).

We will show that this game has a unique infinite horizon
perfect equilibrium. To do so we will demonstrate that, for
any history x and time t, if T is big enough all ZwE-axdlﬁnia
have the player moving at t making an offer his opponent ac-
cepts in the same period. We then use this fact to show that
the offer by player one on an odd move k converges to 1/(1+8)
as T » «» and WT + 0. By symmetry this is also true of player
two's offers. It follows directly that the acceptance sets of
both pléyers converge. The convergence of offers and acceptance
sets implies that the corresponding strategies (when properly
written out in the formalism of this paper) must converge.

Thus the infinite horizon equilibrium is unigue.
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We recall the convention that a partition is the amount
of pie going to player one. Let e(k)ssk (1-8)/3. IfT>k
we claim all e(k)-equilibria in N(T) stop immecdiately.
Assume without loss of generality k is odd so that one proposes
the partition at k. 1If two doesn't accept one's proposal either
no agreement is reached or two gets l-s in period k+j. So
two must accept any proposal promising him a present value of
more than Bk+j(1-s) + €(k). In other words if one proposes
a partition of l-Bj(l-s) -B-ke(k) it will be accepted. 1If he

is to make a proposal that is refused he must ultimately get
more than this:

(6-1) B¥11-83 (1-5) -8 (k)] < M Tgre (i),
This implies

(6-2) e(k) > 8% (1-8)/2

which contradicts our assumption.

Since wos 0 when T is big enough 2wm < e(k) and at time k
player one must make two an offer he can't refuse.

We continue to consider a 2w: - perfect equilibrium.

k k

Let S" be the largest (sup) proposal one makes at k and S
the smallest (inf). 1If 2wT is small enough these proposals
will be accepted by two and the game ends. Thus at k one gets
a present value of at least Bkg# and no more than Bk§k.

Now consider one's decision in period k-1 to accept or reject
two's offer. If two proposes more than Bl-k (Bk§k + ZWT)

one must accept since he can't get more than Bk§k by continuing.

Similarly he'll reject proposals of less than Bl°k(8k§# - w7
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Since two's proposals must be irresistable they won't be less
1-k gkgk_

than B8

Bl.k(BkEk + 4wT). ‘Reasoning as above, this means that at k-2

2wT) and two certainly won't be offer more than

two accepts proposals offering him more than

g2k { gkl |12k (gkgk _ pT)] +28" | and
rejects proposals offering him less than

Bz-k {Bk-l (l-Bl-k(Bk§k + 4wT)1 - ZWT} . As before

this implies that

gk-2. 3 - g2-k{ gk- [(-8tk (gk8* + awT) - 27}
(6-3) sK7% =1 - g2k {Bk_l l‘l‘sl-k (8*s* - ZWT)] * 4WT}

The claim we wish to establish is that as T + o
§k,§k + 1/(1+8). Since the mapping in (6-3) is a contraction
as we work it backwards from period k+j, j large,

gk approaches [l/(1+8)] + C? wl and

§k approaches ll/(l+8)l - C? wT.

Letting Wl o+ 0 and noticing that C?

doesn't depend on T yields the desired conclusion.
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6. Conclusion

In games which satisfy an economically appealing
continuity requirement, infinite-horizon equilibria
coincide with the limits (as T + ®) of eT-equilibria of
the finite-horizon truncated games. Because finite-horizon
equilibria are easier to work with than infinite-horizon
ones, this theorem provides a powerful tool for analyzing
infinite-horizon games. It can be used to compute
answers to such questions as the existence and uniqueness
of infinite-horizon equilibria.

While our analysis examines only simultaneous-move
extensive form games, it can easily be extended to cover
other economic models such as strong perfect equilibrium,
and "state space" games, in which payoffs and strategies
depend not on all history but on a finite vector of "state"

variables.lo'11

As a technical matter all that is required
is to prove an analog of Lemma 3-1 and to find some reason-

able notion of the convergence of strategies.

32



Footnotes

llt is our pleasure to thank Timothy Kehoe, Eric

Maskin, Andreu Mas-Colell, Andrew McLennan, David Kreps,
Ariel Rubinstein and Jean Tirole for helpful conversations.
Joe Farrell and Franklin M. Fisher provided useful comments
on an earlier draft.

2 . C s
For conciseness some propositions are

without proof. The missing proofs are in [2].

3More general definitions involving information sets
can be found in Luce and Raiffa [7] or Kreps and Wilson

[4].

4We are grateful to Andrew McLennan for providing this
example, which helped clarify our thinking in the early

stages of our investigation.

5Consider the one-player game with action space

0= (0,0,...), 2 (L,,0,0,...), 2, = (1,1,0,...) . . .

1 2

Then 1lim Zn = (1,1,...) =2 ['4 EA so the game is not
closed?*wOne possible strategy, however, is for gi(zn_l) =1,
that is, if 1 has always been played before play it again.
Then FOl(g) =2_F EA. This pathology is avoided by as-

suming EA is closed.

6See Munkres (8], p. 123.

7As a model of bounded rationality e-perfect equilib-

rium combines almost-optimization with perfect knowledge
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of the game and perfect foresight. Levine [5] presents an

alternative formulation.

9See, e.g., Munkres (8], p. 275.

E 10ye thank A. Rubinstein for pointing this out. See

[12] for a treatment of strong perfectness in supergames.

llFor examples of such games see Fudenberg and Tirole

[3] or Levihe [e].
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