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1. Introduction

I wish to model a simple story about oligopoly. Suppose explicit
negotiation and legally binding agreements are impossible. Cournot type
capacity setting firms will not achieve the joint profit maximum for lack of
ability to punish free-riders. Free riders can, however, be punished through
the market: a firm which increases capacity in an attempt to garner a larger
market share can be punished if the rest of the industry responds by
increasing its capacity. Furthermore, each individual firm will find it in
its own self-interest to develop a reputation for punishing free riders, since
by doing so it forces down industry capacity and raises its own profits. Thus
we should expect collusion to occur, even though firms behave non-
cooperatively.

There is an additional aspect of the problem. It cannot generally be
expected that enforcing collusive levels of capacity is costless — it is
expensive to punish free-riders. Previous work by Stigler [11] and Spence
[10] has pointed out that it is expensive to observe whether or not a rival is
free-riding. It is also expensive to fulfill commitments on occasions when
rivals test to see if they will be honored. The more costly are retaliatory
strategies, the less collusion can be expected. Firms mst weigh the
additional benefits to them of less industry capacity against the additional
expense of enforcing that level of capacity.

I build a model that tells this story and which has two other
froperties. It tells only one story: the model has a unique equilibrium.
This is in contrast to the supergame model of Green [2] which has a continuum
of equilibria. Second, the equilibrium has reasonable computational

properties. Firms are able to compute their optimal strategy by extrapolating



the recent behavior of Opponents; and not from a detailed knowledge of rivals
technology and the solution concept.

I am able to achieve both these goals by introducing two essential
elements. I allow firms to make binding short-run commitments. I do not give
a model of why such commitments are possible: they may arise from imitative
behavior as described by Kreps, et al [3], or it may simply be that there is a
psychic cost to the "loss of face” felt from failing to live up to one's
reputation.

The second essential element I introduce is to treat both a firm's
reputation for retaliation and its capacity as capital variables subject to
expensive adjustment. Because these variables are (optimally) changed slowly,
their paths can be extrapolated accurately into the medium run, while with a
positive discount rate firms don't care much about the long run. Thus the
(approximate) perfect equilibrium I derive has plausible behavioral properties
as well as telling the correct story.

In the next section I describe the model of the industry. In Section
Three I describe the solution concept. Section Four poses and answers a
number of comparative dynamic questions that recount the story of oligopoly I

told above. The concluding section debunks some myths about oligopoly.



2. The Model

An industry has N identical firms with no possibility of further
entry. Each firm 1 1is described by two state variables: a capacity xy
and a reputation for responding to growth in rivals capacity Ry. Firm 1
also has two control variables: the rate of change of autonomous capacity
vy and the rate of change of reputation 8. This section has three parts.
The first part gives the equations of motion for the state variables
conditional on the controls. The second part describes the objective function
of firms. The third part describes the decision problem faced by firms. The
equilibrium concept is described in the next section.

Equations of Motion: There is a simple commitment technology which

relates the reputation of firms to the rate at which their capacity grows.

The growth of firm 1i's capacity x, 1is given by 1its autonomous growth Yy

i

plus its reputed reaction rate Ry times the autonomous growth of rival firms

L] X = + L]

(2.1) X Yy Ri zj#iyj

Implicitly it is assumed that Ri represents an actual commitment; that in
the short run firms find it costly to deviate from their reputed response

rate. In the long run firms may alter their reputation by
(2.2) R, =S, .
No explicit model is provided to describe how firms form their

reputations. They might simply announce their response rates Ry and feel an

implicit obligation to honor these commitments for at least short periods of



time. Alternatively firms might attempt to infer responses by observing each
other's output over time. Implicit also in (2.1) is that firms can
distinguish between autonomous and total output changes by rivals. This
assumption is designed solely to simplify the mathematics. In an earlier
version of this paper [9] I considered the possibility that firms could
respond only to total output changes by rivals and showed that it made no
qualitative different in the conclusions.

Firm Objectives: Firm income at a moment of time is given by

(2.3) Ii = ﬂi(x) - Fi(Ri) - ci(yi’si)'

The gross profits = are derived from the assumption that firms produce to

i
capacity and that marginal variable cost is constant and demand linear.
Letting n be the slope of the demand curve and D the difference between
price at zero industry output and marginal variable cost then

(2.4) = [D - nix ]x,.
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The term C; 1is the adjustment or investment cost which is quadratic

(2.5) c, = (Zb)'llc_lyf + Sf]

where b and ¢ are positive constants describing the magnitude of the
cost. That it is expensive to increase (or decrease) capacity is plausible.
Similarly reputation has the dimension of a capital variable and is costly to

ad just rapidly. The notion is that if a firm tries to change its reputation

everyone knows instantaneously that old commitments are no longer being



honored and the firm loses its reputation altogether.

The term F, is the frictional cost of maintaining a reputation. If a
firm wishes to convince its rivals that it will respond to changes in their
capacity by a response rate R; 1t must maintain expensive inventories and
engage in expensive short run output changes to respond to opponents who wish
to "test" its commitment. The higher the absolute response rate the higher

the frictional costs as given by

(2.6) F, = bE(N-1)|R |.
Here f denotes the product of frictional costs times adjustment costs: b
is the same parameter as in (2.5). It is also implicit that frictional costs
are proportional to the number of rival firms: the more opponents there are
to respond to, the more costly is the response.

Finally, firms are assumed to be present value maximizers. They face a
common interest rate which, by measuring time in appropriate units, is
normalized to equal one.

The Decision Problem: The objects of choice by firms are closed-loop

strategies

(2.7) (7,,8;) = 0, (%,R)

which are rules for choosing the controls as a function of the state. Given
starting values for the state variables x and R and strategy selections

for all firms o the equations of motion (2.1) and (2.2) can be integrated

forward and substituted into the instantaneous income functions to yileld

income Ii(t) as a function of time for each firm. Thus, beginning at



x,R, when o 1is played, firm 1i's present value is

(2.8) 3, (x,R,0) = [o 1,(t) exp(-t)dr.

A

Suppose that Ji is an estimate of the maximum of J; over oy given

the strategies °j of other firms. To find its individual optimum firm 1

should equate its marginal cost of investing to its estimated rate of return

on investment. For example, to set the control y; firm {1 should equate

1 -1

the marginal cost b ‘¢ 'y; to the derivative of the time rate of change of

present value (equals the rate of return on investment) with respect to yy;
to set

~

aJi axj . aJi aRJ .

(2.9) b ¢y, = Zj
ax 3R

1 9y, j 3y,

Using the equations of motion (2.1) and (2.2) this simplifies to

. 2J, 2J,
2.10 =bec [— + 1L —R,].
( ) yg = be [ax " j]
i J
Similarly Si is given by
23,
(2.11) Si =b—_.
BRi

It is an immediate consequence of Bellman's principle that if o 1is

derived from (2.10) and (2.11) and 31 = Ji then ¢ 1is the perfect Nash

equilibrium described by Selten [19]: every firm behaves optimally given

rivals' strategies and knows that regardless of initial conditions its rivals

will do likewise. Unfortunately it is difficult to even prove the existence



of a perfect equilibrium in this model, let alone to analyze its qualitative
properties. As an alternative, in the next section an approximate equilibrium

which satisfies plausible informational assumptions is derived.



3. The Solution Concept

-

An approximate equilibrium are functions J1 such that 1f all firms
follow the strategies o defined by (2.10) and (2.11) the actual present
values J; are approximately equal to the 31 for all initial conditionms.
Our approximation will require the strong assumption that adjustment costs are
large (that the parameter b in (2.5) is small). In another paper [5] I show
that the approximate equilibrium has correspondingly strong properties: the
strategies played by each firm lose no more than € relative to the full
optimum where ¢ 1s small provided b 1is small. The approximate equilibrium
is also approximately the same as any e=-perfect equilibrium which satisfies
certain regularity conditions (all sufficiently regular perfect equilibria are
approximately the same as the approximate equilibrium, for example). This is
important, because it means that the approximate equilibrium isn't too
sensitive to the rather ad hoc procedure used to derive it. (Note that all
these properties correctly allow for the fact that as adjustment costs grow
large the optimal adjustment speed grows small.)

Unlike the J; which require a global knowledge of the game and rivals'

~

behavior the Ji should actually be computable by firms from information
available at the current initial conditions. One way firms might form
expectations of future income needed to compute their present value is to

extrapolate current income linearly into the future; to estimate

Estimated present value of profits is then



(3.2) J (x,R) ~ 1,(0) + I (0).

The error in the approximation (3.2) can be bounded by I,. Letting

i

Z = (xl,...,xn,Rl,...,RN) be the vector of state variables we can write

2 [ ]
- a1, .. a1, az, .
(1] i i
(3.3) I, = § [ +.._._._J.z]_
175 2% &, T,k

From (2.10), (2.11) and the equations of motion (2.1) and (2.2) the rate of

change of the state variables can be written as

(3.4) Z,=bh,(Z).

In other words, if the cost of adjustment in (2.5) is large the rate of

adjustment in (3.4) is small and the error in (3.2) from (3.3) is

2
d Ii dIi ah

2
I3z T3z hb + 37 T, 7, =

(3.5) I, =b° 1z
ik

i
and is also small.
The conclusion of this discussion is that linear extrapolation is a
reasonable behavioral rule provided that firms are willing to accept errors of
order b2 (the square inverse adjustment cost). Hereafter this is assumed to

be the case:

APPROXIMATION ASSUMPTION: Adjustment costs (1/b) are sufficiently large

that firms will accept errors of order b2 in computing the optimum strategy.
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We compute J, from (3.2) by ignoring terms of order b2. Write out

i
(3.2) as
(3.6) Ji = ﬂi(x)
- F4(Ry) (4)
- Ci(Yiysi) (B)
31! 3F .
i, i
+ [f = %X, - —=1R,] )
] axj j e, d
ac, oy 3y, . aC, aS 3s. .
L=t (=t &, + =t R,) + et (= k, +===R)]. (D)

As we observed above ((2.10), (2.11) and (3.4)) the controls Y3 and Sj and

the rate of change of the state variables ij and Rj (that is, the Zk)

are small; they are of order b. Thus the expressions in lines (B), (C) and
(D) are proportional to b, while line (A) is proportional to b by

assumption from (2.6). Differentiating (3.6) therefore yields

3, amy
(3.7) 3;;-~ 3;3-+ b [other terms]

A

31_q-~ b [various terms].

Assuming that Ji and J; are approximately the same (3.7) and (3.8) should

hold also for 3J,/x, and 831/3Ri. This can be used in (2.10) and (2.11)

to find approximately Y3 and Sj and with the equations of notion (2.1) and

(2.2) to find ij and Rj' Substituting these back into (3.6) we find
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(3.8) Jiz T,
-bf (N=1) |R | (4)
on on
- (1/2) be [+ © —tRr]? (3)
9% yhr 0%y
on an on
roprgdipde s Sl
3°%1 %% ke 0%
on on
k k
+R, £ [ + £ =——R ] ()
I kpy % px g @ }
+ b2 [other terms]. (E)

By assumption, the terms of order b2 in (3.8) can be ignored and we simply

~

define Ji to be (3.8) with line (E) omitted. This solution gives the
approximate equilibrium in closed form. As mentioned above, this solution has
strong properties, including approximate uniqueness and dominance, which are
developed in another paper [5].

The solution (3.8) can now be differentiated and used in (2.10) and
(2.11) to find the equilibrium closed loop strategies. These in turn are used
in the equations of notion (2.1) and (2.2) to find the motion of the state
variables. Recall that all firms are assumed identical, including in initial
choices of reputation and capacity. This means, since (3.8) is symmetric,

that the reputation and capacity of firms will always be equal. Let r = Ry

be the common reputation of all firms, and define

(3.9) q = (n/D)Nx,

where x; 1s the capacity of any firm. Note by (2.4) that when the industry is
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at the competitive level of capacity q =1 so q can be interpreted as
industry capacity measured as a fraction of the competitive level. In terms

of the variables q and r the notion of the state variables can be

compactly expressed as

311 ati
(3.10) (.1 = b(n/D)Nc[l"T][-é-;(—- + (N-l)r '5';—']
1 J

+ bz[other terms]

. 2 o, ¥y ot
r=D) (N‘l){c[-sst—-(s-;— + (N=1)r I
1 h 3
on on on
i i i
+-a—x—j-(r -ax—i+(1+(N 2)r) s-x—J-)]
- £ sgn(r)}
where
+1 r>0
(3.11) sgn(r) = { O r=20
_1 r < 0 °

Equation (3.10) characterizes the condition of the industry over time.
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4. Comparative Dynamics

This section studies the equations of motion derived in the previous
section. It has three parts. The first part considers some global aspects of
the dynamics. Part two considers steady state behavior in the short run. In
the short run the response rate r 1s determined by initial conditions while
industry output is at the "conjectural variational equilibrium” where firms
conjecture that opponents will respond with the variation r. Part three
analyzes the long run. In the long run r 1is determined endogenously: it is
this feature which distinguishes this theory from previous oligopoly
theories. In the long run, steady state output lies between the monopoly and
Cournot-Nash output depending on the exogenous parameters of the market. The
most significant result is that when there are no frictional costs of response
output is at the monopoly level independent of other market parameters.
Several comparative dynamic exercises show how long=run output varies with
market parameters when frictional costs are positive. Several proofs have
been omitted for brevity and can be found in an earlier version of this
paper [4].

Global Aspects: An overall qualitative aspect of the system (3.10) is

that for almost all initial conditions q and r eventually reach the region
O0<r and 0< q < 1. For example, all stable steady states are in this
region. This makes good economic sense. If q > 1 firms make negative
profits and should reduce output. If r < 0 each firm is rewarding its
opponents for hurting it and penalizing them for helping it. Hereafter we
restrict attention to the case 0< q<1 and r > O.

The Short Run: Inspection of the equations of motion (3-10) shows that

q adjusts at a speed proportional to b while % is proportional to b2.
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Since b 1is assumed small this means q adjusts much more quickly than r.
In the short run q moves rapidly towards the curve § = 0, while r is

close to its starting value. Examination of (2-12) shows that § = 0 implies

3ni ani o
(4.1) i (N=1)r —— = b [various terms] ~ 0
x1 axj

If the right hand side vanished this would be exactly the first order
condition for choosing the optimal output level subject to the conjecture that
opponents of j respond to output changes ij by rij. Thus, in the short
run, the steady state resembles the traditional conjectural variational
equilibrium, as described for example by Seade [8].

From (4-1) and (2-4) the curve § = 0 1is seen to be

(4.2) r ~ N=(i+#N)q

(N-1)q
which is sketched in Figure (4-1). The curve strictly decreases. This
reflects the fact that the more j's opponents reward him for cutting output
by responding with output cuts of their own (as reflected in large r) the
lower j will choose to set his output.

At the monopoly output qM = (1/2) the reaction r = 1 while at the
Cournot-Nash output qN = N/(14N) the reaction r = 0. Finally, a
computation shows that for 3§/9q < 0. Thus in the short run q moves
towards the curve § = 0, and the short-run steady states are globally
stable. |

The Long Run: The theory of oligopoly developed in the previous sections

differs from orthodox theory because in the long run r 1is determined

endogenously. In addition to satisfying § = O, 1in the long run steady state
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FIGURE (4-1): THE SHORT RUN STEADY STATE CURVE
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t = 0 must be satisfied. Using (4-2), and (3-10) to solve these conditions

we find the long-run steady state output

(4.3) Q° =2~ [ -y
4 16

C
4 16

where the constant

(N=-1)f

— 0

2D2c

(4.4) !

Since r » 0 by (4-2) these steady states exist only when the corresponding
output 1s no greater than qN. In addition neither steady state exists 1if

¥ > (1/16). It can be shown by direct computation that the steady state at
qS is stable and the steady state at qU unstable. (For a minor exception
see [4].)

There is one other possibility. Since % 1s discontinuous along
r = 0 there can be a steady state at r = 0 and q = qN. From Figure (4-2)
this occurs exactly when © < 0 for r small and positive, in which case the
steady state is stable. A computation shows that the relevant condition for
<0 45 ¥> ¥ = (v-1)/20140)2.

The next stage of analysis is to determine how the location of steady
statés depends on ¥ for N fixed. There are two cases in analyzing steady
state output N = 2,3 and N > 4. The economic significance of the cutoff
value N = 4 is doubtful —— it is probably an artifact of the functional form.

When N = 2,3 we see from (4-3) that there is a unique steady state with

r » 0, it is stable, and it increases in M. For 0 < ¥ < VN the steady



FIGURE (4=2): THE PHASE PORTRAIT NEAR qV
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state output 1is given by qs. For Y > YN steady state output is at the
Cournot-Nash level. This situation is illustrated in Figure (4-3).

When N > 4 the situation is more complex. Define the cutoff point
Y - (1/16). When ¥ = 0 there is a unique steady state (which is stable)
at qs = qM and r = 1. As Y increases to YN there is still a unique
steady state (stable) with output qS. For VN <¥ < ¥®  there are three
steady states with output qs (stable), qU (unstable) and qN (stable).
When VY > TB, qS and qU meet at (3/4) = (qM+1)/2 and vanish leaving just

one steady state (stable) at qN. Figure (4-4) diagrams steady state

output. As in the case N = 2,3 output increases in Y. However a

N B

discontinuity in steady state output can occur when ¥ =y or V¥ =¥  as
the system jumps from one steady state to another.

From (4-4) ¥ and thus industry output as a fraction of the competitive
level increases in N and f and decreases in D and c¢. That increases
in N 1lead to more competition shouldn't be too surprising. In this model
f represents the marginal cost of enforcing a collusive arrangement — of
increasing Ri. Thus when f 1is large there is less collusion. There is
also a public goods problem in allocating enforcement costs among firms.
When N 1is large each firm has less incentive to bear its share of the burden
and long=-run output 1s greater. The fact that competitiveness declines in
D 1is perhaps a bit surprising. This happens for two reasons. First, £/D,
which is the cost of enforcing collusion divided by a variable describing the
marginal profitability of increasing output, declines. Thus D serves to
scale f: it isn't enforcement costs, but the ratio of marginal enforcement
costs of marginal market profitability that matters. Second, from the
equation of motion for q (3-10), when D increases, firms adjust output

more quickly due to the increased marginal profits from doing so. Increasing



19

FIGURE (4=3): THE CASE N = 2,3

Arrows Denote Movement in qs for N Fixed as N Increases
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FIGURE (4-4): STEADY STATE INDUSTRY OUTPUT

N > 4 and held fixed

stable

gN

. unstable
(]+qM)/2—--¢ « s s e 0 o‘ooono--

.
gM stable
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¢ also inc;eases the speed with which firms adjust. Why does more rapid
adjustment of output enhance collusion? The benefit of setting high values of
Ry and thus realizing relatively collusive arrangements lies in the effect
this has on opponents' future output. The more quickly they adjust, the more
quickly these benefits are realized and with discounting fixed, the more
valuable they are. Thus raising D, or ¢ both have the effect of reducing

competitiveness.
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5. Facts and Myths about Oligopoly

The results of this paper contradict a number of widely believed myths
about oligopoly. To conclude the paper I debunk several of these myths.

Infinite Response is Optimal: It is frequently argued that by making

sufficiently large threats against opponents a firm can get them to do
anything it wants. Thus (when there are no frictional costs of response) an
infinite response is optimal. In the context of this paper the argument is
false = the long=-run steady state reaction coefficient was computed equal to
one. It is true that each firm controls the output of all its rivals when
they follow the equilibrium adjustment procedure. The objective, however, is
profit and not control of opponents output. A firm can drive opponents'
output to zero, and perhaps even increase its market share while doing so, but
to do so it must cut its own output so much it loses profits.

Only if one firm can permanently commit itself to a policy of predatory
threats and instantly communicate this to rivals, can it successfully dominate
the market.

Negative Response is Optimal: The assertion is that when an opponent

increases output it is optimal to reduce output. This is true, for example,
in the static model of Bresmahan [l1]. In this paper, however, the converse is
true — all stable steady states have non-negative response rates. Why is
this?

Lowering output in response to an opponent's increase has two effects:
it increases profits, and it encourages the rival firm to increase output even
further. At a steady state only the latter effect matters — rival firms
aren't going to change output unless encouraged to do so. The fact is that

retaliation affects the behavior of opponents. Only when it does not should
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opponents output increases be met with reductions.

Negotiation Matters: The institutional industrial organizational
literature, for example Scherer [7], frequently distinguishes between explicit
collusion where firms negotiate output shares and implicit collusion where
they do not. It argues that in the former case firms will always collude
fully because it is "jointly optimal® to do so. Does explicit collusion
invalidate the results of this paper?

The key question is: how is collusion enforced? Even i1f an agreement is

reached what keeps firms from cheating on it? The answer is: precisely the

mechanism described in this paper.
It is a mistake to think that talk alone will cure the problem of
enforcing collusive arrangements.

Facts about Oligopoly: This paper has examined how firms (almost)

rationally choose short run commitments to retaliatory strategies. The result
is a simple sensible story of oligopoly: firms punish uncooperative opponents
and reward cooperative ones. In the long=-run steady state this implies that

market competitiveness depends on the frictional costs of enforcing collusive

arrangements.
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