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In empirical studies the replacement of theoretical variables with proxies
can result in measurement error. Frequently, models are estimated under the
assumption of no measurement error in the hope that the resulting errors in
inference will be small. It is also important to report how sensitive the
estimator is to measurement error -- how large is the asymptotic bias under
different assumptions about the magnitude of the error and in what direction
is the estimator biased?

A useful summary measure that answers both of these questions is the
derivative of the asymptotic bias with respect to the variance of the mea-
surement error, evaluated at zero variance. Section two of this paper dis-
cusses how this derivative can be computed, and why this approach is more
tractible than attempting to re-estimate the model explicitly allowing for
measurement error. .Section three specializes to location/scale parameter
models, and points out that in models such as probit and normal censorship,
unlike the normal linear model, the coefficient of a variable measured with
error may not be biased down in absolute value. Section four analyzes the
quality of the approximate correction for bias in a one-variable regression

model.
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2. A Sensitivity Measure

Suppose that the probability density of an endogenous variable y condi-
tional on a parameter vector 6, an exogenous variable x* and other exogenous

variables z is

(2.1) f(y|6,x*,2).

The log-likelihood function is defined as
(2.2) L(8,x*) = log f(y|6,x*,z)

where for notational simplicity y and z are supressed. I shall suppose that

L satisfies two regularity conditions:

(A1) L and its derivatives to third order with respect to 0 and x* are
absolutely integrable;

(A2) I = -ELee(Go,x) is non-singular.

Here 60 is the actual parameter value generating the data, while subscripts
denote differentiation. Assumption (Al) guarantees differentiation and
integration can be exchanged when required, while (A2) insures that the model
is locally identified. Under these assumptions 60 is a locally unique solution

of the normal equations
*) =
(2.3) ELe(eo,x ) 0

In practice, x* is often not observed, but replaced with a proxy x=x*'+vfin.

Here A is a non-negative constant and n is a random variable independent of
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of y, x* and 2z, and normalized so that En=0 and En2=1. I also assume that E|ﬂ|3
exists.

The case I wish to consider is when the scale factor A is a priori believed
small. The problem is one of sensitivity analysis: how do inferences about
90 depend on A? One solution is to assume that a specific function g(x*lx,k,z)
is the probability density of x* conditional on the proxy x, the scale factor

A, and z. In this case 60 may be found by maximizing
(2.4) E1og[ff(yl6,x*,z)g(x*Ix,k,z)dx*].

If A is large this is the only alternative, and indeed it is possible for
some functions g that A is identifiable. However, we typically have limited
confidence in the specification of g, and if the proxy is very noisy (A large)
it is unlikely that we can draw reliable inferences about 60 in a finite sample.
Furthermore, maximizing (2.4) is often impractical.

If A is -small, there is an alternative technique for drawing inferences

about 80. Let the function 8(\) be implicitly defined as the solution to
(2.5) EL¢ (8,x* +V/An) = 0,

that is, the estimator derived by replacing x* with the proxy x. As noted

above, 6(0)=60. Define the vector of derivatives

-8
A x| A=0.

(2.6) 8

Then for small A 6(}) = GO-AGA, or equivalently



—dym
(2.7) 8 = B(A) +18y.

Thus, 6, can be used as a correction factor to correct the estimates derived

A
by replacing x* with the proxy x. This quantity has the advantage that it is
easy to compute (and to estimate in finite samples) and is easily interpreted
by the consumer of empirical work. Also, as we are about to show, it is

independent of the specification of g.

To evaluate GX apply the implicit function theorem to (2.5) to find

= _ 098
2.8 5 F-§ |A=o
-1
_ [BELe ] 3EL,
36 | A=0 3 |A=0
__ 1 eEL ’
oA A=0,

Then, to evaluate BEL6/3X|X=O expand (2.5) in a Taylor series to find for an

appropriate choice of X

(2.9) g%-ELe(eo,x* +/n)
- '887 . {Le(eo,x*) (A)
+ Lo (8 ,x%)y/An (B)
+ Lexx(eo,x*) (>\/2)n2 ()
+ oL 6,0 0¥’ | )

= (1/2) ELGxx(eo’x*)' (E)
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Line (A) vanishes by (1.3), line (B) by En=0, line (C) and (E) are the same
since En2=1 and line (D) vanishes since dk3/2/dk vanishes at A=0. Thus, we

have computed

_ -1
(2.10) GA = -(1/2)1 ELexx(eo,x*)'

In a finite sample (2.10) can be consistently estimated if 6 is a consistent
root of the sample normal equations when A=0 and the sample moments for 1

and L converge uniformly in probability to the true moments. In this case,

Bxx

it follows from Amemiya's lemma that the estimator

N N
A I ~1 A
(2.11) 8 = (1/2) ZLgg (8, ) Iy (8,x )
N N

is consistent for Gx.
It should be noted that the preceding derivation applies not only to
MLE, but to any estimator defined by equating sample moments of functions
of the data and parameters to zero: non-~linear least squares, NL2SLS and
NL3SLS all have this form.
Finally, as a matter of reporting, it is sensible to report var(x)exlloo
which is scale free. When multiplied by the variance of measurement error
as a percentage of the total variance of x, it gives the approximate correction
to the coefficients. Since our priors are in terms of percent measurement error

rather than absolute measurement error, this coefficient is easiest to interpret.



3, Location/Scale Parameter Models

Now consider the special case of a location/scale parameter model in

which the log-likelihood function is
(3.1) L(B,0,Z) = -log 0 - H(ZR/0).

Here 6 = (B,0) where B is a k-vector of slope coefficients, 0 is a scale para-
meter and Z is k-dimensional row vector of exogenous variables. The first
variable Z. is presumed to be measured with error. The normal linear model,

1
probit, logit and the censored normal linear model all have likelihood func-

tions of this form.

Define weights

EH' ' (28/0) /0°

(3.2) Wo =
W, =B, EZ H"'(ZB/o)/Zc:3 j=1,...,k
3 1 j
W, ., = -B. {EZBH"''(28/0) + 207w }/204
k+1 1 o *
Let Oij be the asymptotic standard errors of maximum likelihood without mea-

surement error: the entries in the matrix —I—l. Algebraic manipulation of

(2.10) then shows that the correction factor for Bi is

) K
G.3) By = B VO F Ty W05 W%y el

The first term in (3.3) [Blwocli] should be thought of as the "normal"

effect. In the normal linear model Wj=0 for j = 1,...,k and Oi k+1=0’ so only
1

this term matters. Also, Wo = 1/02, so Bl is biased down in absolute value, and
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other coefficients are biased up or down depending on their (asymptotic)
correlation with Bl. In non-normal models with a constant term Wo>0 is
part of the second order conditions for a maximum, so the first term again

tends to bias Bl down in absolute value.

k

The second term in (3.3) [Zj=1

B,Wjoij] should be thought of as the "non-
linear" effect. In the normal linear model, the normal equations for 62,...8
are linear in Zl and are thus unaffected by measurement error which operates

through the second derivative (Lexx) of the normal equations with respect
to the proxy. In non-normal cases, the normal equations are non-linear in
Zl and thus are affected by measurement error. The second term measures the

consequences of this effect.

The third term in (3.3) ] should be thought of as the scale

(8 Miet1%1, k1
effect. Measurement error significantly biases estimation of 0 since random
variation in the endogenous variable is confounded with measurement error.
In the normal model, block diagonality insures that Oi,k+1=0 -~ that failure
to estimate O correctly doesn't affect estimates of the slope parameters.
Otherwise, when 81’k+1 # 0, the error in estimating O feeds back to bias the
slope parameters. In censorship models estimates of slope parameters hinge
critically on the estimated scale parameter and the third term is a poten-
tially serious source of error.

In OLS the coefficient of the proxy is biased down in absolute value as
are positively correlated coefficients with the same sign; in general, the
direction the estimate must be adjusted is the sign of the coefficient of the

proxy times the sign of the correlation with the proxy. This result, on which

so much of our intuition is based, is wrong in non-normal models. As shown,
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there are two additional effects -- the non-linear effect and the scale effect --

which must be considered to sign the bias due to measurement error.



4, Simple Regression

The adjustment factor Gk in (2.10) and (3.3) enables an approximate
adjustment to the estimator O derived by replacing x* with x in the likeli-
hood function. How good is this approximation? In the case of one variable
regression, an exact correction can be computed to compare with the approxi-

mation.

Suppose that the endogenous variable is generated by
(4.1) y = Gox* + €

where €~N(0,02) and x*~N(0,m2-k). The estimator 6 derived by doing OLS using

x=x* +V/Xﬁ in place of x¥* is
_ 2
(4.2) 6 = Exy/Ex".

A direct computation shows that

4.3) 8, = 6[1-(\/nH)] 7

while the approximate value 62 computed as 62 =0 + XGA is computed from
(3.3) as

4.4) 8 = [+ /n)].

Naturally (4.4) is simply the tangent line to (4.3) at A=0. As sketched in

the attached figure, the quality of the approximation depends on (A/mz) —— the
fraction of the variance of x accounted for by measurement error. If the
variance of x is almost entirely due to measurement error, the approximation

is quite bad. However, even with a third of the variance of x due to measurement

error, the approximation eliminates two-thirds of the bias.
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Figure

Approximation Error in Simple Regression
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