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1. INTRODUCTION

Debreu's [1970] theory of the regularity of a smooth finite horizon
exchange economy has played an important role in understanding the comparative
statics of general equilibrium models. In-this paper we develop a regularity
theory for statiomary overlapping generation exchange economies.

The theory for steady states is developed in section three. We show that
generically there are an odd number of steady states on which old people have
a non-zero initial endowment of nominal debt (fiat money) and an odd number in
which they have no endowment of nominal debt. Generically, these latter
steady states have price levels which explode either to zero or to infinity.
However, we are also interested in non-steady state perfect foresight paths.
As a first step in this direction we analyze the behavior of paths near a
steady state. We show that generically they are given by a second order
difference equation which satisfies strong regularity properties. We also
show that economic theory alome imposes little restriction on these paths:
with n-goods, for example, the only restriction on tﬁe set of paths converging
to the steady state is that they be a manifold of dimension no less than one,
no more than 2n.

- The regularity theory we develop here can be applied to analyze the
response of an overlapping generations economy to unanticipated shocks. In
another paper [1982] we consider the impact of shocks under alternative
assumptions about the types of contractual arrangements existing before the

shock and the process by which perfect foresight forecasts are formed.

2. THE MODEL
We analyze a stationary overlapping generations model similar to that

introduced by Samuelson [1958). In each period there are n goods. Each



generation -» { t { ® is identical and consumes in periods t and t+l.
The consumption and savings decisions of the (possibly many different types)
of consumers in generation t are aggregated into excess demand functions
¥(Pys>Py41) 1in period t and z(py,Py43) “in period t+l. The vector

P, = (pt,...,p:) denotes the prices prevailing in period t. Let Q Rin
be a closed convex cone with non-empty interior and a boundary that is smooth
(always taken to mean Cl) except at the origin. Also assume that

qeQ = Q@ {0} has q >> 0. Excess demand is assumed to satisfy

(A.1) ¥,2: ao + R are smooth functions.

] 1] ] = .
(A.2) (Walras's Law) piy(P sP. ) + Pr o 2(P 5P ) =0
(A.3) (Homogeneity) y,z are degree zero homogeneous.

Assumption (A.l) has been shown by Debreu [1972] and Mas~Colell [1974] to
entall 1little loss of generality. éssumption (A.2) implies that each consumer
faces an ordinary budget constraint in the two periods of his life. This
allows the possibility of trade between generations. As we show later this is
equivalent to assuming a fixed (possibly negative) stock of filat money.
Assumption (A.3) is standard.

In addition to (A.1)-(A.3), which are familiar from the finite model, we

make two boundary assumptions

(B.1) If q 4is on the boundary of 60 then (y,z) (viewed as a tangent

vector to 60 at q) points into the interior of '60.

(B.2) If (for fixed p € R2+)‘B € R, cannot be decreased (increased)

without violating (p,Bp) € 60 then p'y(p,B8p) < 0 (O0).



Assumption (B.l) Insures that if the price of a good falls low enough then
there is excess demand for that good. Assumption (B.2) is a strengthening of
(B.2): it says that 1if prices in the second perlod of life fall low enough
nominal savings become positive (and vice versa). As we shall see, (B.l) and
(B.2) are used to guarantee the existence of interior steady states. Although
the theory can be extended to analyze free goods we do not attempt to do so
here.

Note that we consider only pure exchange economies and two period lived
consumerss. We do, however, allow many goods and types of consumers, and the
multi-period consumption case can easily be reduced to the case we consider:
If consumers live m perilods, we simply redefine generations so that
consumers born in periods 1,2,...,m~1 are generation 1, consumers born in
periods -m+2, -m+3,...,0 and m,m-1,...,2m-2 are generations 0 and 2
respectively, and so forth. In this reformulation each generation overlaps
only with the next generatiomn.

The space of feasible economies E are the paifs (y,z) which satisfy
(A.1)-(A.3) and (B.1)~-(B.2). This is a topological space in the weak cl
topology described by Hirsch [1976]. Roughly, two economies (y,z) and
(y'!z') are close 1f the functions and their first derivatives are close.

It follows from the work of Debreu [1974] and Mantel [1974] that every
economy arises as the aggregate excess demand of some group of consumers with

convex preferences and budget constraints of the form (A.2).

3. STEADY STATES

A steady state for an economy (y,z) € E 1s a relative price vector

p € Ri and price level growth rate g8 > 0O such that (p,Bp) € 60 and

z(p,Bp) + y(Bp,sz) = 0. By homogeneity this is equivalent to



z(p,Bp) + y(p,Bp) = O. In other words, if each period relative prices are
given by p and the price level grows at B the market is always in
equilibrium. Since claims to good 1 now cost p1 and claims to good 1
next period cost Bpi, B~1 1is the steady-state rate of interest.

The nominal steady state savings for the entire economy is
u = -p'y(p,Bp). There are two kinds of steady states: real steady states in
which p = 0 and monetized stéady states in which yu # O. Gale [1973] refers
to real steady states as "balanced.” By Walras' law p'(y+Bz) = 0 so that
Bp'z = -p'y = p. By the equilibrium condition p'(z+y) = 0 so
p'z = py. Thus (B-1l)u = 0 and in a monetized steady state the interest rate
must be zero. We shall see that a real steady state has B = 1 purely by
coincidence. Thus we shall refer to a steady state with B8 =1 as a nomiral
steady state. Gale refers to these as "golden rule" steady states since they
maximize a weighted sum of utilities subject to the steady state constraint.

Only the relative prices in p matter to the steady state anﬂ it is
natural to normalize these to relative prices by means of a price index. Let
fo = {pe- Ri, B € R+|(p,8p) € 60}. A price index h: 60 + R, is a
smooth strictly increasing positive function homogeneous of degree one. For
each price index h there 1s a (compact) space of normalized prices
52 = {(p,s) € folh(p,sp) = l}- For example if h(q) = q1 then good one in
period one is numeraire. Note, incidentally, the assumption that Q is
closed with 50 having strictly positive prices implies that all relative
prices (B in particular) are bounded: this is why §2 is always compact.

Because Q 1is a cone all the normalized price spaces’ fg are naturally
diffeomorphic: they constitute different embeddings of a single n-manifold

fg in fo. We refer to fg as the space of normalized prices. Since Fo

is convex we may view §: as convex also. The advantage of this point of



view is that we need not precommit ourselves to a particular price index, but
can choose the index (embedding) most éonvenient for a particular proof.
Because of the homogeneity assumption excess demand are well-defined functioms
of (p,B) € ?:. -

We now examine the number of steady states. Let us first separate the

nominal and real cases. If both B =1 and y = -p'y = 0 at a steady state

this is characterized by the equations

(3-1) z(p,p) + y(p,p) = 0

p'y(p,p) = 0.

By virtue of Walras's law the first n equations 2z +y may be viewed as a
system of n-1 equations, while by homogeneity p constitute n-1
independent variables. Thus (3-1) may be regarded as n equations in n-1

unknowns. Let us therefore assume
(R.1) The system (3-1) has no solution.

The importance of this regularity assumption is that it 1s generic.
Proposition (3-1): The set of economies satisfying (R.1l) is open dense.

Proof: Openness is obvious. To prove density let v. € Rn, v

1 2 € R and

construct the perturbation

Zn pjvj pi
i = ol =1 11 _ 1 2
vy (v) y +'_—E___3—— vl + _T'VZ

L4=1P1 Py



zi(v) =zl - Voo

A check shows for v small enough that (y(V),Z(V)j e E; that is (A.1)-(B.2)
are satisfied. To show that (R.1l) is"densé; it suffices by parametric
transversality to show that the derivative of (3-1) with respect to v has

rank n whenever it vanishes. Writing out this derivative we have

ep'/(e'p - I) 0
0 e'p
where e 1s a vector of ones. This matrix has rank n as required.

Q.E.D.

Now we examine nominal steady states. Such steady states are
characterized by z(p,p) + y(p,p) = O. Since z(p,p) + y(p,p) has the formal
properties of the excess demand fungtion of an n good pure exchange economy
the theory of nominal steady states can be derived directly from the finite
theory. Existence of a nominal steady state is immediate and from (B.l) it

lies in the interior. ¥From Dierker (1972) the relevant regularity assumption

is

(R.2) Dyz(p,p) + Dyz(p,p) + Dyy(p,p) + Dyy(p,P)

has rank n-1 at nominal steady states.

This implies an odd number of normalized nominal steady states. Furthermore
since the map from E to n good exchange economies 1s a continuous open map
(R.2) is generic in E.

We turn now to the real steady states. These may be characterized by the



equations
(3-2) z(p,B8p) + y(p,Bp) = 0

p'y(p,Bp) = 0.

By Walras's law we also have p'z(p,8p) = 0 at the steady state and thus

(3-2) is equivalent to

(3-3) (I-pp') (z(p,BpP)+y(p,Bp)) =0

p'y(p,Bp) = 0

By choosing the price index h(q) = Zi qi we see that (3-3) may be viewed as
a vectorfield on the tangent spaces of f:. By (B.l) and (B.2) this
vectorfield points inwards on the boundary. Thus the vectorfield vanishes and

a real steady state exists. The relevant regularity condition is

(R.3) (I-pp'") (Dlz"‘ﬁpzz‘*'DlY"'BDz)’) (I-pp'") (DZZ+D2Y)P
y' + p'(D;y#8D,y) P'D,yp

has rank n.

From index theory these economies have a finite odd number of normalized

steady states. We also need

Proposition (3-2): Under (R.1l) (R.3) is also generic.

Proof: The openness of R.3 is immediate from the stability of transverse

intersection and the continuity of the derivatives of (y,z). To prove



density define for v € R®

i i i
y(v) =y +v

2'(v) = 2" - (pi/pé)vi-

A check shows (y(v),z(v)) € E. Also zi(v) + yi(v) = zi + yi + (l-B_l)v.

Differentiating (3-3) with respect to v we get

(1-8"1y (1-pp")

-1
(1-8 T)p'
By (Rel) B # 1 and this matrix has rank n so the lemma follows from

parametric tranversality. Q.E.D.

Let ER be the subset of E which satisfies (R.1)-(R.3). We can

summarize this discussion by

Proposition (3-3): ER is open dense in E. Each economy in ER has an odd

number of real and of nominal normalized steady states and no real steady
state has B = 1. Furthermore the number of steady states of each type are
constant on connected components of ER and vary continuously with the

economy.

In the sequel we will wish to show that for a generic economy certain
properties are satisfied at all steady states. Mathematically, it is more
convenient to prove that for a generic economy these properties are satisfied

at a particular steady state. A useful fact about regular economies is that



the latter property implies the former. To formalize this let fR ER x ﬁg be

the set of (y,z,p,B) for which (p,B) 1s a steady state of (y,z). Let

FG be open dense in fR. Define EG to be the subset of ER such that if
(y,z) € ER and (y,z,p,B) € fR then (y,z,p,B) € fG, that is, such that all
steady states have the property fc. It follows directly from Proposition
(3-3) and the fact that finite intersections of open dense sets are open dense

¢ 1s open dense in gk, Thus, in the sequel, we prove all theorems

that E
about genericity in fR, with the understanding that this carries over also

into E.

4, RESTRICTIONS ON DEMAND DERIVATIVES

We are interested in discovering the properties of the demand derivatives_
¥, 2 Dyy(p,BP)s ¥, = D,y(p,BP), 2; = D,2(p,Bp) and
z, = Dzz(p,Bp) at steady states (p,8). The most convenient way to do this

R + D where D 1is a subset of the

is to introduce the jet mapping d: F
space of 6-tuples (yl,yz,zl,zz,p,ﬁ) and the mapping d applied to an
economy/steady state (y,z,p,B) yields the excess demand derivatives
evaluated there.

What restrictions should we place .on the 6-tuples in D? Differentiating

Walras's law (A.2) we see

- . ] t ! =
(4-1) y' +p'y; +B8p'z; =0

t ' ' -
z' +p y2 + Bp z2 0

while from the steady state condition z' + y' = 0., Thus elements of D

should satisfy
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) = .
Differentiating the homogeneity condition (A.3)

(D.3) (yl+By2)p =0

(zl+Bzz)p = 0,

Thus we define D to be the 6-tuples satisfying (D.2)-(D.3) and for which

—% -
(p,B) € Po. The following theorem implies that the space D captures all the
important restrictions on demand derivatives.

Proposition (4-1): The jet mapping d 1s a continuous open mapping of fR

onto a dense subset of D.

Thus any generic set in D 1s a generic property in E. Furthermbre any open

set in D corresponds to a non—-void open set in E. Proposition (4-1)

enables us to restrict our study entirely to the space D.

Proof of Porposition (4-1): Continuity of d 1is obvious. To prove the

remainder of thg ﬁroposition we need to know how to convert elements of D
into elements of E. Suppose d € D. Let h be the price index for which
good one when young 1s numeraire. Let i@ be the matrix of demand
derivatives with first row and column deleted. From Walras's law in (4~1) we
see we should define y' = -p'(y1 + le) and z' = —p'(y2 + Bzz). Let a be
the vector (p,8p) with the first component deleted and let ; (a) be the
vector (y,z) with the first component deleted. Let at be an arbitrary
~d R2n-1 > Ranl b

2n-1 vector. We define the linear affine function x: y
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X (qt) =x (q) + X (qt—q). Suppose x € E and x 1is the last n-l
components of x viewed as a function on r2n-1 by setting q; = 1. We now

~

define xx to be the weighted average

AA ~ - A Ad -~ ~ N A

x7(q,) = Ma)x(a,) + (1 = A(q,))x(a,)-
By a construction of Hirsch if B is a ball around q of radius € > 0 we
may assume A to be Cl with 0 < A < 1, |DA| < 3/e, A(a) =1 and for

q, ¢ 3B A(qt) = 0. Thus x* coincides with x outside of B; but

xl(q) = xd(q) and Dxl(q) = Xd. Furthermore there is a unique extension of
xx to xA: ﬁo + R2n which satisfies Walras's law and homogeneity. For ¢
A

small enough x" and =x coincide on the boundary of 60 and the boundary

assumptions are satisfied. Thus we may assume xA € E. Finally, a direct

computation shows that a(xx,p,s) = d.

Let us first use this construct to show that d is open. Let
d(x,p,8) =d and let a* > q. Choosing
€ = max{lqk - qrﬁ% l;dk(a) - ;(&)rﬁ% Iidk - Dx(q)l} then € * 0 and a
computation using the mean value theorem shows xAk + x. Since ER is open
in E x R

is eventually in E° and this proves d 1is open.

Next we show E(FR) is dense in D. Indeed let d & D E(fR). Since

¥ ¢ E there is x* » ¥ with xk € ER- However the steady state (p,B) 1is

itself regular in the ball B of fixed radius €. Thus the x* nust have a
steady state (pk,Bk) + (pyB). Thus (xk,pk,Bk) € ER and E(xk,pk,Bk) + d.

QED.

It 1s of interest to see what (R.1) to (R.3) mean in D. From (4-1) we

see that p'y = 0 1if and only if p'(yl + Bz,)p = 0. Thus (R.1l) holds if and

1)
only if

(DR.1) p'(y1 + le)p =0 implies B8 # 1.
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Let us define J = z; + Bzz + vy + Byz. From homogeneity (D.3) Jp = 0. The

restriction (R.2) is
(DR.2) J has rank n-l. -

Turning to (R.3) Walras's law (4-1) implies the matrix in (R.3) equals

(I -pp')J (T -pp") (2, +y,)p

Bp'(y, - 2;) P'y,P

and a second application of Walras's law (D.2) shows that this has the same

rank as

J (z, +y,)p
Bp'(y, = 2z;) P'Y,P

Also (D.2) implies that if Jx = 0 then p'(yy - zy)x = 0. Thus a necessary

condition for (R.3) is
(DR.3) J has rank n-l.

. Let ﬁR be the sﬁbset of D which satisfies (DR.1)~-(DR.3). It follows
directly from Proposition (4-1) that ﬁR is open dense in b.

As a final note we observe that if there is a vector a with a'J =0
and a'(z2 + y2)p # 0 and J has rank n-1 then (R.3) is satisfied. It is
stralghtforward to show that the former condition is generic given the latter,

and thus (DR.3) is "almost™ the same as (R.3).
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5. PATHS NEAR STEADY STATES

A path (or perfect foresight path) is a finite or infinite sequence of
prices (e+ee,Pg_1,PgsPpspsee+) Such that (p ,P .)€ 60 and
Z(Pt—l’pt) + y(pt,pt+1) = 0. Our goal is tfo find generic conditions under
which paths near steady states are well behaved, which means that they should
follow a "nice" second order difference equation.

Fix a steady state (p,8). As before we let the excess demand
derivatives at the steady state be denoted by Y1 = Dly(p,Bp) and so forth.
Note that these are homogeneous of degree minus one. The equilibrium

condition can be linearized as
t-1 -1 t -1 t+1
(5-1) 2P,y B" TP) + (2,8 "y )P BP) +B Ty, (p B P) =0
Suppose that condition
(NS1) y, is non-singular

holds. Then the linearized system can be solved to find

+
(5-2) (4,48 1) = 6(q,8%)
0 -1 -1
G = G, 6|’ Gy = Byy 2y and Gy =y, (Bzy4y,).
where qa = (ps8P)s aq. = (P._y5P.)s

A direct implication of the implicit function theorem is
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Proposition (5-1): Under (NSl1l) there is an open cone U around q and a

unique function

g: U+ 60 which 1s smooth (Cl), homogeneous of degree one and such that

A. 1If {pt} is a path and q.,q.4; € U then gy = g(qt).
B. 1If {pt} has q, € U at all times and Qeyg = g(qt) then it is a path.

Furthermore Dg(th,Bt+1q) = G.

Our goal 1s to establish that there are generic restrictions on the
demand derivatives y¥;,¥7,21,2p such that (NS1) holds and such that G 1is
a "nice” matrix, and to prove that under these conditions g is a "nice”

dynamical system.

6. RESTRICTIONS ON THE LINEARIZED SYSTEM

We are interested in discovering the properties of the linearized system

as represented by the matrix G. It is convenient to work not in D or BR

=NS

but in the subset D of D for which (NS1) holds and also

(NS2) K= Y1 + v, + le + Bzz “has rank n-1.

Note that by Walras's law p'K =0 so K can't have full rank. It is

essential to know that BNS is generic.

Proposition (6-1): BNS is open dense in D.

Proof: Openness is obvious. Density of (NS1) follows from the perturbation

of d given by y; = y. + 28I, y; =y, - AL zi =z, - M1, z; =z, + I,

1
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p and B8 held fixed. A check of (D.2) and (D.3) shows dk ¢ D. Further for

A # 0 but small enough y; is non-singular. Density of (NS2) follows from

observing we may add terms of the form A(I-pp') (where p'p =1) to (say)

y, without violating (D.2) or (D.3). Thus K* = K + A(I - pp') and if

A

K

P = 0 then [pé - (pép)p'] [K + AI] = 0 implying for A # 0 and small

1
o]
enough P, = (p;p)p and thus that the left null space of KA has dimension

one. QED.
—+: ﬁNS > §+

Qur next step 1s to consider the mapping §g where g are 6-

tuples (yl,yZ,Gl,Gz,p,B) satisfying appropriate conditions. The map §+

is
the identity on the first two and last two components while G; and Gy are
given by (5-2) as G, = Byzlzl and G, = ygl(sz2 +y;). Since y, 1is non-
singular on ﬁNs §+ is obviously continuous. Equally important it has a
continuous inverse on §+(5NS) given by the identity on the first two and

last two components and by

[z),2,] = =[;,7,16/8
where G = as in (5-2).

Thus §+ is a homeomorphism onto §+ = §+(5NS

Gt. Walras's law (D.2) holds if and only 1if

). It remains to identity

(6¥.2) p'yo[I - Gy - Gy] = O.

Note that this implies [p'y,G;,P'y2]6G = [P'Y9G1,P'y2] and thus that G has

an eigenvalue equal to one. Homogeneity (D.3) holds if and only if
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(6%.3) (y; +8y,)p =0

Gq = Bq

where q = (p,8p). Thus G has an eigenvalue equal to B. Next (NS.l1l) is

unchanged, while (NS.2) becomes
(NS+-2) I - G - Gy has rank n-1.

Thus (G+.2)-(G+.3) and (NS+.1)—(NS+.2) uniquely characterize §+.

Finally we focus in on G 1itself considering g: §+

+ G where G are
certain 4-tuples (Gl,Gz,p,B) and g 1s the projection map. Thus g 1is
continuous, and we will show that it is an open map onto §(5+) while
identifying G = §(5+).

We examine (G+.3) first. Since ¥ doesn't appear except in this
condition (yl + Byz)p = 0 serves ?erely to determine yp once y, is

given. Obviously y1 may be locally chosen as a continuous function of

B,y2 and p. The second condition is
(G.3) Gq = Bq.

Next we impose (NS+.2)

(Gs2) I - Gy - Go has rank n-1.

Note that this implies a unit root of G.

We now claim that this is all: that (G.2) and (G.3) uniquely

characterize G and that g is open. To prove this let Po be in the left
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null space of I - G - Gg: we think of p, as lying in the manifold formed
by identifying radially opposite points on the unit sphere. Thus, since

I -Gy -Gy has rank n-1 p, is a continuous function of G. To conclude
our argument we must show how to locally map P, and p continuously into
the non-singular matrices as yo(p,,P) such that P'y2(PgysP) = Poe This,
however, is obviously possible.

We conclude this section with a summary proposition:

Proposition (6-2): Let G be the space of (G,q) such that G has one unit

root (counting left geometric multiplicity) and Gq = Bq. Then the mapping of

pNS taking excess demand derivatives to coefficlent matrices of the

linearized system 1s continuous open and onto G.

In particular G 1is a coefficient matrix of a linearized system of a steady

state q 1if and only if G has one unit root and Gq = B8q.

7. RESTRICTIONS ON EIGENVALUES

We now wish to examine the implication of the restrictions on G for its
eigenvalues. It is convenient to work in the subspace G of G for which
both I -Gy~ G, and 821 - BG2 - G1 have rank n-1. Since these are
already generic in D they are generic also in G. Let S be the manifold
of eigenvalues of 2n x 2n matrices: this is the subset of 2n-tuples of
complex numbers in which complex numbers occur only in conjugate pairs and in
which vectors which differ only by the order of componenets are identified.
The map ¢ maps 2n x 2n matrices to § and is known to be continuous. We

—t

now consider §° the subset of § x R, = {(s,8)} which have a unitary

component and a component equal to B and for which there exists p with
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- —k
(p,B) ¢ Pg. Likewise we extend o to 3+: ¢ + §h. We claim that not only

is 3+ continuous, but it is an open map onto an open dense subset of §+,
and thus that the only non-trivial restriction on the eigenvalues of G are

that one equal one and one R.

To show 3+ is open let (s,8) = 3+(G,B), and suppose
(s*,8%) > (s,8). We comstruct G* + G with o'(c%,8%) = (s¥,8%).

Set Gk = Hka(Hk)'l. Given Qk can we choose HK so0 that GF has the
partitioned structure corresponding to a second order difference equation?
Obviously Gk is the unique solution of GKHK = Hka. Writing this out in

partitioned form we see

K k K K
0 I f11 2| . | P B2 |
K K K K
¢, G, Hyy Hyo
K K k K Kk k kK .k k Kk k
B Hio Q, Q, | B0, H'12<1Q21 H1Qp + HipQ3
K K K k
* %*
By oY) Q0 Q,

from which it follows that G “has the correct structure if and only 1if

K Kk .k .k K K
(7-1) Hy = Hy (QH;,Hy0) = H1{1‘211 + B§1Q21

K k .k .k kK k . .k k
Hy, = Byy(Q,H 5, y0) = Hyy Q) + By pQy

Now let H be a basis for R2D guch that Q = H™lGH 1is in real

canonical form. Thus g(Q) = 6(G) = s. Hirsch/Smale [1974] show how to

construct a sequence of real matrices Qk + Q with o(Qk) = sk. Set
k k k ,k k
Hll Hll’H21 H21 and H21,H22 as defined above. By continuity H + H
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and is eventually non-singular, so 6K is well-defined and by construction

has the right structure. Furthermore since components of sk are one and

8 Gk has them as eigenvalues. Observe that since ck has a unit root

I - GE - Gg is singular, but since Gk + G it has rank n-l. Next, by the
structure of GK there is an eigenvector corresponding to Bk that has the

k. (pk,kak). We think of this as lying on the unit sphere with

form ¢
radial identification and thus being unique. Further, since Gk + G pk is
the unique component in the right null space of 821 - BG2 - G1 and thus
converges to p. Thus G* (Gk,pk,Bk) + (G,p,B), and the map is open.
Finally we want 3+(§*) to be open dense in st. Only density remains
to show; we do so by glving an open dense subset of §+ denoted S* such

that GT(G*) S*. This set is defined by having distinct eigenvalues and

such that if ry,r are any real roots and T + icy 1s a complex root then
(*) det # o.

Let s € S*. By arranging diagonal blocks we may construct a block
diagonal matrix Q = diag(Q;,Qy) in real canonical form with g(Q) = s and
whe;e the first diagonal entry of Q1 .is B. Let p be such that
(p,Bp) € pz and let H;; be a non—singular matrix with first column equal
to p. Let Hjp = Hyy. From (7-1) Hyy = Hy1Q; and Hyp = HyyQse

A calculation shows that (*) implies that H is nonsingular. Further by

1

construction (HQH —,p,B8) € G*.

8. NOMINAL DYNAMICS
Until now we have largely combined the study of real and nominal steady

states. However the dynamics near each type of steady state are rather
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different so we begin by studying the nominal case. In this case we know only

that G has one unitary root.

In studying the dynamics it is useful to define the money supply
m(qt) = péz(pt-l’pt)' This is homogeneoué.bf degree one. By Walras's law
this equals —pé_ly(pt_l,pt) and the equilibrium condition implies
Pe2(Py_35Py) = PeY(PysPpyy)+ Thus m(qy) = m(g(qy)): the money supply is

constant along paths. At a nominal steady state q p = m(q) # 0. The

homogeneity condition shows that 1if m(qt) =qu Du(qt)qt = # 0 and thus
m(qt) =y defines a global 2n-1 submanifold ﬁg transverse to the steady
state ray which is invariant under g. We denote the restriction of g to
62 by gt

All interest focuses on g'. If sgn u' =sgny then g" and gt
exhibit the same dynamics except that the price level is increased by a factor
of u'/u.

Examining the linearization we. see that Dgu is G restricted to
Dm(q)q, = 0. Since 6g is invariant and transverse to the steady state ray
it followé that the generalized eigenspace of G excluding the eigenvector
q spans the space Dm(q)q, = 0 and that G restricted to this space has the
eigenvalues of G. excluding thé one unit root known a priori to exist.
Furthermore the results of the previous section show these remaining

& be the number of these

eigenvalues to be unrestricted. Letting n
eligenvalues inside the unit circle it follows from standard results such as

those in Irwin [1980] that

Proposition (8-1): There is an open dense set of economles which locally!

satisfy at all nominal steady states

A. g¥ 1is a local diffeomorphism (G 1is non-singular).
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B. g' has no roots on the unit circle (is hyperbolic).
c. gu has an nS-dimensinoal stable manifold WS of q, € 62 with

ut
g (q.) > q-

D. gu

has a 2n-n%-1-dimensional unstable manifold W' of q, € Qg
with g7%(q ) » a.
E. [Hartmann's theorem] there is a smooth coordinate change c¢(gq) such

1

that c—loguoc- =G on W® and for a residual set of economies this holds

on all of dg (and thus 50).

9. REAL DYNAMICS

We now study the neighborhood of a steady state q = (p,8p) with
m(q) = 0 and B # 1. In this case prices are not stationary of a steady
state, but grow (or decline) exponentially. Let h be a price index such
that h(q) = 1. We can normalize prices to focus on the convergence of
relative prices. Define gh on 62 = {qt € 60 | h(qt) = 1} by
gh(qt) = 8(q,)/h(g(qy)). By homogeneity h(gh(qt)) = 1. Thus we say that a
path gq, converges to q if qt/h(qt) + q. This 1s true of a path beginning

at q, 1f and only if the path under gh

starting of qo/h(qo) converges
to q.

What 1s the linear approximation to gh? It is (I - q'H)G/B
(H = Dh(q)) restricted to Hq, = 0. Choosing H so that Hq, = 0 defines
the generalized elgenspace of G in which the eigenvector q 1s excluded we
see that the eigenvalues of gh are those of G/ excluding the value 1 that
arises from the eigenvalue B corresponding to q. One of these values is
equal to 1/B the remaining 2n-2 are unrestricted. Let n® be the number

of these remaining eigenvalues inside the unit circle and let

nB =1 1if B > 1, O otherwise. Then gh generically is hyperbolic with an
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nS + nB

B

dimensional stable and 2n - n® - n° - 1 dimensional unstable
manifold. Furthermore gh 1s linearizable by a smooth coordinate change on

the stable manifold.

It is useful also to distinguish between initial conditions with
m(qo) = 0 (real initial conditions) and those with m(qo) # 0 (nominal

initial conditions). Observe that Dm(q) = (—p'le,p'yZ) which by examining

the space D we see generically doesn't vanish. Thus generically

Dm(q,) = O defines a 2n-1 cone 62 invariant under g. This is transverse

to 62

gh. Furthermore a simple computation shows that 62 is tangent to the

and thus intersects it in a 2n-2 manifold 602 invariant under

eligenvectors of g except the one having a unit root; thus ﬁgh is tangent to

h

the eigenvectors of g% except the eigenvector with root 1/8. Since Qgh

is invariant and for q, € Qgh m(qt) = 0 nominal initial q, (those with
m(qo) # 0) can approach q only if B > 1; otherwise if B8 < 1 nominal
paths can't approach the real steady state. On the other hand in bagh the
linearized system has the eigenvalu;s of G/B except 1 and 1/8. The
purely real system on the invariant manifold agh is thus generally hyperbole

s

and has an n dimensional stable and 2n - n® - 2 dimensional unstable

manifold and is linearizable on the stable manifold.
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