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COMPARATIVE STATICS AND PERFECT FORESIGHT
IN INFINITE HORIZON ECONOMIES
by

Timothy J. Kehoe and David K. Levine®

1. INTRODUCTION

Finite economies have the same number of equations as unknowns. Imposing
assumptions of differentiability allows us to do regularity analysis. Almost
all economies have equations that are locally independent at equilibria. This
is important because it enables us to do comparative statics: First,
equilibria are locally determinate. Second, small perturbations in the
underlying parameters of the economy displace an equilibrium only slightly,
and the displacement can be approximately computed by inverting a matrix of
partial derivatives.

This paper considers whether infinite horizon economies have determinate
perfect foresight equilibria. This question is of cfucial importance. If
instead equilibria are locally indeterminate, not only are we unable to make
comparative static predictions, but the agents in the model are unable to
determine the consequences of unanticipated shocks. The idea underlying
perfect foresight is that agents' expectations should be the actual future
sequence predicted by the model; if the model does not make determinate

predictions, the concept of perfect foresight is meaningless.

*We are grateful to David Backus, Drew Fudenberg, Andreu Mas-Colell,
Herbert Scarf, and participants in seminars at M.I.T., Berkeley, UC San Diego,
UCLA, the NBER General Equilibrium Conference, and the Latin American

Econometric Society Meetings for helpful comments and suggestions.



We restrict our attention to stationary pure exchange economies. No
production, including the storage of goods between periods, can occur. These
models are unrealistic, but are the easiest to study. We consider economies
with both infinitely lived traders and with overlapping generations.

When there are a finite number of infinitely-lived trades, we argue that
equilibria are generically detgrminate. This is because the effective number
of equations determining equilibria are not infinite, but equal the number of
agents minus one and must determine the marginal utility of income for all but
one agent. Generically, near an equilibrium, these equations are independent
and exactly determine the unknowns.

When there are infinitely many overlapping generations, this reasoning
breaks down: An infinite number of equations is not necessarily sufficient to
determine an infinite number of unknowns. We consider whether the initial
conditions together with the requirement of convergence to a nearby steady
state locally determine an equilibrium price path. Examples in which they do
and examples in which they do not were constructed by Calvo (1978) in a
related model.

We consider two alternative types of initial conditions. In the first
the old generation in the initial period has nominal claims on the endowment
of the young generation. In the second the old generation has real claims.

In both cases there are many economies with isolated equilibria, many with
continua of equilibria, and many with no equilibria at all. With two or more
goods in every period not only can the price level be indeterminate but
relative prices can be as well.

We also consider an alternative conceptual experiment in which agents use
a forecast rule (which depends only on current prices) to predict next period

prices. If the steady state 1s stable (and if we rule out a certain ﬁeculiar



case) a perfect foresight forecast rule exists. If there is a continuum of
equilibria, there may be a continuum of forecast rules. Even so, the
derivative of such a rule (evaluated at steady state prices) is locally
determinate. This makes it possible to do tomparative statics in a
neighborhood of the steady state despite the local non-uniqueness of

equilibrium.

2. THE FINITE AGENT MODEL

We being by analyzing a pure exchange economy with a finite number of
agents who consume over an infinite number of time periods. In each period
there are n goods. Each of the m different consumers is specified by a
utility function of the form Z:=o BIui(xt) (where 1 > Bi > 0 1is a discount
factor), and a vector of initial endowments w! that 1s the same in every

period. We make the following assumptions on u; and wis

(a.l) (Differentiability) u, R2+ + R 1s twice continuously

differentiable.

(a.2) (Strict concavity) Dzui(x) is negative definite for all x ¢ R2+.

(a.3) (Monotonicity) Duy(x) > 0 for all =x¢ Ri+.

b

(a.4) (Strictly positive endowments) w & R:+, i=1,0ec,m.

(a.5) (Boundary) 1lim Dui(x)x/lDui(x)l = 0.

+0
X5



In another paper (1982a) we show that our results hold also for more general
preferences which permit the possibility of intertemporal complementarity.

Let P, = (pt,...,pz) denote the vector of prices prevailing in period
t. When faced with a sequence {po,pl,...k of strictly positive prices,

agent 1 chooses a sequence of consumption vectors {xé,xi,...} that solves

the problem

o t i
(2.1) max Et=0 Bi ui(xt)

* ] < z& L
t=0 Pt¥¢ t=0 P¢¥
i

0.
xt ?

subject to I

The purpose of assumptions a.l - a.5 is to ensure that, for any price
sequence, this problem has a solution that is strictly positive and satisfies
the budget constraint with equality. The necessary and sufficient conditions

for {xé,xi,...} to solve 2.1 are

t i, _ '

(2.2) Bi Dui(xt) = u P, for some uy > 0.
o 'i=oo .

(2.3) . zt=0 P X, Zt=0 PV -

A (perfect foresight) equilibrium of this economy is defined to be a
price sequence {po,pl,...} and a sequence of consumption vectors

{xé,xi,...} for each agent, i =1,...,m, that satisfies the following

conditions:

(e.1) For each agent {xé,xi,...} solves 2.1.



m i _.m i =
(e.Z) Zinlxt Ei=1w ’ t 0,1’010
To find the equilibria of this economy we utilize an approach developed
by Negishi (1960) and Mantel (1971) for a model with a finite number of
goods. Letting Ai’ i=1,...,m, be some strictly positive welfare weights,
we set up the welfare maximization problem
m o t i
max 21=1*1 zt=0 Bi ui(xt)
(2.4)

m
subject to 21=1 X

Again a.l - a.5 guarantee that this problem has a solution that 1s strictly
positive and satisfies the feasibility constraint with equality. The

necessary and sufficient conditions for a solution are

i

t s i=l,...,m; t=0,oco

t 1
(2.5) Ay By Dug(x) = p

for some P, > 0.
(2.6) Ny =32 ¢ . t=0,1,...

An allocation sequence 1s pareto optimal if and only 1if it solves 2.4. Notice
that e.2 and 2.6 are equivalent and, furthermore, if we set Ai = %—3 that

i
2.2 and 2.5 are equivalent. In other words, a pareto optimal allocation and

associated lagrange multipliers {po,pl,...} satisfy all of our equilibrium

conditions except, possibly, 2.3. The problem of finding an equilibrium



therefore becomes one of finding the right welfare weights Ai’ i=1,.0e,m
so that 2.3 is satisfied.

Let pt(k) and xt(x) be the solutions to 2.5 and 2.6. The strict
concavity of Uy ensures that Py and xé_ are uniquely defined and

continuous. For each agent we define the excess savings function
o 7° ' i_ .1
(2.7) 8,0 = I P () (v - xT ().

For this definition to make any sense we need to show that the sum on the
right converges. Suppose that 81 > Bi’ i=2,...,my it is clear that the
sequence {xé,xi,-..} involved in the solution to 2.4 cannot converge to any

point on the boundary of Ri. Furthermore, the vector xt is bounded:
0« xl <I® wi. Thus since Duy; 1s continuous and xl
t i=1 1 t

n 1
subset of R++ IIDul(xt)II must remaln bounded. Since 0 < Bl <1, this

is in a compact

implies that the sum

‘=T

¢ 1
(2.8) Leao Pt =21 Zing By Duy(x))

must converge. Since x: is bounded for all { = 1,...,m this, in turn,

implies that si(X) is well-defined and continuous.

It is easy to verify that the functions si(A) are homogeneous of degree

one and sum to zero. In fact, the functions %—-si(A) have mathematical
1

properties identical to the excess demand functions of a pure exchange economy
with m goods. Standard arguments imply the existence of a vector of welfare

weights A such that

(2.9) s(A) = 0.



We call this vector A an equilibrium since our arguments above ensure that
when we solve the welfare maximization problem 2.4 using A for welfare
weights the solution i1s an equilibrium.

We have reduced the equilibrium conditions for this model to a finite
number of equations in the same finite number of unknowns: The homogeneity
of s 1implies that one of the variables Ai is redundant. That the s, (M)
sum to zero, however, implies that we can ignore one of the equations
si(k) = 0. Kehoe and Levine (1982a) give conditions on u; that ensure s
is continuously differentiable. They then define the concept of a regular
economy as one for which Ds(A) has rank m - 1 at every equilibrium X.
This concept of regular economy is analogous to that developed by Debreu
(1970) for pure exchange economies with a finite number of goods. If an
economy is regular, the inverse function theorem implies that it has a finite
number of isolated equilibria. The implicit function theorem implies also
that these equilibria vary continuously with the parameters of the economy.
The index theorem introduced by Dierker (1972) provides a valuable tool for
counting the equilibria of such economies. The appeal of the concept of
regularity is enhanced by its genericity: Kehoe and Levine (1982a) prove that
almost all economies are regular in the sense that regular economles form an
oped dense set of full measure in the space of economies parameterized by
endownment vectors.

To illustrate some of these concepts, we can consider a simple example of
an economy with two agents, and one good in every period. Suppose that
wl =wl =1 and uy(x) = ug(x) = log x« The only difference between the two

consumers is in their discount rates, 1 > g. > 8, > O. In this example the
1 2

welfare maximization problem 2.4 is



o t 1 L t 2
(2.11) max Al Zt=0 81 log X + Az Zt=0 82 log X,
1 2
subject to x, + X, <2, t=0,1,.c0
i
X, » 0.

Solving conditions 2.5 and 2.6, we obtain

t
2 2,8
(2.12) xt(k) = "‘E‘l‘};‘if
A1B1 258,
t
2 2,8
(2.13) xi(k) -— 22 .
A8 F A8,
1 £ t
(2.14) P, =3 (A BE 412, 85)
The savings functions are
- 1 Ay A
(2.15) s;, (M) =L 4P (M)A -x(QA)) = —r-- —
1 t=0 Pt t 8. 18
2 1
A A
(2.16) 5,(0) = — -2,
1, 18,

As promised, the savings functions are continuous, are homogeneous of degree
one, and sum to zero. Imposing the restriction Al =1, we can solve 2.16 to

find the equilibrium welfare weights

1-8,
(2.17) A, =1, A, =—2,
1-8,

We can substitute back into 2.12 - 2.14 to find the equilibrium values of

xl nd x2
Pes» Xpp 8 t°



3. THE OVERLAPPING GENERATIONS MODEL

We now analyze an economy with an infinite number of finitely lived
agents, a stationary overlapping generations model similar to that introduced
by Samuelson (1958). Again there are n gpods in each time period. Each
generation 0 < t {( « 1is identical and consumes in periods t and t + 1.
The consumption and savings decisions of the (possibly many different types
of) consumers in generation t are aggregated into excess demand functions
Yy(Pys>Py41) 1in period t and z(pg,pp41) in period t + 1. The vector
P, = (pi,...,p:) denotes the prices prevailing in period t. Let Q Rf?
be a closed convex cone with non-empty interior and a boundary that is smooth

except of the origin. Also assume that q € Q. = Q {0} has q > 0. Excess
0

demand is assumed to satisfy

(A.1) (Differentiability) y, z : Qy + R" are smooth functions.

' ' 1 = 0,
(A.2) (Walras's Law) ply(P,sP 4q) + Pr12(PsP ) =0
(A.3) (Homogeneity) y and 2z are homogeneous of degree zero.

"A.1 has been shown by Debreu (1972) and Mas-Colell (1974) to entail
relatively little loss of generality. A.2 implies that there is some means of
contracting between generations so that each consumer faces an ordinary budget
constraint in the two periods of his life. As we show later, this means the
economy is equivalent to one with a constant stock of fiat»money.

Note that we consider only pure exchange economies and two period lived
consumers. We do, however, allow many goods and types of consumers, and the

multi~period consumption case can easily be reduced to the case we consider:
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If consumers live m periods, we simply redefine generations so that
consumers born in periods 1, 2,...,m = 1 are generation 1, consumers born in
periods m, m + 1,...,2m -~ 2 are generation 2, and so on. In this
reformulation each generation overlaps only with the next generation.

The economy begins in period 1. The excess demand of old people
(generation 0) in period 1 is zg(a,p;) where a 1is a vector of parameters
representing the past history of the economy. A (perfect foresight)
equilibrium of an economy (zg,¥,2z) starting at a 1is defined to be a price

sequence {pl,pz,...} that satisfies the following conditions:
(E.1) zg(a,py) + y(py,Pp) = 0.
(E.2) Z(Pt_l’Pt) + Y(Pt:Pt.'.l) =0, t >1.

Once p; and p, are determined E.2 acts as a non-linear difference equation

determining all future prices. Our major focus is on the extent to which E.1
determines initial prices p; and P2+ Subsequent sections study the role of
initial conditions zg and a. Let us now ignore E.l, however, and focus
attention on the difference equation E.2.

We define a steady state of E.2 to be a vector p ¢ R: and growth rate

B >0 with (p,Bp) ¢ Q0 and

(3.1) z(p,8p) + y(Bp,82p)

z(p,Bp) + y(p,Bp) =0

That is, if the relative prices p prevail forever and the price level grows

by B8 each period markets would always clear. In the generic case Kehoe and
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Levine (1982b) show that up to price level indeterminacy there are finitely
many steady states.

Our interest in this paper is in what happens near a steady state. Let
(p,B) be a steady state, and let U R: be an open cone contalning p. We
call a path (pl,pz,..-) satisfying E.1 and E.2 locally stable with respect

to (p,B) and U 1if P, € U, t > 1, and ii: ptllpt’ = p/|p|. The question
we are trying to answer 1s whether or not there is a determinate price path
that satisfies E.l and E.2 and is locally stable.

One reason for this restriction is that it is the easiest case to
study. Stable price paths are also the most plausible perfect foresight
equilibria. 1If prices are converging to a nearby steady state, then traders
can compute future prices by using only local information. If prices are not
going to the steady state, then traders need global information and very large
computers to compute future prices.

Note that, if equilibrium is indeterminate in our restricted sense so
that a continuum of equilibria converge to the steady state from a single
initial condition, it is indeterminate in the broader sense as well. On the
other hand, even if equilibrium is determinate in the restricted sense there
may be a continuum of equilibria which leave the neighborhood of the steady
state.

Before studying the initfal condition E.l, we examine the behavior of
paths satisfying E.2 near a steady state (p,8). We can linearize E.2 around

a steady state as

-1 -1 -1 +1
(3:2)  Dyz(p,_ 1B B + (Dyz + 87 Dy)(p, - 8%p) +B87D,y(p,,, - 8 p) = 0
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Here all derivatives are evaluated at (p,Bp) and we use the fact that the
derivatives of excess demand are homogeneous of degree minus one. Our

homogeneity assumption A.2 allows us to rewrite 3.2 as

-1 -1
(3.3) Dlzpt__1 + (Dzz + B Dly)pt + B Dzyp 0.

t+l
If the following regularity condition 1s satisfied, then 3.3 defines a second

order linear difference equation.
(R.1) DZY(P,BP) is non-singular at all steady states (p,8).

Letting q, = (pt’pt+1)’ we can write out 3.3 as the first order equation
qp = th—l where

0 I
(3.4) G = .

-1 -1
—BD2y Dlz -Dzy (sDzz+D1y)

Homogeneity implies that Gq = Bq; 1n other words, G has a root equal to
B Walras's law implies that p'[Dzy - BDlz]G = p'[Dzy - BDlz]; in other
words G has a root equal to one. Let us assume that G also satisfies the

following regularity condition.

(R.2) G 1is non-singular and has distinct eigenvalues; furthermore
eigenvalues have the same modulus if and only if they are complex

conjugates.

Let n® be the number of elgenvalues of G that lie inside the circle

with radius B8, that is, whose modull are less than B. Let q = (p,Bp)s A
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standard theorem on linear difference equations implies that the set of
initial conditions gq; such that q, = Gq,_; has ‘1;: a,/|a,| = a/|a| 1s a
n® + 1 dimensional subspace Vg of R2n (see Irwin (1980)).

The implicit function theorem implies.fhat (if R.1 1is satisfied) we can
solve E.2 to find a non-linear difference equation q = g(qt_l) defined for
an open cone U q. Naturally, Dg(q) = G. Let Ws be the subset of initial
conditions q € U such that 1im qt/|qt| = q/|q|. In other words, given
(P15P2) we can find a path in U that converges to the ray proportional to
p and only if (Pl:Pz) € WS. The relationship between VS and ws is given
in the following theorem.

PROPOSITION 2.1: Ws is an n® + 1 dimensional manifold with tangent space

at q equal to Vs'

This result is proven in Kehoe and Levine (1982b). Ihat Vs is the tangent
space of WS at q Jjustifies our intuition about 3.4 as a linear
approximation to E.2: It says that the best linear approximation to Ws at
q 1s affine set Vs + {q}.

- To establish Proposition 2.1 we need the regularity conditions R.1 -
R.2. These can be justified by showing that they hold for almost all
economies. We do this in (1982b). This means that any regular economy can be
approximated by éne that satisfies R.1 — R.2 and that any slight perturbation
of an economy that satisfies R.1 - R.2 still satisfies them.

We remarked that G has a root equal to B and a unit root. Are we
justified in assuming it satisfies no other restrictions? Might it not be the
case, as for example in optimal control, that half the eigenvalues of G 1lie

inside the unit circle and half lie outside? Calvo (1978) has constructed
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examples in a related model for which this is not the case. More strongly,
Kehoe and Levine (1982b) show that for any nS satisfying 2n - 1 > n® > o,
there exists an open set of economies in that have a steady state with n®
roots inside the circle of radius B and 2n - n® - 1 outside the circle
with radius B. Furthermore the work of Mantel (1974) and Debreu (1974) show
that for any excess demands (y,z) we can find consumers with well behaved

preferences whose aggregate excess demands are exactly (y,2z).

4. DETERMINANCY OF EQUILIBRIUM

The excess demand of generation O in period 1 1is zg(a,p1)« The
vector a represents the history of the system. This is our conceptual
experiment: Prior to t = 1 the economy is on some price path. Suddenly,
after generation 0 has made its savings decisions, but before Py 1s
determined, an unanticipated shock occurs. No further shocks occur, and
hereafter expectations are fulfilled, although there is no reason th
generation O0's expectations of p; should be. Do the equilibrium
conditions E.1 and E.2 determine a unique path to the new steady state, at
least locally? 1If so, we can do comparative statics, evaluating the impact of
the unanticipated shock. If not, it is questionable that traders can deduce
which of the many perfect foresight paths they would be on.

Note that this is not the only question we could ask. We might enquire
whether given a perfect foresight path stretching back to minus infinity there
is a unique extension to plus infinity. We believe that the answer to this
question is in general yes. Or we might ask whether the family of price paths
{...,p_l,po,pl,...} that are perfect foresight are locally unique. We
believe that there is a "large"” set of economies for which the answer to this

question is yes, and an equally "large"” set for which it 1s no. We féel that
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the question we have posed is the most interesting one, however, and, of these
questions, the only one relevant for applied work. Another relevant question
is, of course, how to handle price paths that are not near steady states. As
we have mentioned, however, it is not clear- that perfect foresight is a good
hypothesis in such cases.

With this conceptual experiment in mind, we can now see the role played
by the vector a: It represents the claims on current consumption owed to old
people based on their savings decisions made in period O. Define the money
supply M = pizo(a,pl) to be the nominal claims of old people. Observe that
in equilibrium piy(pl,pz) = -M; by Walras's law piz(pl,pz) =M in
equilibrium piy(pz,p3) = -M and so forth. Thus M 1is the fixed nominal net
savings of the economy for all time (i.e. there is no government intervention
in money markets). In the steady state we have Bnp'z =M and Bnp'y = =M.
There are‘two cases of interest. The "nominal” case has M # 0. In this case
it must be that B = 1. Gale (1973) called steady states of this type
"golden rule” steady states. This is because for exdess demand functions
derived from utility maximization nominal steady states maximize a weighted
sum of individual utilities subject to the constraint of stationary
consumption over time. Alternatively in the "real" case M = 0. Gale
referred to steady states of this type as "balanced” steady states. In this
case if B =1 then y+z =0 and p'y = 0 which are typically n
equations in the n-1 unknowns p and B = 1 is merely coincidental. Thus
when M = 0 the most Interesting case is B # 1. In (1982b) we show that
there are generically an odd number of steady states of each type.

We suppose first that claims are denoted in nominal terms. Thus we

cannot assume that excess demand by the old zo(a,pl) is homogeneous of
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degree zero in pi+ We do assume, however, that a 1s an element of an open

subset A of a finite dimensional vector space and that

(I.1) (Differentiability) z,y¢ AxP+R® is a smooth function.

Let q = (p,Bp) be the steady state before the shock. We assume

(I.2) (Steady state) z,(0,p) + y(p,Bp) = 0.

That is, when a = 0 we are at a steady state. Our goal is to analyze what
happens when la' is small, that is, when a small shock occurs.
To analyze the impact of the shock observe that prices (PI’PZ) are

determined by E.l. We can linearize E.l around the steady state to find
(4.1) D,z +3‘1Dy)p +Dza+s'1nyp = 0.
270 17771 170 2°72
R.1 implies that we can solve 4.1 for py as
(4.2) =D y_l(BD z, + D.y)p, + 8D y_lD z a
- P27 P 1% 7 17 27 T2%o%

or, introducing, as before, q; = (pl’PZ)’

-1 -1
a =D,y (BDzzo + Dly) BDZy Dlzo a
(4.3)
Py I , 0 Py
The implicit function theorem implies that in a neighborhood of the -

steady state we get a corresponding solution of the non-linear equation E.1,

q = z(a,pl), defined for P € Ul’ ae A, with Dg(0,p) = L. We ask
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whether for given a € A, 1is there a unique initial (p;,pp) that satisfies
E.1 and has an extension to a price path {pl’pZ""} in U that satisfies
E.2 and converges to some point on the new steady state ray. The results of
the last section imply that the correspond{hg mathematical question is
whether, for given a, is there a unique p; such that z(a,pl) € WS.

Let us consider the linear problem first. For fixed a e A 4.3 defines
an n dimensional affine subspace of Rzn. The linearized version of Ws is
VS, which 18 n® + 1 dimensional. We would expect, In general, that these
spaces Intersect in an n + (nS + 1) - 2n = n® + 1 - n dimensional linear at

space. Suppose, in fact, that L satisfies
(IR.1) L has rank 2n.

Note that this implies that A 1is at least n dimensional, in other words,
tht there are at least n 1ndependent ways to shock the economy. The
transversality theorem of differential topology (see Guillemin and Pollack
(1974), pp. 67-69) can be translated into the following result.

PROPOSITION 4.1: Let S, denote the set of P, € U; such that

1
2(a,p1) € Ws. For almost all a € A the set §,, if it is non—-empty, has

dimension n® + 1 - n.

In other words, what we expect in general of the linear system is almost
always true of the non-linear system. Here we use almost all to mean an open
dense subset of A whose complement has measure zero. If n® +n -1<0,

this means there is no P, € U, with z(a,pl) € Ws. If (x®+1-1n)>0,

1

however, S, can either have this dimension or be the empty set. I.2 implies
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that S5 1s non-empty. If we can ensure that £ 1s transversal to W_ at
q, then the structural stability of transversality would imply that S, 1is
non—-empty for all a close enough to 0. We assume

(IR.2) [—Dzy"l(BDlzo +D1y) q@ vy ... vns] has full rank.

vhere vy,...,v span Voo For m +1-n> 0 this says that £ is

nS
transversal to Ws at q.
Thus, under IR.1 and IR.2, we can distinguish three cases:

I. n® < n - 1. 1In this case, for almost all a, S is empty. In other

a
words, there are no stable paths locally. We call such a (p,B) an unstable
steady state. For most Initial conditions the asymptotic behavior of the

system is to not reach the steady state. Such steady states are not very

interesting; they are unreachable.

II. n® ='n - 1. In this case, locally stable equilibrium paths are locally
unique and, in a small enough neighborhood actually unique. This is the case
where we can do comparative statics and in which perfect foresight is a

plausible description of behavior. This is called the determinate case.

III. n® > n - 1. 1In this case there is a continuum of locally stable

paths. Equilibrium is indeterminate. Comparative statics is impossible and

perfect foresight implausible.

There are "large"” sets of economies (open sets of economies) that have steady

states of any desired type: wunstable, determinate or indeterminate. 'Thus
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none of these possibilities is in any way degenerate.

As a final note we consider the argument that we get indeterminacy
because we ask too much: Because zg is not homogeneous we demand that the
price level be determined by initial condigions. Is it possible that this is
the only possible form of indeterminacy? No. If n® +1 -n > 1, S, has two
or more dimensions implying that there must be relative price indeterminacy.

Now we consider the case of real initial conditions. The change in
conceptual experiment lies in z,: 1t is homogeneous of degree zero in P1
and satisfies Walras's law pizo(a,pl) = 0. Since M =0 the initial price
vector must satisfy piz(pl,pz) = 0. Provided at the steady state
(z' + p'Dlz,Dzz) doesn't vanish the condition M = 0 defines a 2n - 1
dimensional manifold in Q, which we will refer to as the "real” manifold
Qe The stability of the system 1s determined by the roots of G/B8. This has
one unit root which is irrelevant and one root equal to 1/8. Furthermore,
algebraic manipulation shows that the root 1/B detgrmines the behavior of
the system outside of Qr: If B <1 no path with nominal initial condition
can ever approach the real steady state. Thus we let 2° be the number of
roots of G/B excluding the root 1/B8 and the root 1, which lie inside the
unit circle.

Because of homogeneity (including that of zo) the price level is
indeterminate and we can reduce everything by one dimension by a price
normalization. in this reduced space Qr has 2n - 2 dimensions, while the
initial condition 2z, (a,p;) + y(p1,p3) = 0 determines an n - 1 dimensional
submanifold. The intersection of stable manifold WS with Q, has dimension
ﬁs; thus the intersection of Sa and ws has dimension
(Es +n-1) - (2n - 2) = n® - n + 1. Thus there are the same three

possibilities in the real case as in the nominal case, although in the real
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8 < 2n - 2 while in the nominal case 0 < n° < 2n - 1.

case 0 < n

It might be conjectured that in the case where excess demand is derived
from consumer optimization of well-behaved preferences that the pareto
inefficiency of paths 1s related to the indeterminary of equilibrium. A
moments reflection on the real case shows this is not true. If B < 1 prices
along paths converging to the steady state decline exponentially in the limit;
this means that the value of all traders' endowments is finite and by the
standard argument for finite economies in Arrow (1951) all these paths are
efficient. But B < 1 implies only that no path with M # O ever approaches
the real steady state; it places no restrictions on n®. Thus if n > 1
indeterminary is possible. Conversely if B8 > 1 all convergent paths are
inefficient, but there is still no restriction on the possible types of steady
states.

Perhaps the case B8 < 1 1s the most puzzling of all: here if n > 1 we
can have indeterminacy among equilipria converging to the steady state, yet
all these paths are pareto efficient and all mimic the finite dimensional case
in that Walras's law 1s satisfied even by the initial generation.

We conclude this section by noting that there are six possible types of
steady states: real or nominal each of which may be unstable, determinate or
indeterminate. If there are two or more goods each period then there are open
sets of economies with each possible combination. The case with one good each
period (which has been studied most extensively) is exceptional however:
instability is impossible and in the real case indeterminacy is also

impossible.
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5. FORECASTING
In this section we examine the case of nominal initial conditions in more

detail. We focus on the neighborhood of a stable steady state p with

2 > n - 1, and we assume that all regularity conditions are satisfied. Our

focus is on how agents forecast future prices. One possibility is that they
use the dynamic equation E.2; equivalently, they forecast Qyq = g(qt). Note
that unless n® = 2n - 1 this is actually an unstable dynamical system:

Small perturbations can cause the path to depart from the steady state.

We now investigate the alternative possibility that traders forecast
future prices solely as a function of current prices. This type of closed-
loop forecasting leads to convergence to the steady state. Surprisingly, it
also is locally determinate: This restriction on forecasting rules is
sufficient to eliminate most of the indeterminacy we found in the previous
section, making comparative statics possible.

A closed-loop forecast rule is a function Pt+1 = f(pt) giving prices
next period as a function of current prices. We assume that f satisfies the

following assumptions:

(F.1) (Differentiability) f 1s a smooth function defined on an open cone

U that contains the steady state relative prices p.
(F.2) £(p) = p.
(F.3) (Homogeneity) f 1is homogeneous of degree one.

(F.4) (Perfect foresight) z(p,f(p)) + y(£(p), £2(p)) = O.
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(F.5) (Convergence) 1lim ft(p)/‘ft(p)l = P/Ip
oo

F.2 insists that at the steady state the forecast rule pick out the steady
state. F.4 1s the perfect foresight assumékion: If forecést are realized,
markets Indeed clear. F.5 says we are interested only in forecast rules that
permit convergence to the steady state, in other words, are stable.

We begin by asking whether, for n® >n - 1, there actually exists a
forecast rule that satisfies F.1 - F.5. As usual, we consider the linearized
problem first. To construct a forecast rule we choose ViseeesVp-1> @ to be

independent eigenvectors in Vg» the stable subspace of the linearized

system. It is important that we be able to choose Viseee,V so that

n-1
complex vectors appear in conjugate pairs. This can always be done if nS 1is

s

even. It can also always be done if n® = n - 1 since Viss+eyVy1 includes

all of the eigenvectors corresponding to eigenvalues inside the circle of
radius B and such eigenvectors neecessarily show up in complex conjugates.

In the peculiar case where n®

is odd and there are no real eigenvalues
inside the'unit circle, and hence no real eigenvectors in Vg Wwe cannot make
this choice of ViseeesVp 1o This is no accident: This is the only case in
which there are no stable perfeét foresight forecasting rules.

Let V, be the real vector space spanned by ViseeesVp1s @3 it is n
dimensional. What we suggest 1is, for given Py» choose p.y; so that

t+l

(pt+1 -8B P, P. - Btp) is an element of V,. From the structure of g

t
there exists a unique choice of Pt+1 provided

(FR) vi,...,vi_l,p are independent vectors.

Where vi i=1,+¢0,n -1 are the final n components of the vy« Provided
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that FR holds, we can find a unique matrix F, which depends on

Vissee,Vo_1s SO that

(5:1) (py; - 85'p) = F(p, - 8%)

is our linear forecast rule.

First we check the linearized system 5.1 satisfies the linearized
versions of F.2 - F.5. Since q ¢ V.s (Bp,p) € V, and, consequently,
Fp = Bp. Since vjy,¢¢.,v 7, 9@ are eigenvectors of g, V, is invariant
under the dynamical system g, which implies that 1if q, € V, then
8d, € Vs Finally, since V, VS and (pt+1,pt) € Vg, we must have
L p./|p,| = o/|p|-

It is natural to conjecture that we can thus find an f with
Df(p) = F that satisfies F.l1 ~ F.5; this follows from Hartmann's smooth
linearization theorem in Irwin (1980). Because g is homogeneous of degree
one f may also be chosen to be homogeneous of degree one. If -ns =qn -1,
then f 1is unique. This is well known when £ 1s linear (see, for example,
Blanchard and Kahn (1980)). If, however, n® > n -1 f may not be unique
nor even locally unique. Furthermore, in the case where n - 1 is odd and
all the eigenvalues of G that lie inside the unit circle are complex, f
does not even exist. The derivative Df(p) = F at the steady state is
locally unigque, ﬁowever; there are only finitely many possibilities. To see
this write F.4 as (fz(pt), f(py)) = g(f(pt),pt). Differentiating this at p

we see that

F
(5.2) =8 .
F I
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Writing F 1in Jordan form as F = HAH-l, we see that
(5.3) =g

which implies that A is diagonLl with diagonal entries equal to eigenvalues

of G and that the columns of HA are the corresponding eigenvectors

of G. Since G has only finitelg many elgenvalues, there are only finitely
many choices of F; indeed our original construction is the only way to get
solutions that satisfy the stability requirement F.5.

Notice that, if n® > n + 1, there are in general many possible choices
of vy,es¢,v 1, and, consequently, of F. The important fact is that there
are only a finite number of choices. Furthermore, under our regularity
assumptions, F varies smoothly with small changes in the parameters of
(y,z). When doing comparative statics faced with a choice of finitely many
forecast rules, we choose the uniqu? F that corresponds to the fﬁrecast rule

being used before the shock.

Finally, let us check on the initial condition; it is now

(5.4)  2zg(a,p1) + y(py,£(py)) = 0.

We can locally solve for p; as

1
(5.5) p1 = = [Dpzg #+ Dyy + DzyF]-lblzoa.
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