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1. Introduction

In recent years there has been a resurgence of interest in the errors-in-
variables model (EVM), or more generally unobservable variable models. In
a sense, this is a reversion to the kind of models considered in the early
history of econometrics. As Goldberger (1972, p. 993)'not¢s in his retro-
spective essay on structural equation methods, "In the early days, economic
equations were formulated as exact relationships among unobservable viriablel.
and errors in the variables provided the only stochastic component in the
observations. But, at least since the days of the Cowles Commission, the
emphasis has shifted almost entirely to errors in the equations."

Goldberger goes on to speculate about the reasons for this shift in
emphasis. He notes (p. 993) that the classical EVM, as exemplified by Friedman's
permanent income model, is underidentified, and "underidentified models present
no interesting problems of estimation and testing." The modern approaches to
the EVM "solvaf this problem by introducing sufficient prior information to
identify the parameters (of interest) of the model. This prior information
may take the form of a known value for the covariance matrix of the measure-
ment errors, or, wore gecently. instrumental variable equations linking the

true but unobservable variables to a set of observable proxies.
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While the modern approaches to the EVM represent a considerable advance,
they are not a panacea. Frequently, the additional information needed for
identification is either not available or is not widely shared by researchers
in the field. Moreover, it may be possible to extract some information from
a data set even if the model 1s underidentified. For example, for the two-
variable EVM, Frisch (1934, pp. 58-60) demonstrates that the interval computed
from the two regressions corresponding to each variable as left-hand-side
variable "consistently boundé" the true regression coefficient. The purpose
of this article is to present a complete k-variable generalization of Frisch's
result. Because of the possibility of perfect collinearity among the true
variables, the k-variable analog of the interval defined by the two regressions
can be an unbounded region. For this case especially, wve show how inequality
constraints on error variances can limit the set of estimates.

Our strategy involves exploiting the fact that the estimated covariance
matrices of the true (unobservable) variables and the measurement errors must
be positive semi-definite. Assuming that all variables are distributed normally,
this enables us to identify a restricted set of estimates of the true regression
coefficient vector which maximize the likelihood function of the measured (i.e.,
observed) data. More generally, for any distribution of the variables this
restricted set of estimates consistently bounds the true regression coefficient
vector.

We consider first the case in which no prior information is available to
supplement the basic EVM and it is assumed that all variables are normally
distributed. We establish the following two basic results.

1) Suppose there are k regressors, each measured with error.

By varying the left-hand-side variable it is possible to compute



k + 1 different regression vectors, which can be expressed in a
common, normalized form. We demonstrate that if the k + 1
normalized regressions are all in the same orthant then: (a) any
estimate which is a maximum likelihood estimate of the true re-
gression coefficient vector must be in the convex hull of the k+1
regressions; (b) every point in the convex hull of the k + 1 regres-
sions is a maximum likelihood estimate of the true tegression>
coefficient vector.

2) 1If the k + 1 regressions are not all in the same orthant then the

set of maximum likelihood estimates is unbounded. In particular,
any estimate of any component is a maximum likelihood estimate
provided the other components are suitably selected.

Elaborate and somewhat unclear proofs of proposition 1(a) may be found in
Koopmans (1937), Reiersol (1945), and Dhondt (1960). Independently of our work,
Patefield (1981) provides a clear and conaise proof of proposition 1(a) and
Kalman proves both propositions 1(a) and 1(b). Proposition 2 is conjectured,
though not proved, in Leamer (1978). We provide simple proofs of both proposi-
tion 1(a) and propositions 1(b) and 2. We also provide a complete characteriza-
tion of the case of two regressors measured with error, for ﬁhich it is possible
to define completely the set of maximum likelihﬁod estimates when the three
regressions are not in the same quadrant.

It is to be expected that most nonexperimental data sets will generate
regressions lying in differenf orthants. Some further prior information Vill
then be needed to bound the set of maximum likelihood estimates. The natural
candidate 1s information concerning the "seriousness" of the measurement errors
in the measured regressors. In particular, we assume that it is generally

possible to answer the following questioms:



(a) What is the maximum value of the squared multiple correlation (R?)

4f the measurement error of the explanatory variables were removed?

(b) What is the minimum possible squared correlation (pz) betveen a

true explanatory variable and its measurement?
Provided the answers are not one and gero, these questions imply bounds on the
variances of the measurement errors of the observed regressors which in turn
can imply restrictions on the set of maximum 1ikelihood point:.l

The answers to questions (a) and (b) are denoted by sz and e.z. and the
limited feasibility of mappiﬂg out the maximum likelihood region as a function
of R*z and 2.2 is explored. Two mathematically tractable suggestions are
offered. First, Qtz is set to zero and the maximum likelihood region is traced
out as a function of sz. A useful statistic is the maximum value of sz for
which the region is bounded and, incidentally, entirely contained in the
orthant of the conventional least-squares coefficient estimator. Second, the
region as a function of g.i i8 enclosed in an ellipsoid vhich can be econom-
ically computed and reported. The critical value of p.z, below which this
ellipsoid is unbounded, 48 1 - Al’ vhere Xl is the smallest eigenvalue of
the correlation matrix of the measured explanatory variables.

The paper is organized as follows. In Section 2 we consider the general
case of an arbitrary number of mismeasured regressors. In Section 3 we com-
pletely characterize the maximum likelihood region for the case of two re-
gressors measured with error. In Section 4 we consider the use of prior
information concerning the variances of the measurement errors in the measured
regressors. An example is presented in Section 5 which illustrates the use of
the principal rgsults of the paper. Concluding remarks are offered in .

Section 6.



2. The Normal Errors-in-varisbles Structural Model

The normal errors-in-variables ;t:uctural model is based on the follow-
ing assumptions. An observation | 1s drawn from a normal distribution with
mean B, +'§'§t and variance oz. wvhere Xe is a (kx1) vector of unobservables
and 80' g and 02 are the parameters of interest. The Pnobservables Et are

measured by the vector x_ which, conditional on xt.is normally distributed

t
with mean x, and covariance matrix D = diag {dl.dz....,dk}. The unobservables
X, come from a normal distribution with nean'§ and covariance matrix 1.
]
These assumptions imply that the observable vector (yt.xt) is normally

distributed with moments

B = O T )

2 A
CELERURE . 8'2
I8 L +D
L - - - _

Given a random sample of observations on (yt. x;). the maximum likelihood
estimates of BO’ 8, and 02 can be found by setting these population moments
equal to the corresponding sample moments. Civen 8, the k+l sample means

can be used to solve for the k+l location paraneters BO";' This leaves

the second order moments to estimate g,, D, and 02:

s = o + B'IB 1)
y - .-

r' = g'L 2)

N=I+D 3)

* -

where si is the sample variance of y, r is the vector of sample covariances
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"between y and f' and § is the matrix of sample variances and covariances of
x. For notational convenience, we have not distinguished between population
parameters and estimates. Hereafter, f’ E. P and 22 refer to estimates.
An estimate E is a maxipum likelihood estimate if there exist positive
‘semi-definite I, D and 02 such that conditions (1), (2), and (3) are satisfied.
Using (3) we can write (2) as re- (N-D)8, from which we can derive D. 1If

Ni is the ith row of N then

d, = Nj(e-b)/8, 4)

vhere b is the least-squares vector b = N-lr. Also (2) can be inserted into

(1) to obtain o2 = c; - v'8. Thus the positive semi-definite restrictions

on 02. D and I can be written as

2

sy~ 1820 | | (5)
NI(E-b)/B, 20  i=1, ..., K (6)
N - diag{Ni(B-b)/Bil pos. semi-definite ¢))

Any value of B satisfying these restrictions is a maximum likelihood esti~
mate.

To gain insight into these conditions, consider (5) and (6). If the

inequalities (5) and (6) are satisfied as equalities, the conditions can be

written as

v'e=0 ')

Xe=o e

vhere y and X are respectively the vector and matrix of observations on y

-

and x with their means removed, and e = y -~ X§ is the vector of residuals.
The k orthogenality conditions (6') define the usual least-squares vector
b. The orthogonality condition (5') together with all but the pth orthogonality

conditions from the set (6') define the pth reverse regression, which minimizes

2
the residual sum-of-squares measured in the direction of variabdle x5 that is E'Elep.



Each of these k+] regressions satisfies the set of inequalities (5),
(6) and (7). These estimates are formed by setting k of the k+l variance
2
parameters O , dl' dz, ceey dk equal to gero. In that event, the model

’ [}
can be written as x, = (8_+ I B,x, - y)/B <+ ¢, , vhere ¢, has mean gzero and
| L 3 9 3

variance d 3 In this form it is obvious that the coefficients are
estimated by the jth reverse regression.

A convenient way to compute these k + 1 regressions is to invert the

moment matrix S:

’ (8)
L U SR I T S B

vhere a'is the first row of the inverse. Then the k + 1 regressions are

-gj/aj.j =1, 2, ..., ktl. This can be demonstrated by writing the

system (5'), (6') as

y'e 1
§ = = S
= X'e - -8
- )
vhere § is a vector with element j equal to Gj and sll other elements

equal to-zero. Solving this system for 8 yields 8 = -cjlaj-

We will now prove the following result.

Theorem 1: .If the k + 1 regressions are all in the same orthant then the
set of maximum likelihood estimates, that is, those values of g satisfying

(5), (6), and (7), 1is the convex hull of the k1 regressions.



Proof: The proof of the theoren is divided into two parts. First, Ve
demonstrate that the set of maximum likelihood estimates is contained in
the convex hull of the k +1 regressions. Second, we demonstrate that

. every point in the convex hull satisfies (5), (6), and (7).

The first part of the proof follows from two propositions: (a) the
region satisfying (5) and (6) is convex in each orthant; (b) st each of
the k + 1 regressions, k of the k + 1 inequalities (5) and (6) are
binding and the other inequality is satisfied but mot binding. These
propositions imply that 1f the k + 1 regressions are in the same orthant
then the l;t of points in that orthant satisfying (5) and (6) is the
convex hull of the k + 1 regressions. No points outside this orthant are
feasible because the set of maximum likelihood points is connected. This

follows from the continuity of the functiom.a(D)-(N-D)-lx-for N-D positive

seni-definite.

The second part of the proof involves demonstrating that every point in
the convex hull of the k + 1 regressions satisfies (7) (we have already
deaonstrated that (5) and (6) are satisfied}. To establish this, it is con-

venient to suppress the normalization and to write the system of equationc

(1), (2), and (3) as

(9. (s-8)y = 0

- - -

where & = ¢ O and v = (1,-8).

Withogt loss of generality, we assume that the varisbles are defined



such that the k+l regressions lie in the negative orthant, which implies,
using (8), that S' s strictly positive. Note that if y is strictly
positive then E must lie in the ne&itive orthant. We establish the
. second part of the theorem by demonstrating that if Y satisfies (9) and
is strictly positive (and e satisfies (9) and 1s positive semi-definite)
then § - e is positive semi-definite. This in turn implies that the
submatrix §-P of §-e is positive semi-definite, hence that (7) is
satisfied.

The proof of this result exploits the following property of symmetric

nonnegative matricee.

Lemma 1: If A is the eigenvalue of a symmetric monnegative matrix
corresponding to a strictly positive eigenvector, then )\ is the maximum

eigenvalue of the matrix.

Proof: The lemma follows directly from: (1) the paximum eigenvalue of
a nonnegative (symmetric) matrix is positive, vith corresponding eigenvetter
strictly positive (this is the Perron-Frobenius theorem- -cf. Gantmacher
(1959, pp. 65-74)); (2) a symmetric matrix has at most one positive eigen-
vector. (This follows from the fact that the eigenvectors of a symmetric
matrix are orthogonal.).

Lemma 1 is used to establish the following two results which complete

the proof.

Lemma 2: §-A is positive semi-definite if and only 4f all the roots of

srlA are less than or equal to one.
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Proof: Since s is a Teal symmetric monsingular matrix and A 4s veal and
symmetric, there exists a monsingular matrix P such that ! §P=1 and !'f{'ﬁ'dill
{x o A .....An}(cf Cantmacher (1960, p. 314)). Therefore S-A can be

gxprelsed as (P')"1 ('.[-1\)!"'1 vhich implies that S-A is positive semi-

definite 1f and only if A.<l, 1=1,2,.+.s n. But the 1, are the roots of

s'le. which can be seen by rewriting the characteristic equation

s~1a-31]=0 as |P'] 8] |s~1a=21||P|=|P'aP-AP'5P|=|A-21|=0.

Lemma 3: I1f y and o satisfy (9) and y is strictly positive snd 5 1is

-1

positive semi-definite then all of the roots of § ~ 4 are less than or

equal to one.

Proof: Rewriting (9) as (I-S-lb) y=0, it follows that y is an eigen~
vector of S-IA with corresponding eigenvalue equal to one. Given that

vy is strictly positive, Lemma 1 then implies that the largest root of the

nonnegative matrix S-IA is one. I:]

The region defined by (5) and (6) 1s mot convex across all orthants
because the direction of inequalities (6) shift ffon orthant to orthant.
For k > 2, the.testrictions implied by (7) are complicated mon-linear functions.
It is therefore difficult to characterize completely the set of maximum like- -
1ihood estimates when the k + 1 regressions are not in the same orthant. But
a complete characterization is made unnecessary by the fact that the set is
unbounded. The set can be sandwiched between a pair of parallel hyperplanes
and one l}near combination of parameters is therefore estimable. But except

under unlikely circumstances, all other linear combinations are unbounded.-
These properties of the set of maximum 1ikelihood estimates are summarized

4n Theorems 2 and 3.
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Theorem 2: Values of r'6 with 8 satisfying (5), (6) and (7) are restricted

to

2
s r'8>r'd .
y ~§-~~

Proof: The first inequality is just (5). The second inequality follows by

using r = (N-D)8 to obtain r'S - z'b - g (N D)B - 8 (N-D)N 1(N-n)e -

- oo

B (D-DN’ID)B - B'D (D 1)DB. uhiéh 1- nonnegative because (N-I),

hence (9. - § ). is positive semi-definite.

Theorem 3: If the k+l regressions are not all in the same orthant then

the set {y'B|8 satisfying (5), (6), and (7)) is the set of real numbers

- o~ -~

for almost all vectors of constants 1

Proof: Theorem 3 is established by demonstrating that a subset of the
set {y'8]8 satisfying (5), (6), and (7)) is unbounded. Specifically, we

- & -

consider the set {y'8|6 satisfying (5), (6), and (7) and d, = O for all
but two suitably chosen values of 1, 4 = 1, 2,..., k}. We prove that this
set is unbounded by first demonstrating that requiring all but two of the
di to equal zero effectively reduces the k + 1 variable problem to a three-
variable problem. In the next section ve establish that the three-varisble
problem is unbounded when the (three) regressions are not in the same
orthant.

Without loss of generality, suppose that the two suitably chosen
non-zero d1 are d1 and dz. Then d, = 0 for 1 = 3, 4,..., k and equation

i
(2) can be rewritten as

- -1 . -

Bl ™1 P M 5
[
&) " N2 T,

where D11 = diag {dl' d2} and N, 8 and r (and subsequently X» X» and y)

are partitioned conformably. Sclving this system yields

el 10
B, = Ny (x5 = N8y (10)
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and
To = B] Iy . @
- where To =Ty = lenzg T, is the sample covariance of y and x, given x,
and I, = ¥, =Dy N2 Npp My = Iy - F2 Npp Ny (uaing Iy, = Ky =Dy,

from (3)) is the sample covariance of X, given x, (or equivalently xz)-

In addition, (3) implies Nll =-f <+ Dll’ which, after subtracting

~11

-1
§12 §22 §21 from both sides, yields

Na = Ia Dy, (3"

! l

where E* ?11 12 22 21 is the covariance of x given 52 and ?* = ?11.
Finally, using (10) to substitute for 82, (1) can be rewritten as

2 2 - '

= O A LB an
where 52 - 32 -r N-l vy, is the sanple variance of y given x

ye = 8y T 12 Y22 T2 ks x2°
1

Equations (1}), (2'), and (3') have the same structure a&s ), ),
and (3), except that equations (1'), (2'), and (3') pertain only to 91 and
all variances and covariances are conditioned on Xye This demonstrates that
the additional constraints d1 =0 for i = 3, 4,..., k effectively reduce
: the problem to a three-variable model. 1If the set {v'8|8 satisfying (5),

6), (7), and d, = 0 for 1 = 3, 4,..., k) 15 unbounded vhen the regressions

i

are not in the same ortbant (as is demonstrated in the next section for a -

suitable choice of x,) then the corresponding set of values of t»'B = wial +
' ' v .1 l

VB, = V)8 + ¥, Npy (r; = N, 8,) 1s unbounded provided V' sV Ny ¥

0 and provided ¢y ¥ 1 (Theorem 2).
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All that is left to prove the result is a careful choice of x, 8o
that the three regressions for the reducéﬁ problen are not in the same
orthant. To do this, simply order and choose signs of the variables such

that the inverse of the moment matrix (8) has the form

The diagonal elements have to be positive, and the matrix has to be sym-
metric. The variables are signed so that the direct regression is in the
positive orthant, that is, elements (1,2) and (1,3) are negative. The
first reverse regression is chosen so that it is not in the positive or-
thant, and indices are chosen such that its first component is positive
and its second is negative; that is element (3,2) is negativej:]

Theorems 1 and 3 can be easily amended if some of the variables are
known to be measured correctly. If only m < k of the explanatory variables
are measured with error then only m + 1 regressions are computed and
only the coefficients on the m mismeasured variables are checked for sign

changes. This follows from the fact that equations (1), (2), and (3) can
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be written in terms of the mxl subvector of § corresponding to the mis-

measured variables, with the sample moments controlling for the error-free

explanatory variables.

3. The Three-variable Case

In this section, we characterize completely the three-variable case.

For convenience we can normalize such that

s =1
y

N = 1 »p
p 1
' = lr 1]

The least-squares estimates then are

[by,b,) = [ry-p7ys rz-prlll(l-pz).

The region of maximum likelihood estimates is described by the inequalities

1-1,8 -1,8,20
(B,+pB,-1r,)/8) > 0
(pB,+B,-1,)/B, 2 0
(r,-pB,)/B; 2 0

(x,7,-p(r By +7,8,)) /8,8, > 0

(1)

Qa2

(13)

(14)

¢ 8]

Inequality (11) s implied by (5), inequalities (12) and (13) are implied by

(6), and inequalities (14) and (15) are implied by (7).

The reverse regression estimates formed by letting (11) and (12) be

equalities are
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B,.8,) = (57,0, (-T2 /b, Q-5

The reverse regression estimates formed by letting (11)and (13) be equali-

ties are
(B,.8,) = (-2, (r;7,-0)) /b, 1-p)).

The conditions for these vectors nnd(bl.bz) to be all in the same quadrant
are sgn(bl) - ogn((rlrz-p)lbz) and lzn(bz) - lgn((tlrz-p)lyl). But these

are equivalent, and can be written for emphasis as & theorem:

Theoremi : The three regressions are in the same quadrant if and only if
sgn(bl)sgn(bz) - lgn(rltz-p). Qs)

A weaker sufficient condition is the following.

Theorem5: Condition (16) holds if lgn(bl)sgn(bz) = -ggn (p).

Proof: It is enmough to show this for the case bl >0, bz >0, p <0, since
the other cases are implied by a change in sign of one or both variadbles.
The condition bz > 0 implies 1, - pT; > 0. We can vrite 1T, = p(f'?)-(rz-prl)b1
2
and from b, > 0 conclude T, - p(z'b) > 0. The condition R* < 1 implies
- -1
£'b < 1. Using these inequalities and p < 0, we derive r,T)p < E'E <1, and

rlrz > pe.

Using these two results and the inequalities (11) to (15) we may form
three figures which represent the three distinct cases which can occur.
Figures 1 and 2 illustrate Theorems 4 and 5 in which the three regressions
are in the same quadrant. Figure 3 is like Figure 1 except that condition

(11) has been adjusted so that the three regressions are not in the same
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quadrant. Note that no adjustment to (11) in Figure 2 can cause the three
regressions to be in different quadrants; Also note that (14) is drawn only
in Figure 3. This is generaliy implied by the other inequalities. A proper
proof of the unboundedness of the region depicted in Figure 3 requires the
tedious checking of the inequalities (11) to (15) along the line r'g = ¢

for T'b < ¢ < 1. This is left to the reader.

- -~
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4, Prior Restrictions
. In most applications in economics, the possibility of measurement error
in the regressors is ignored. This is not because it is gegerally believed
that economic data are measured without error. Rather, it is a consequence
of the fact that the procedures available to deal with measurement error in the
regressors often require the use of prior information which in some sense is
more heroic than the assumption of correctly measured regressors. Left to
choose between the lesser of evils, the typical researcher generally opts for
the simpler, more traditional approach.

1f interest focuses only on the signs of the true regression coefficients,
the traditional approach may ﬁot be that bad. In Section 2 we .ﬁw that if
the k + 1 regressions are in thg_lnme orthant, the maximum likelihood region
is entirely contained in the same orthant as E. But in many instances it is
to be expected that the k + 1 regressions will not all be in the same orthant,
in which case Theorem 3 implies that the traditional data summary conveys no
information about the signs of the true coefficients. In other in-
stances, the researcher may be interested in the magnitudes as vell as the
signs of the true coefficients.

The situation is not as bleak as it appears when it is recognized that
in the average application the researcher may possess considerable prior in-
formation concerning the seriousness of the measurement errors in the observed
regressors. In particular, we assume that the researcher is able to answer
the following two questions:

(a) If there were no measurement errors in the observed x's, how large

could be the squared multiple correlation of y with the x's?
(b) Among the k regressors, how small could the'oquared correlation be bet~-

ween an observed regressor and its true counterpart?
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The material in Section 2 assumes that the ansver to (a) is one and that
the answer to (b) is zero. These are unreasonable answers. No one would really
expect to see the Rz go to one as the neasuremenfc become more accurate, and

no one thinks that the variance 4n the measured x's is entirely due to measure-
ment error. But inequality (5) allows the Rz to be one, and the inequalities

(7) allow the measurement error variances to be ag large as the sample variances.

I1f more restrictive but still sensible assumptions are used, the set of

paximum likelihood estimates way shrink substantially.

The true Rz. 8'23/(02+ 8'I8), 1s estimated by t'B/lg. and the restriction

- o~ - ®>w -

that this estimate is less than R*z implies the inequality

n*%i -1'850 ‘ -oan

This is the same as inequality (5) if R*z = 1. The squared correlation betwveen X4

and its measurement X,, t11/(£11+di). is estimated by (Nii-di)luii -
‘“1181'“i‘3'b)”“1191 and the restriction that this estimate of the squared correla-

tion is between p2 and p*zimplies the inequalities
*

pef> (N [(B-b)/N;B, 202 121, cein k (18)

114Ny
Inequalities (6) and (7) imply (18) with p*z- 1 and p.z- 0.

Inequality (17) is easy to work with since it involves only a trivial
adjustment to (5). Similarly, if 9*210 not one, the inequalities (6) are tri-
vially altered. But if Q.zis not gzero, k additional inequalities are added
to the problem and the region of maximum likelihood estimates can become
considerably more complex. A complete way to report results would be to
characterize fully the maximum likelihood region for a set of values for

2 2

0*2, o*€ and R*“, This is likely to consume more journal space than is justi-

fied and it is computationally expensive. We propose instead two alternatives.
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The first sets 9.2- 0 and p*z = 1 and explores the nature of the maximum likeli~
hood region as a function of R*z. Ve dgmonstrate that there exists a maximm
value of R*z. denoted by R;z. for wvhich the maximum likelihood region remains
bounded and, incidentally, entirely contained in the orthant containing lj. The
vertices of the maximum likelihood region are described as a function of R*z for
values of R*z < R:lz. The second alternative sets R*z = ] and encloses the maximum

1ikelihood region within an ellipsoid. A condition which ensures that the

ellipsoid is bounded is identified.

1f 0._2- 0 and P*“a 1, the problem is straightforvardly altered by re-

2
placing sy by R*zug. as in (17). Consider then the k + 1 adjusted regressions

which can be computed by inverting the adjusted moment matrix

, -1
R*zsz r' . -(R*zui) 1 r'C 1
- N (19)
T N . (:"1
i _ | _

vhere C = N - t(R*zti)-lt'. The adjusted k + 1 regressions are formed by

dividing this matrix by the negative of the first row, as described above
the proof of Theorem 1. Following the proofs of Theorems 1 and 3, it is

then possible to establish the following theoren.

Theorem 6: If the k + 1 adjusted regressions are in the same orthant then

the set of maximum 1ikelihood estimates, that is, those values of B satisfy-
ing (17), (6) and (7), is the convex hull of the k + 1 adjusted regressions.
1f the k + 1 adjusted regressions are not 4n the same orthant and if ! is a
vector of constants, then the set of maximum likelihood estimates for !"f is

the set of real numbers for almost all vectors of constants v.
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The k + 1 adjusted regressions can be computed directly from (19). The

. reader may verify that the first regression i1s just the direct regression

b= N-lr. independent of R*z. The other k adjusted regressions are found

by inverting C:

clavwtovhiaw

-~ - & =

lr-n*zs:)-lt'n.l

- ((r'N.lr-R*zsg)N-l-bb')I(r'N-lr-R*zt:)

and computing

-b' - 1"!4“11:(:'N"1

. 42.2.-1
-R* b’
-R7sy) b

- - R*zl:b/(t'N-lr-R*?lz)

Thus the ith adjusted regression,formed by dividing a column of the inverse

moment matrix by the negative of its first element, is

- 2 -1 2.2
*“) = - ' ~R#* - 20
Brgy R*) = = ((F'N "r-R¥"8 )8 (4)=bby) /by (20)
vhere s(i) is the ith column of N-l. 1f R*z = 1, this is just the ith re-
verse regression -

- 2 -1
9(1) =b + (sy-r N r)s(i)/b1 .

We._can, therefore, write the ith adjusted regression as a weighted average

of the ith reverse regression and the direct regression:

o 2 22 -1_.% 2 1
7)) = ~R* + (R*“g =-r' s -r'N ) (21
E(i)(k ) = (-8 7) .;‘3 *x .7 : § E)g(i))l( Y- - .) 2
it may be noted that the lowest value of R*z consistent with (19) being
positive semi-definite is the squared multiple correlation between y and the

measured x's: r'N-lr/sg. in vhich case a(i)(gtz) is just E. Using either
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(20) or (21) it is easy to trace out the linear path taken by the ith ad-
justed regression as R*z varies from §'§-1§I|: to one.

Equation (20) or (21) can also be used to solve for R*:. the maxisum
value of R*z consistent with all adjusted regressions in the same orthant.

Referring to equation (21) and assuming that bj and Bij are opposite in sign,

we can solve for the values of R*z at which Bij(k*z) and bJ assume the same

sign:

R+? < (s;b -r'Nlrg

2 -
j . . 1j)l'y(b 'B )

i

P 2yl )2
(f § f(bj Bij)-f-bj(sy T § f))/‘y(bj 813)

- &2 + R)/Q-(By, /b))

where iz is the squared sample correlation coefficient r'N-ltls:. This value

is minimized across all 1 and j when the ratio aij/bJ is as large a negative

number as possible. Therefore
re? = 82 + (1-8%) min (1-(By /b »~ (22)
] i 1373
%

wvhere the indices 1,§ select only those estimates opposite in sign, Bij/bj < 0.

Another way to report this number is to compute the proportion of the
gap between Rz = R2 and Rz = ] that can be attributed to measurement error.
without causing the k + 1 regressions to be in more than one orthant. Denoting

this by g,

{1 4f the k + 1 regressions are in the sane orthant

(R*:-iz)/(l-iz) otherwise .

The statistic g is a convenient summary statistic to indicate the sensitivity

of conventional inferences to measurement error in the regressors. A value
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of g equal to one indicates that the k + 1 unadjusted regressions are in the

same orthant. In this instance, mo prior restrictions at all are needed to
eﬁsure that the maximum likelihood region is bounded and entirely contained

in the orthant containing E. Alternatively, a value of g equal to zero in-
dicates that sllowing even the smallest amount of measurement error in any of the
regressors will cause the maximum likelihood region to be unbounded. In this
latter instance, conventional data summaries which report only E may be &
particularly poor summary of the data unless the possibility of even small
measurement errors in the regressors can be ruled out a priori.

The above discussion is based on the case vhere pi = 0 and p*z- 1.

Provided of = 0, the nroblem is straichtforvardly altered to sccommodate

a value of p*z# 1. As above, all that is required is to alter the moments
Nii to Niip*% But it is more likely that a researcher would want Di ¢0
than p*2# 1. We propose to deai with this more complicated case by enclosing
the maximum likelihood region by an ellipsoid. Using (2) and (3) we can

write the estimate of £ as a function of D as
-1 ”,
g = (N-D) 'r (23)

The inequalities (18) constrain the diagonal elements of D to lie between
Nii(l-p*z)and Nii(l—pia. A veaker restriction allows D to be mon-diagonal

but constrains D to(l-p*z)dilg{Nll.sz..... Nkk} £ D<D < D#:=

2
(1-p,)diag{N,,,Noos..cs N}, vhere A < B means B - A is positive semi-

definite. The estimator g can be written as ((g-g?)+(2*.9)5-15 with
0< g* -D¢< B* = D,. Written this way the estimator appears to be a
posterior mean with a prior located at the origin with a prior variance
matrix V bounded from below, (B*‘E*)-l < V. Theorem 2 in Leaner (1981)

then implies the following.



Theorem 7: Any § satisfying (23) with D, < D< E* < K lies 4n the ellip-

soid
(8-£)'B(B-£) < ¢ (24)

where

13-
"

(8-D%) (D*-D) (ND) + K - D*

1
L]

(8-D,) " (x+(D*-D,) (§-D%) '1/2)

@5-0,) " (8-(0%4D,) /12) (-0

(¢]
]

RGOS RIS Pl T

This ellipsoidal region is much easier to work with than the true
eaximum likelihood region. If interest centers on some linear combination
of parameters, say ?'g,where Y is a vector of constants, then the extreme
estimates over the ellipsoid (24) are Y'S % (?'g-lgc)k. The most serious
problem with this interval is that it ignores the constraint (7). The ad-
justed k+1 regressions when they are in the same orthant do make use of the
constraint (17), but set 0*2 to zero. The intersection of these two regions
makes use of both sources of information and may give a fairly accurate
picture of the true maximum likelihood region.

The maximum likelihood region defined by (7), (17) and (18) is wholly
contained by ellipsoid (24). -An important condition of Theorem 7 is that
N > D*. 1In the event N > P*, ellipsoid (24) is finite and by dmplication

-~ o

the maximum likelihood region is bounded. This implies:
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Corollary. The maximum 1ikelihood region 1s bounded 1f 1 ~ Al 5_9.2Hhef¢

Al is the smallest eigenvalue of the correlation matrix N, normalized to

Nii-l’ i-l. ¢ o o.k'

When k=2, the smaller eigenvalue of the correlation matrix equals

1- |N12|, vhere N, is the correlation betveen x) and x,. Thus, & condi-

tion to get a bounded region is that |N12| < 9.2. the squared correlation between
the true X and its measurement x must be known to exceed the absolute value

of the correlation between the measured x's. For this reason, the absolute
correlation le and its generalization 1 - Al ;etve as useful indicators

of one aspect of the collinearity problem: 4f the nea;ured x's are highly

correlated it is difficult to rule out the possibility that the true x's

are perfectly correlated.
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5. An Example

We present in this section an example. The problem we address is the
estimation of the Heckscher-Ohlin-Vanek (1968) model of trade which expresses
net exporti of a commodity as a linear function of the rescurce endowments of
the country. We analyze 1972 net exports of a machinery aggregate composed
of SITC classes 71 (non-electrical machinery), 72 (electrical machinery), 73
(transport equipment) and 86 (professional goods). The 1972 net exports of
machinery in thousands of dollars of 47 countries are related to the country's
land, labor and capital. Land is the total land area of the country in

thousands of hectares, taken from the FAO, Production Yearbook. Labor is the

number of economically active individuals in thpuslnds. taken from the ILO,

Labor Force Projections 1965-1985. Capital is accumulated domestic inQestnent

flows in 1972 dollars assuming a fifteen year average asset life, derived from

World Bank, World Tables 1976.

The regression of net exports of machinery on land, labor and capital

yields the following equation with t values in parentheses:

Y = 84981 -6.18 Land + 6.20 Labor + 12.35 Capital, RZ = .52.
(4.0 (.6) - (6:4)
This regression suggests, as might be expected, that countries with relatively
large amounts of labor and capital have a comparative advantage in machinery
production, and countries with.relatively large amounts of land have comparative
advantages in other products. However, the variables land, labor, and capital
are doubtlessly measured with error and we need to know if these inferences are

sensitive to assumptions about the error variances.
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This can be probed by computing the three reverse regressions. They are
reported along with the direct regression in Table 1. The first column contains
the estimated direct regression of met exports on the three explanatory variables.
The next three columns contain the three reverse regressions. If minimization
of the sum-of-squares is done in the direction of the land variadble, the
estimated coefficients have the same signs as the direct regression. But the
other two reverse regressions have estimated coefficients with differQnt signs.
We are accordingly in the situation in which the set of maximum likelihood
estimates is unbounded, and these data are useless unless we make use of additional
prior information.

First, note that if we were willing to assume that capital is measured
correctly, then the set of maximum likelihood estimates would be bounded.
This can be seen from Table 1. If the capital column and row are removed (and
the intercept row and column are also removed since the constant regrcsssr is
measured correctly), the signs of the remaining estimates are the same.
However, the capital variable is perhaps the explanatory variable most likely
to be measured with error. Labor likewise can be expected to be measured
with error because of differences in vacations, work week, overtime, effort,
etc. from country to country.

Theorems 6 and 7 indicate that it 4sn't necessary to assume that some of
the explanatory variables are measured correctly in order to bound the set
of maximum likelihood estimates. Theorem 6 indicates that if one is willing

2 2

: *
to select a sufficiently small value for R that would

» the maximum R
result if the measurement error in the explanatory variables were removed,
then the set of maximum likelihood estimates will be restricted to the
orthant containing the direct regression. The Rz based on the measured

explanatory variables is .52. Using (22) and the estimates reported in
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Table 1, R;z. the maximum value of R*z for wvhich the set of maximm 1ikelihood
estimates is restricted to the orthant containing the the direct regression,

4g .698. Therefore if one is willing t; select a value for sz less than

.698 then the set of maximum likelihood estimates will be bounded. Alternatively
stated, g, the fraction of the gap between R? = ,52 and R? = ] that can b§
attributed to measurement error without causing the set of maximum 1ikelihood

estimates to be unbounded, is .3717.

. .
Bounds for the estimates as functions (20) of R 2 are graphed in Figure 4.

2

*
If R “ = .52 there is no room for measurement error, and these bounds narrovw

to a point at the left of these figures. Both the labor and capital bounds

%
overlap the origin at R 2

= ,698. At this point some of the adjusted k+l
regressions exit the orthant of the direct regression and the region becomes
unbounded. The lines that form the boundaries of these sets of estimates
connect the direct regression on the left with the extreme estimates from the

k+1 regressions on the right.

®
A plausible value for R 2 is .6. It strikes us as excessively optimistic
to expect the Rz to increase from .52 above .6 merely by the elimination of

2 equal to .6,

®
the measurement error in land, labor and capital. For R
Figure 4 indicates that the land coefficient and the capital coefficient are
tightly bounded, but the labor coefficient bound is quite wide.

* *2
An alternative to assuming that R 2 is less than or equal to R‘ is to

-Select a value for 9*2. the minimum squared correlation between the true var:lables:
‘and their measurements. The corollary to Theorem 7 indicates that 1fo.2>l-xl-.565,
where A1 is the minimum eigenvalue of the correlation matrix of the explanatory

variables, then the set of estimates is bounded. Bounds for the estimates as a
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fupction of 9*2 using Theorem 7 are reported in Table 2. At the right of this

table are the direct regression estimates. The bounds get larger as the

2

value of 5, gets smaller.

"A plausible value fot'qtziJ .8. It strikes us as excessively pessimistic
to think that the squared correlations between the neasurementg_and the true
variables are less than .8. I1f o;zis set equal to .8, Table 2 indicates that
the intervals of estimates for the land and capital coefficients are fairly
tight, but the interval for the labor coefficient 4s wide and overlaés the origin.
Thus, although the k+l! regressions are not in the same orthant, sensible
prior restrictions on the error variances allow us to make inferences from
these data. The general conclusion is that inferences about the land and
capital coefficients are reasonably insensitive, but inferences about the labor

coefficient are very sensitive, to measurement error issues. This, incidentally,

conforms to the t-values in the usual direct regression.

6. Concluding Comments

It 1s conventional practice to act as if it is possible to measure
without error the theoretical constructs of economic models. This assumption
is generally imposed for convenience rather than because it is widely shared.
Our results suggest that it is possible to loosen this rigid assumption
without inordinate sacrifices in tractability. We propose two statistics
to supplement the conventional regression summary. One statistic indicates
the proportion of the difference between Rz - iz and Rz « ] that can be
attributed to measurement error without causing the set of maximum likelihood
estimates to become unbounded. The other statistic indicates the minimum

squared correlation between true variables and their measurements required

to bound the net-of maximum likelihood estimates.
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These two statistics are easy to compute, and, as we demonstrate in
in Section 5, they are simple to use. This should make it easier for
researchers to deal seriously with the possibility of errors of measure-

ment.
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Endnotes

An analysis that also makes use of information of this form is

Leonard (1979).

The assumption that y and E are normally distributed enables us

to interpret the set of values of f satisfying (5), (6), and (7)

as the set of maximum likelihood estimates. HBowever, this set is

of interest independent of the normality assumption. Note that

in the population, (1), (2), and (3) must be satisified for any
distributions of y and x. Consequently, for any distributions

of y and X, if the sample size 1s large enough, the set of estimates
of § satisfying (5), (6), and (7) almost surely contains the true

value of B.

A version of the following proof (in Lemmas 1-3) is in the
original manuscript by Klepper (1980). An error in an
alternative proof was kindly pointed out to us by Rudolf
Kalman. Kalman (1981) uses the Perron-Frobenius Theorem
cited in Lemma 1 in much the same way as we do to establish

results similar to Lemmas 1-3.
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?tgurc. b |
The Set of Maximum Likelihood Estimates
b1>o. bz>0. >0, ’1'2"’“
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(1)

Q13)

. €12)

Q2

13)
Qs)

Figure 2

The Set of Maximum Likelihood Estimates

Q1)
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Q2

Figure 3

The Set of Maximum Likelihood Rstimates
bl>o.bz>0.p>0. ‘1'3"’“’
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Figure &
®
BOUNDS FOR ESTIMATES AS A FUNCTION OF R 2
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Tadle )

Direct and Reverse Regressions

Direction of winimization

Coefficients Y Land Labor Capital
Intercept/10° 85.0 2062 =586 =182

Land . b2 -22.7 «26.2 -10.3
Labor ' 6.2 26.3 708.2 . «10.4
Capital | 12.4 20.6 «20.9 25.2

B = .52, 1;2 - 698, g = o317



Intercept/103:

Land:

Labor:

Capital:

Min
Max

Min
Max
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Table 2

Bounds for Entiﬁntes Given
Minimum Squared Correlation Between True Variable and Measured Variable

1-11 = 565

’ 6
-5283

10813

-114.7
14.8

=256.2
181.0

-1103
143.7

Minimum Squared Correlation (p,2)

o7
-1937
2745

-28.0
-1.2

~65.6
66.6

7.1
39.5

.8
~868,

1202

=14,7
-4,0

-2404
33.6

10.2
23.Y

o9
-2870

498,

’9.2
-5.4

-501
16.7

11.5
16.2

1.0
85.0

85.0

’6.2
-6.2

6.2
6.2

12.4
12.4



