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Abstract

We provide a sufficient condition for equilibria of a game to arise as
limits of e-equilibria of games with smaller strategy spaces. As the
smaller games are frequently more tractable, our result facilitates the
characterization of the set of equilibria.
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1., Introduction

Although game-theoretic models play an important role in economie theory,
in many cases of interest it is difficult to characterize the set of
noncooperative equilibria. We provide, as a tool for this purpose, a
sufficient condition for equilibria to arise as the limits of e-equilibria
in games with smaller (and more tractable) strategy spaces. We then extend
éur result to mixed-strategy equilibrium. As illustrations we consider
finite-horizon approximations of infinite-horizon games and discrete—time
approximations of continuous-time games. We considered the first application
in Fudenberg-Levine [1982]; the framework we use here allows a clearer proof
and a weaker continuity requirement.

The idea of the theorem is straightforward: if a sequence of "restricted
games" approximates the game of interest in the appropriate sense then any
convergent sequence of e—equilibria  of the restricted games with € » 0 as
the approximation improves converges to an equilibrium of the original game,
and every equilibrium of the underlying game is a limit of e-equilibria of
the restricted games with ¢ + O. Thus the set of equilibria can be
characterized by computing the set of limit points of the e-equilibria of
the restricted gameé.

Section 2 briefly reviews some related work. Section 3 gives some basic
definitions and gives a sufficient condition for equilibrium. Section 4 takes
a more topological approach and provides a necessary condition, as well.
Section 5 extends our results to mixed strategles. Section 6 briefly reviews
the finite to infinite horizon limit. Section 7 treats discrete-time to
vcontinuous time, and Section 8 analyzes some games of timing.A Section 9

concludes.



2. Related Work

The work most similar to ours is that concerned with the existence of
minimax solutions for two-player zero-sum games1 (e.g., Wald [1947], Tjoe-Tie
[1963]). Wald defined an "intrinsic metric” on the strategy space and proved
that if it is compact in the intrinsic topology then the game has a minimax
valué in mixed strategies. Our goal of characterizing all the equilibria is
irrelevant in two-person zero-sum games because when the minimax value exists
it is unique. Thus this literature has been concerned with only "one
direction” of our limit theorem, and then only for the case in which the
strategy space 1is compact so that existence of the restricted equilibria
implies existence in the limit,:

A number of authors have observed that some, but not all, equilibria of
continuous—-time games are limits of equilibria of discrete~time games, among
them Kreps-Wilson [1982] and Stokey'[1981]. Dasgupta-Maskin [1982] use
finite—éction approximations of games with a continuum of actions to
investigate the existence of mixed-strategy equilibrium, |

Green [1982] considers finite-player approximations of games with many
players. He focuses on the upper hemi-continuity of the equilibrium
correspondence.,

Radner [1980] showed that cooperation could arise as an e-equilibrium
of the finitely-repeated Prisoner's dilemma. As cooperation is an equilibrium
with an infinite horizon, Radner's result corresponds to the second direction
of our theorem.

-

3. Basic Notions

We begin by introducing the basic concepts and definitions. Players are

elements 1 of a finite set I. Each individual player has a strategy



space Sy. The overall strategy space 1s the Cartesian product S = Xisi;

elements of S will be called strategy combinations. Notice that S may be
a space of mixed strategies. The strategy combination derived from S by

4th

replacing its component by hy 1is denoted by (hi’s—l)‘ Player 1i's

payoff is a bounded function wi: S » R,

Definition (3.1): A strategy combination s 1is an e-equilibrium if for

all 1 and hi € Si

wi(hi,s_i) < ﬂi(s) + €.

.Thus each player gets within ¢ of the maximum. (The notion of an epsilon
eduilibrium is due to Radner [1980]}). One rationale for e—equilibrium as a
solution concept is that if players'have sufficient inertia they will not
bother to realize small galns. When. e =0 we refer simply to equilibria:
this is the usuél noncooperative Nash equilibrium of a game in strategic
(normal) form. We are not primarily interested in e-equilibria themselves;
we will use them as a tool to characterize the equilibria of S,

- We are particularly interested in games in which players are restricted

to a proper subset of the strategies available to them in S.

Definition (3.2): R S 1is a restriction or restricted game if R = X Ri
iel

with Ry Si'
If R 1is a restriction of S we have the notion of an e—equilibrium

relative to R.



Definition (3.3): A strategy combination r € R 1is an e-equilibrium

relative to R 1if for all {1 and hi € Ri

i i
i (hi’r—i) < 7 (r) +¢.

Thus éach player gets within € of the best he can do within his restricted
strategy space Ry.

Now we consider a seduencé of strategy spaces {Rp}. If e¢—equilibrium
in RR are to be related to e—equilibria in S 1t must be possible to do

nearly as well in R® as in S. Thus we are led to define

Definition (3.4): {R"} is thick in S if forany § >0, se S, 1€l

and large enough n there is a 52 ¢ R"

i with

wi(s) < ni(gg,s_i) + 8.

Next suppose that r® are en-equilibria in R% with &%+ e, and that

n

8 1is in S. Suppose further that the r approximate s 1in the sense that

each agent can do only slightly better by deviating against r® rather than

against s:

Definition (3.5): r2 approaches s if for all § > 0 and large enough n

. sup 1 (5,8 ) - v (e) - G, - A ™I <
SiERi :

The significance of thickness is



Theorem (3.1): 1If {Rp} is thick in S and r" approaches s where r®
are en—equilibria in R® with e® + ¢ then s is an e—equilibrium in
S.

Proof: If not for some 1 there is an Ei and a 6 > 0 such that

“i(;i’s—l) =nl(s) +e + 6

By thickness for large enough n we can actually find an E? ¢ R® that does
almost as well, so that
ni(;:,s_i) > ni(s) +¢ + 8/2.
Also since r" approaches s for lérge enough n
ni(EI,rEi) > 1i(r) + € + 8/4.
which 18 a contradiction since et + e Q.E.D.

In particular, if €® > 0 (or if €” = 0) then s is an equilibrium.

4, A Topological Approach ‘

Althugh the hypotheses of Theorem (3.1) are easily checked it does not
prove that all e-equilibria are reached as limits of en—equilibria of

restricted games. To prove this we need a stronger notion of the coavergence

of strategies.



Definition (4.1): The "distance" between two strategies s,t ¢ S 1s

d(s,£) = sup  (Jui(s) - v ()]

i,hieSi

+ |ty = wthg e D).

What d( , ) says is thgt two strategy combinations s and t are close if
they yield payoffs that are close and any deviation against s ylelds payoffs
close to that of the same deviation against t. It is easy to check that d
satisfies the triangle inequality. Thus d( , ) is a pseudo-metre.

However, d 1is not a metric because it is possible that d(s,t) = 0 even
though s and t are distinct, All statements about convergence,
continuity, etc. will be with respect to the topology generated by d, which
we will call the "inheregt" topology. It follows directly from the definition
of d( , ) that if s 1is an ¢-equilibrium then t 1is an ¢ + d(s,t)

equilibfium. Thus

Proposition (4.,1): If (s™) + s are a sequence of en-equilibria and

e + ¢ then s 1is an e—equilibrium. Also if s + 8 and s 1s an

e-equilibrium then the s® are en—equilibria with e + e,

Remark: d( , ) does not induce the coarsest topology in which Proposition
(3.1) holds. For example the pseudometric

d(s,t) = sup 'ﬂi(hi,t_ - ﬂi(t) -

)
. i
i,hiesi _

(rt(hy,e_) - (M|



induces the weak topology on S generated by the requirement that each
player's best response (in terms of payoffs) be continuous, which is the
coarsest topology for which Proposition (4.1) holds. We will call this the
"Nash topology”. As we shall see, the Nash topology is too weak for the
results below.

A topological notion of thickness is

Definition (4.2): The sequence of restricted games {Rn} approximates S if

"k I
for every subsequence {R '}, Uk=1 R is dense in 8.

We now state and prove our maln theorem which relates the sn-equilibria
"of an approximating sequence of restricted games to the e—equilibria of the

unrestricted game.

Proposition (4.1): [Limit Theorem]: Suppose {R"} approximates S and

n n
r R,

(A) If the r" are eM-equilibria relative to R? with €® +» ¢ and

" +8 then s is an e-equilibria.

(B) If s 4s an e—-equilibrium and r® + 8 then there 1s a sequence

e? + ¢ such that r® 1is an en—equilibrium relative to RY.

Corollary (4.2): If s is an e-equilibrium there exists sequences {rn},

e RF, and {en}, with r® + s and e¢" + ¢ such that r? 1is an

en—equglibrium relative to RZ,



(A) This is immediate by Theorem (3.1) since approximation implies
thickness and convergence implies approaching.

(B) Since R% S this follows directly from Proposition (4.1).
Finally, the corollary follows from observing that since {Rp} approximates

S, »there is some sequence t® » s and applying (B). Q.E.D.

Note that thickness is not implied by the "Nash topology™ of the last
section which required only that deviations against nearby strategles yield
similar payoffs. It is in this sense that topology is too coarse for our
theorem — if (h?,rfi) approximates (hi’s-i) we need to know that the two
strategy combinations themselves yield nearby payoffs. In a loose sense this
observation suggests a bound on the coarseness of topologies under which
Proposition (4.1) holds;.we have not however established that the topology we
employ is the coarsest possible.

In some cases the actual equilibrium strategies are of less interest than

the equilibrium payoffs,

Corollary (4.3): 1If {Rp} approximates S, {vn} + v 1is a sequence of

payoffs (one for each player) of ¢M-equilibria relative to R®, and S 1is

compact, then there is an equilibrium in S with payoffs wv.

Proof: Take a convergent subsequence of the et-equilibria and apply (4.1).

-

Remark: If we let R* be the space of all restricted games, endowed with the
Haussdorf metric, and define Q: [0,»] x R* > S to be the correspondence

yielding for any (e,R) the set of e-equilibria relative to R, then



Proposition (4.1) (A) says that Q 1is closed-valued at (e,8) for every e.
As S 1is not necessarily compact, we cannot conclude that Q 1s upper hemi-
continuous (u.h.c.) Green [1982]) gives sufficient conditions for the

equilibrium correspondence to be u.h.c. in a setting similar to ours.

Remark: One may have a priori notions of a natural topology on S, and
ﬁrefer to approximate the equilibria of S with restricted equilibria which
are near their limits in that natural sense. For example, one might wish
nearby strategies to yleld nearby "outcomes™. An immediate corollary of
Proposition (4.1) is that any topology on S that is finer than ours will
do. The drawback to using finer topologies is that the restricted games
Kemployed became less parsimonious approximations, or conversely that a
"reasonable” collection of restricted games is less likely to be sufficiently

good approximation.

5. Mixed Strategiles

In this section we show that an analog of the limit theorem holds for
mixed-strategy equilibrium as well. Of course the space of probability
measured over a strategy space can itself be viewed as a strategy space, and
so theorem (4.1) can be directly applied. The point of this section 1s that
it suffices to know that the restricted pure strategy spaces approximate S
to know that the set of mixed—-strategy equilibria coincides with the set of
limits of mixed-strategy e—equilibria of the restricted games. This section
also relates our work to that of Wald [1947] on the existence of minimax
values,

In order to define mixed strategies, that is»to introduce probability

measures over the Si’ it will be convenient to topologize the Si directly.
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Definition (5.1): The distance between two strategies of player 1, si,t1 €

Si, is
a(s t,) = sup max 'nj(s h,) - wj(t h )l
i*71 h €S jel 174 R R
-1 -1
Thus &(si,ti) measures the greatest difference it would make to amy player

if pléyer i wused s; instead of ty.

Definition (5.2): The inherent product topology on S 1is the product

topology induced when each of the Si is topologized by &.
Remark: The inherent product topology is finer than the inherent topology.

Remark: For a two—-person zero—sum game d(si’ti) reduces to

sup 'ni(sih_i) - wi(ti,h_i)|. this 1s Wald's "intrinsic distance”.

h ,eS
1 Ail topological statements in this section only will be with respect to

the inherent product topology. For this section only we will also make

Assumption (5.1): Each 5y 1is separable, that 1s, each S; has a countable

dense subset.

Let By be the Borel algebra on Sy, and let 52 be the space of
probability measures on By. S 1is given the product algebra B, and

&= x 81'2 We endow & with the topology of weak convergence.3 Let
i

ni(sl,,..,sn) denote player 1i's expected payoff to an n—tuple of mixed

strategles.

i i 4
T (815000,8 ) = [ oo [ m (sl,...,sn) dsy,ees,ds .
S1 Sn
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Corresponding to a restricted game RD S we have the restricted mixed-
strategy game R° & created by replacing Sq with the space of
probability measures over R%,

i

Proposition (5.1): Suppose {RP} approximates S, each R% is countable,

and rn € Rn. Then

(A) If the r® are mixed strategy e"-equilibria relative to H* with

€' » e and "+ s e S then s is a mixed strategy e-equilibrium.

(B) If s e S 1s a mixed strategy e—equilibrium and r® + s then

n

there is a sequence ¢® + ¢ such that the r are mixed strategy

e'-equilibria relative to gg".

Proof: See Appendix.

Proposition (5.2): Suppose eachi Sy 1s compact — then S has a (mixed-

strategy) equilibrium.

Proof: 1f S; is compact (W.r.t d) 1t 1is totally bounded.

That is, for any e® there 1s a finite set R: of elements of S; such that

every element of S; 1is within €° of some element of R;. Clearly the
R? approximate S. Every R® 4is finite so it has a mixed-strategy
equilibrium r®. As S 1is a compact metric space S 1is compact and we can

take a convergent subsequence and apply Proposition (5.1)(A).5

-

As Nash equilibrium payoffs are minimax in two-person zero—sum games, we have
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Proposition (5.3) (Wald): Let S be a two-person zero—sum game. If §; is

compact (w.r.t. d.) then S has a minimax value.

6. Finite-Horizon Approximations to Infinite Horizon Games

. Let Ay be a set of actions for player 1. A strategy for player 1 is

a sequence of mapplngs s, = (si,si,...) where si € Ai and for t > 1

si: (xAi)t-1,+ Ai' The strategy space for 1, §;, 1is a subset of the space
i

of all such sequences of mappings which may incorporate various restrictions
such as if player two placed a, last periodlthen player one can't play
aj. However, we assume that there is a designated "null” action ;i for each

player which is always feasible so that if 8 € S1 then (si,...,s;,

- ~

ai,ai,...) £ Si' _

We approximate S with a collection of finite horizon games. Define

n
Ri 1

in all periods after n., Clearly R® will only be a good approximation of

= {si € Sils: =a, for t > n}, so that players must play the null action

S if events after period n are relatively unimportant.

Definition (6.1): 7' is continuous at infinity if

lim sup Ini(s) - ni(g)l + 0.

T+ §,8 S.t. (sl,...sT) = (x ,...,ET)

While continuity at infinity is a strong requirement it is satisfied by many

games of interest to economists.

Proposition (6.1): In an infinite-horizon game S, if the ni are

continuous at infinity then for every subsequence of finite horizon games
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n. n
{R k}, U R K is demse in S. Thus the limit theorem and its corollaries
apply.

Proof: Obvious.

This proposition generalizes our earlier result, which required an
additional continuity assumption on the payoffs, because we employed a finer
gopology.

As an example consider the repeated Prisoner's dilemma with discount
factor 0 < p <1 with two players and action spaces Ai = {cheat, don't
cheat} and payoff 1 to both if both cheat; 2 to both if neither cheat
and 3 to a player who cheats when his rival doesn't and O to the rival.

‘The strategy spaces Sy are unrestricted. The null action &i can be taken
to be "cheat”., If p > 1/2 so that it doesn't pay to cheat for a single
period it is well known (and triviai to show) that in S the "cooperative”
strategy "don't cheat if cheating has never occurred, otherwise cheat forever”
is an equilibriﬁm. However, in R® n < » every equilibrium requires that
both players cheat in every period. What is true is that the "cooperative”
strategy is an e"-equilibrium with €% » 0; indeed €" 1s the cost of
failing to cheat when it becomes optimal to do so. In addition the limit of
the finite equilibria “"cheat no matter what™ is an equilibrium in the infinite
game,

This example illustrates the content of the limit theorem. Every
infinite horizon equilibrium is the limit of e"-equilibria with
1lim en,+ 0; every limit of sn—equilibria satisfying this condition is an
.?;;1nite horizon equilibrium. However, as the example clearly shows, there

may not be any O-equilibria in R? which converge to a given equilibrium

in S; e’ >0 may be required.
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A deeper discussion of the finite to infinite horizon case can be found
in Fudenberg/Levine [1982] in which we discuss sequential equilibria with
incomplete information, and give applications to the existence and uniqueness

of infinite horizon equilibrium.

7. Open-Loop Equilibrium

We now suppose that Si are Lebesgue measurable functions on [0,1]
into R® representing a time path of actions. Payoffs wi = S + R are
assumed continuous in the L; norm. We define RP to be functions which are
constant between lattice points —— that is, on [k/n,(k+l)/n]. Since these
functions are dense in the Ll - norm {Rp} approximates S and the 1limit
theorem holds.

The space S demonstrates a possible limitation of the limit theorem:
S isn't compact and as a result a éequence of restricted equilibria may not
convergé to anything at all. For exémple the sequence of restricted

strategies

(7.1) sl(k/n) = 1  k even

-1 k odd

simply does not have a limit. This is the "chattering” problem and can arise
even in continuous time control problems. One solution that works for control
problems is to define "chattering” controls —— simply define "{dealized™ or
"generalized” functions as the limit of sequences such as (6.1).

Unfortunately this "solution" doesn't appear tb work when there is more than

one player and the chattering problem continues to pose an unsolved challenge

for game theory.
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Footnotes

lye would 1ike to thank Sylvain Sorain for bringing this literature to
our attention.
2Because each Si is separable B = XBi. (See, e.g., Hildebrand

[1974]).

3un + u  "weakly" if ffdun + [dfy for every bounded and uniformly

continuous function f£f.

4As ﬂi is continuous and bounded, the expected payoff is well-defined
by Fubini's theorem. See Hildenbrand [1974].

SWhile this is a consequence of the Alaoglu theorem, in the present

"context it is interesting to note that Wald [1947] gives a direct proof.
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Appendix

Proof of Proposition (5.1)

Let (r?l,...,r?j,...) be the elements of R?, but let

= n
v S:gg :nin d(xi,ri). As R" approximates S w, o 0. Let

(Tgl,...,T?;,%..) be a collection of measurable mutually disjoint subsets

of Sy such that T0. contains the jth element of R., the diameter of

1§ 1°
n n o _ n
each Tij is at most w,, and , Tij Si' [Because R® 1is countable
such a partition exists.] For any hi € R? let hi(n) denote the
probability measure defined by hi(n)(r?j) = hi(T?j). Clearly
(D) |« (b, (n),s_;) - wi(h,,8_,)| <w¥s_, e5_,.
* i -1 i°7-1 n -i -1

Proof of part (A):

Suppose s were not an e-equilibrium. Then there would be a player

hi € Si’

and ni is bounded and uniformly continuous on S, we have

on & > 0 such that wi(hi,s_i) > ni(s) + ¢+ 6. Since r® + s,

(A.2) o |t egme_) - wth @), )] > 0
(A.3) |wi(rn) - ni(s)l > 0,
Combining (A.1l), (A.2) and (A.3), we have

-

ni(hi(n),rgi) - ni(rn) > wi(s) > e 6.

This contradicts r* on’ sn-equilibrium with € + 0.
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Proof of part (B):

Let 8 be an e€-equilibrium and ® + s.  Then
i n i
(A.4) ¥.,h w (hy,r_,) + v (hy,8_)e
Combining (A.3) and (A.4), ¥4, hys

th ey - d ™ > rlhy e ) - wi(e) <k

Thus there is a sequence e » ¢ such that r% is an sn-equilibrium.



