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EQUILIBRIUM CONCEPTS IN GAME THEORY:

THE NEED FOR DYNAMICS

Abstract

The “"Nash equilibrium” or "equilibrium point” solution concept (here

called the Nonstrategic Equilibrium NE) 1is badly flawed. The players must

be myopic, unstrategic actors or else they both count on having the last
move. Either rationale represents an unacceptable implicit dynamic process.
Any eligible process requires rationality on the part of each player, and
consistent rules of play: such a process, together with a given game matrix
of outcomes, leads to a Dynamically Rational Equilibrium (DRE). Among the
elements needed to specify the dynamic process are the initial status quo
position (4s it a clean slate, or some particular initial strategy—pair?), the
sequence of moves (do the players move alternately or gimultaneously?), and
the termination rules (who may end the haggling process, and under what
conditions?).

Two types of termination rules were analyzed in detail. (1) Exogenously

fixed termination: Here the DRE is always perfectly determinate in the

alternating-move game — sometimes to the advantage of the last-mover,
sometimes not — but the simultaneous-move game may not always have a

determinate DRE. (2) “Natural” termination: This occurs when both parties

are satisfied to pass rather than switch. Under natural termination, the
“trap” outcome of the Prisoﬁers' Dilemma is not always the DRE; in
particular, the efficient outcome will be the DRE for any status quo
position in the simultaneous-move game, and for the clean-slate status quo in

the alternating-move game.
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EQUILIBRIUM CONCEPTS IN GAME THEORY:

THE NEED FOR DYNAMICS

I will be contending that some of the standard solution concepts of "non-
cooperative” game theory are defective or misuaderstood, for lack of credible
dynanmics. To ask if a proposed solution is an equilibrium requires us to look

at the processes leading toward or away from that outcome. In particular, I

will maintain, eligible processes must involve (a) rational decision-making
for individuals in a strategic context and (b) mutual consistency among the
assumed behaviors of the opposed players.

My objective here has certain parallels with some older and some more
recent discussions — including Schelling [1960], Rapoport and Guyer [1966],
Stein [1980], Fiorina and Shepsle [1982], and Dixit [1982]. But for lack of
spaqg-I will go back to first principles rather than attempt a critical
comparative analysis. (Some specific points of difference will be indicated

below as they arise.)

A. Nonstrategic Equilibrium (NE)

What I will call here the Nonstrategic Equilibrium (NE) —— more usually

known as the "Nash equilibrium,” or sometimes as the "equilibrium point™ — 18
the best-known solution concept. Formally, an outcome is an NE {f the
payoff to the Row player R 1s the highest in its column while the payoff to
the Column player C 1s the highest in its row. Thus, at least in the short
run, each decision-maker can only lose by revising his chosen strategy (his

“try", I will sometimes say). I will usually be assuming, for simplicity,



each should be saying to himself: "If I do this, he might do that, so I ought
toesss" A solution principle that fails to take account of strategic behavfor
is inconsistent with the raison d'etre of game theory.

It is difficult even to imagine any dynamic process that might actually
lead to the NE solution. Here is one attempt. Let Fate arbitrarily
prescribe initial tries for each player, establishing a status quo position.
Each player is then told: "You can change your try if you like, but don't
worry about your opponent's reaction — he is locked in.” Obviously, the
statements being made to the two players are inconsistent (the second
eligibility principle is violated). Should either party accept the offer and
actually switch, therefore, Fate has to renege; the game is called off. Fate
repeats this process (the players being memory-less) enough times to cover all
the possible strategy-pairs as initial status—quo positions. Those strategy-
pairs that survive the ordeal, that is, such that neither player accepts the
offer to change, are the NE's. Not very plausible, is 1it? Here's a
variant. Starting as before suppose that, should either player change his
try, instead of calling the game off Fate says to the other: "I lied to that
player who just switched his strategy — you are not locked in after all, and
have the option of anothér try. But trust me, your opponent is now locked
in.” Of course, should this other player now accept the offer and make a
change, Fate then goes back to the first party with the same story. The game
ends when both players in succession, each believing the tale, pass rather
than switch. Not a much more credible dynamic than the other!

The NE 1is plausible only for contexts where the participants are unable

to behave strategically. One example might be interactions between organisms



MATRIX 2 [42] MATRIX 3 [61]

Row-Dominance Double Trouble

*3,3 4,1 *4,4 1,3
2,2 1,4 3,1 *2,2

B. Safety Equilibrium (SE) and the Saddle-Point Condition

In elementary presentations of game theory, the tale usually starts with
the constant—-sum game and two opponents who seem rather over—concerned with
playing safe. The Row player R 1is supposed to look for the row guaranteeing
him the greatest minimum payoff (the maximum of the row minima). And
similarly the Column player C 1looks for the maximum of the colugn m:lnima.4
Of course, for both players so to behave would be just as unreasonable as the
decigions implicit in the NE. The Nonstrategic Equilibrium NE corresponds
to two generals each of whom always underestimates his enemy, thinking him
incapable of intelligent maneuver. In contrast, the Safety Equilibrium SE
corresponds to over-cautious generals, each of whom gives the enemy credit for
unlimited ability to opt{mally couhter his own move.

Actually, however, the usual verbal tale 1is quite misleading. It
generally serves only as a steppingstone toward the "saddle-point” solution,

which in general is not the SE. Compare Matrices 4 and 5 below:

4The usual presentation begins with the zero—sum case where only the
payoffs for R need be shown, C's payoffs being the negative of these. C
would then be described as looking for the minimum of the column maxima. To
avoid confusion, and as the zero-sum game is rarely important here, I will
always indicate the payoffs for the two parties explicitly.



the converse does not hold, the dubious tale about the over-cautious generals
was entirely beside the point. If the saddle-point condition is to be the
criterion in the constant-sum game, we might as well have started right off
looking for the Nonstrategic Equilibrium NE,

For the non-constant-sum game, the picture is entirely different. First
of all, the NE solution need not be unique. And if the saddle-point concept
is generalized to the non-constant—sum case, So as to refer as before to an
SE solution where the two safety levels are actually achieved, then an NE
(whether or not unique) need not be a saddle-point. Matrix 6 below is an
example. It has two NE's (marked *), a single SE (marked #) distinct
from either of these, and furthermore the SE 1s a saddle-point (marked %)

while the NE's are not!

MATRIX 6 [68]
*3,4 , 2,2#%

1,1 *4,3

I conclude that there is nothing intrinsically compelling about either
the Nonstrategic Equilibrium NE or the Safety Equilibrium SE (whether or
not incorporating the saddle-point feature). Nor do these have any general
tendency to coincide (except for the constant-sum case where NE ﬁnd saddle-
point are equivalent). To arrive at a satisfying solution concept we will

have to pay serious attention to the dynamic processes; solutions cannot

cell (r'",c'™) 1in the same row as (c',c') and the same column as

(r",c"). Using the constant—-sum property, > r' implies c' > c% And

c® > ¢" implies r" > r°. And so 1f (r'",c'") 1is also an NE, then r'" >
" >r® and c¢' > ¢' > c® But since r'" +c'" = 1%+ c% this is a
contradiction. Hence there cannot be a second NE. (This proof, while it
applies only to the constant-sum case, is not limited to 2x2 games.)



every possible strategy-pair in turn) is the status quo.7 The two cases are
quite different. For one thing, an equilibrium might be retentive though not
attractive: once there you stay there, but starting anywhere else you don't
get there.8

2. The sequentiality procedure

There are two main cases: the players may move (choose tries) in
alternation or simultaneously. But even if you move later in time than your
opponent, if your choice of try must be made in ignorance of his you are
really moving simultaneously from the decisional point of view. This opens up
the possibility of intermediate cases, where you have some but only partial
{nformation as to the other's preceding try. (For example, if he has options
1,2,3 you may be able to observe whenever he chooses 3 but be unable to
distinguish between his 1 and 2,) As another intermediate case, thefe might
be switches between simultaneous and alternating moves for successive rounds
of play. I will deal here only with the two polar cases: strict alternation
versus strict simultaneity.

3. The rules for termination

Here there are an indefinite number of distinguishable and interesting
possibilities. The following suggests some of the major categories.

(1) Fixed termination: How the game ends may be established by some

exogenously pre-ordained formula. An example for an alternation game: "“Row

has a try, then Column, then Row once more — after which play ends.” (But I

7Compare my attempt above to find a plausible dynamic for the NE.
Rapoport and Guyer [1966], p. 206, were also led to such an assumption in
attempting to arrive at a concept of stability: ".+.the players will be
assumed to play the game after the outcome of the initial game is known."

85ee Fiorina and Shepsle [1982].



11

D. Principle of Solution

Having built this foundation, I can finally begin to discuss solutions:
Of course, there are too many distinguishable possibilities for completeness
to be a practical goal.9 After a brief discussion of the principles of
gsolution here, I will go on to slice away at the Gordian knot of possibilities
in a number of directions. Specifically, I will examine some special
important game matrices that warrant detailed treatment (e.g., Prisoners'
Dilemma), and some classes of termination rules that are amenable to
generalized solutions.

The main principles of solution were suggested in the opening

discussion. Any acceptable solution must involve: (a) individually rational

play: each player maximizes his payoff, and is fully able to compute even
very long and multiple chains of possibilities (on the order of “If I do this

and then he does that....”) (b) Consistency of the dynamic process: Not

only the players but the process must make sense. For example, both players

cannot be given the last move. This elementary condition, as already seen,

invalidates the usual dynamic offered for the Nonstrategic Equilibrium NE.

(c) Adequate knowledge: I will assume throughout that the rules of play are

fully known to both parties, as is the underlying game matrix. The history of
tries on previous rounds will also be assumed known.

In addition, I will be ruling out threat or promise strategies, in which
one party commits himself in advance to choose one option or another depending

upon his opponent's next move (see Schelling [1960], ésp. Ch. 5). Of course 1

9The essentially unlimited number of distinguishable dynaaic processes
has just been indicated. As for the normal-form game matrices, Rapoport and
Guyer [1966] show that there are 78 logically distinct 2x2 gaomes under
strict preference ordering. This number grows explosively as more strategies
are allowed each player, and ditto as more players are admitted.
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there is a completely determinate outcome on the final move. But then, given
the information-adequacy assumption, the player with the next-to-last try can
also directly optimize. (This player is behaving strategically, in that he
allows for reaction on the part of the other, but now that reaction is
perfectly predictable.) This logic continues to apply all the way back to the

very first move of the game. Accordingly, in fixed-termination, alternating-

move games the DRE is wholly determinate.

While this procedure is of the simplest, some of the results may be a bit

surprising. For one thing, it is easy to demonstrate that it may not pay a

player to follow a "dominant” strategy of the basic underlying game. In

Matrix 7, Row's Rl is his dominant strategy. Suppose the termination rule
gives Column the last try. If Row chooses Rl, then if Column plays
rationally the outcome Qill be (R1,Cl1) where Row receives 2. This is also
the NE, as indicated by the symbol *. But should Row choose R2 instead,
the outcome when Column plays rationally (indicated by the symbol +) is at
(R2,C2), where Row receives 3! So (R2,C2) is the DRE solution under the
dynamic process just described. Thus, at least for some dynamic processes one
can do better following a "dominated” strategy.lo And we have also seen, in

passing, that the DRE solution may be quite distinct from any NE's that

1ORapoport and Guyer [1966, p. 207] make a similar point: they say that,
for certain game matrices (among them Matrix 7 here), the NE 1is "force-
vulnerable” and so not fully stable. By diverging from his dominant-
strategy NE, a player might be able to coerce the opponent into a consequent
change benefiting the initial diverger. But since R&G never actually
gspecify the dynamics they have in mind, it remains unclear whether the initial
divergence would actually lead to the desired outcome. A similar objection
can be raised to the related development by Stein [1980, pp. 65ff]. My
analysis of the Matrix 7 case shows that, under the specified dynamic (Row
moves first, then Column has the last try) it is indeed rational for Row to
diverge from his "dominant” strategy. But for other possible dynamic
processes, for example if Row could move again after Column's move, such a
divergence would be a mistake. :
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last move.

The situation is quite different in Matrix 9 (which is an inessential
transposition of the earlier Matrix 4). If Column has the last move, Row's
best prior choice is R2. This leads to the outcome (R2,C2) where Row
receives only 2 and Column 3. If Row instead has the last move, Column's best
prior choice is C2. But then Row can select the outcome (R1,C2) where Row
receives 3 and Column only 2. So here the last-trier has the advantage.

Interpreting these results, notice that in Matrix 8 the players'
interests are more allied than in conflict. Hence the non-terminating player
can rely on the fact that the terminator must automatically‘help his opponent
in trying to help himself. In consequence the former will often find it
possible, as in Battle of the Sexes, to capture more of the mutual gain.l1 By
contrast, in Matrix 9 the players' interests are much more opposed. (In fact,
Matrix 9 is constant-sum.) Here the terminating player, in helping himself on
the final move, will tend to injure his opponent, so the non-terminator may be
forced to settle for a "safe"” but relatively unsatisfactory intermediate
payoff. |

One other game worthy of special note here 1s Chicken (Matrix 10). It
will be easy to verify that Chicken is like Battle of the Sexes in that the

last-mover is at a disadvantage.

MATRIX 10 [66]
Chicken
3,3 *2 .4

*4,2 1,1

1oy this see also Schelling [1960], p. 143.
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as the correct DRE solution at (R2,C2) of the original game.

Nevertheless the solution principle here —— "Allow the final-mover to
have contingent (follow vs, diverge) strategies, and find the NE of the
matrix thus enlarged” -- 18 not really satisfactory. First of all, it
compounds the essential illogic of the NE, Where the NE 1in the basic game
has each player acting as if he had the last move, the NE in‘the expanded

game has each player acting as if he had the last choice of strategy. (Once

contingency is allowed for, a strategy becomes more than a move.) In
particular, the C3 (follower) strategy for Column that enters into the NE

of the expanded game is not distinguishable observationally by Row from

whichever of the simple strategies Cl or C2 1is applicable. If Row
chooses Rl, Column's C3 in the expanded game requires playing Cl of the
basic game in response — and Row has no way of knowing whether it is C3

or Cl of the expanded game that represents Column's true strategy. In

short, Column in choosing C3 1is attributing to Row the ability to respond
optimally not just to a move Column has not yet made but to a strategy that
Row could not uniquely distinguish even if he knew Column's move.

Secondly, the strategy directive for the last-mover in the NE of the
expanded game 1s conceptually misleading. The C3 column of Matrix 7A only
accidentally, so to speak, represents a "follower" strategy. The better

description is that, being the last-mover in a terminating game Column is in a

position to engage in simple optimization, and it happens to be the case here
that last-move—optimizing corresponds to "follower” behavior (C3). But with
other game matrices it might correspond to any of the columns® Cl through
C4, The universal principle "last mover simply optimizes” is a more
economical and more accurate description, even in the 2x2 case, tﬁan "find

the behavior associated with the NE of the game matrix expanded by aliowing
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MATRIX 3 MATRIX 3A
Double Trouble Matrix 3, with
(Dynamic process: Column Added Contingent Strategies
has last move)
¢, C, C3 Cq
+*4,4 1,3 *4,4 1,3 *4,4 1,3
3,1 *2,2 3,1 *2,2 2,2 3,1

There are two NE's (marked * as usual) in the underlying game matrix.
With Column the last-mover, it is evident that (R1,Cl) — the mutually
preferred of the two NE's — becomes the DRE (marked +). What about the
expanded Matrix 3A? As can be seen, not only do both the correct and the
fncorrect NE's of the original Matrix reappear but a third NE éops up as
welll So the expanded-matrix technique implies :lndeterm:l.nacyl4 in what 1is an
entirely straightforward case: Row should pick Rl in the basic matrix,
Column's simple-optimizing final-move response is Cl, and they both end up
with their most-desired payoff.

‘2. Simultaneous moves

A sketchier treatment will suffice for the fixed-terminationm,
simultaneous-move case. Here on the last (joint) try each player will simply
optimize; thére 1s no point doing anything else, since the other player will
not be in a position to react. (And, since previous moves do not represent

any kind of commitment, ouly the last try need be considered in finding the

l4o¢ course, the subgame-perfection criterion might then be applied.
This would reduce but not eliminate the indeterminacy. In Matrix 3A both
(rR1,C1) and (R1,C3) are subgame-perfect equilibria in the expanded-strategy
matrix, a needless complication since they both correspond to (R1,Cl) in
terms of moves.
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outcomes, which leaves only 15 of the 78 matrices unaccounted for. These 15
cases remaining, including such famous games as Battle of the Sexes (Matrixf8)

and Chicken (Matrix 10), do not have a determinate pure-strategy DRE 1in the

fixed-termination simultaneous-move game.

F. "Natural” Termination

A dynamic process “naturally” terminates when neither player wishes to
change his move. Once again the equilibria of the alternating-move and
simultaneous-move games differ, as will be explained below. To keep length
within reasonable bounds, in this section I will discuss only Prisoners'
Dilemma -- with emphasis upon the possibility of escaping the famous “trap”
solution in which the players end up at a mutually inferior outcome.

1. Alternating moves

In the alternating-move game, once the dynamic process -- the haggling —
is well under way the game naturally terminates when any player passes. The
start-up condition also has to be specified, however. If the game starts with
a cléan-slate status quo, a pass in the first round is not neaningful — to
initialize play, each party has first to choose a row or column, as the case
may be. If on the other hand the status quo is some particular cell of the
matrix (an exogenously specified initial strategy-pair), the first-mover could
pass. But consistent with the previous discussions, the game will not be
considered to have ended until the second-trier also has a chance to mske a
choice of move. Summing up: “natural” termination of the alternating-wove
game occurs when either party passes after both players have had at least one
try.

Fig. 1 pictures the considerations bearing upon equilibriua under

"natural® termination of the alternating-move Prisoners' Dilemma. The four
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is retentive for Column, but once again neither of these 1s attractive. So it
appears, everything points to a termination at 2,2 -- the "trap” of the
Prisoners' Dilemma.

So far, this dynamic analysis supports the traditiomal solution for the
Prisoners' Dilemma: a solution that is not only doubly dominant in strategies
but also constitutes a Nonstrategic Equilibrium NE, a Safety Equilibrium
SE, and a saddle-point all at once.15 Nevertheless, the "natural”
termination process turns out not always to confirm this solution.

For the alternating-move game, we have not yet taken the start—-up cycle
into account. The efficient 3,3 outcome for the Prisoners' Dilemma, though
not attractive, is retentive. Consequently, if it were the initial status quo
neither player would have any incentive to switch away from it. Suppose
Column were to make the switch from 3,3 to 1,4. Then Row could
advantageously "punish” him by switching in turn to the trap outcome 2,2.16

Next consider the asymmetrical 1,4 outcome as a status quo position.
Row would of course prefer to stick at 1,4. But since the start-up procedure
requires that both players pass, this initial position leads ine§itab1y toward
the 2,2 trap. The same holds for 4,1 as the initial status quo. And, of
course, the trap itself is fully retentivé were it the status quo. Summing
up: all roads from initial status quo positions do lead toward the trap,
except for start-up at the efficient outcome 3,3.

What about the clean-slate status quo? Here the result is quite

different. Each player will realize that, should either diverge in the start-

15Also, as seen above, the traditional solution holds for both the
alternating-move and simultaneous—-move games under fixed termination.

16'1'he efficient (3,3) outcome of the Prisoners' Dilemma is therefore a
“reactive equilibrium” in the sense of Riley [1979b].
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gwitch on his next try, and similarly Column has no hope of ever achieving
1,4.)

Under this dynamic, should the players ever find themselves away from
the 3,3 position — whether as an initial status quo, or as the consequence
of mistaken play earlier on —— they can easily locate a path back to the
efficient outcome. From the 2,2 "trap” position, for example, as just
explained each should attempt to switch toward the efficient outcome — and,
if they each make the attempt, they will succeed. And of course either of the
asymmetrical outcomes will alwgzs cause the aggrieved player to switch. So in
general for the natural-termination, simultaneous-move game the Prisoners'
Dilemma "trap” is ineffective; the efficient outcome will be achieved as the
DRE, 17

As an overall conciusion, then, consideration of alternative dynamic

processes reveals that the Prisoners' Dilemma trap is by no means such an

17Considerab1e attention has been paid lately to a particular contingent
strategy called TIT FOR TAT as being optimal for playing the (simultaneous)
Prisoners' Dilemma. In TIT FOR TAT each player engages in "good behavior™ on
his first try, but thereafter will do unto his opponent as his opponent did
toward him on the preceding try (see Axelrod & Hamilton {1981], who credit the
strategy to Anatol Rapoport). This strategy is usually described in the
context of a repeated game. One example would be where two players, who
receive on each round of play the actual payoff outcomes dictated by their
strategy choices, know that there is also a certain fixed probability each
time of the game being renewed for another round. TIT FOR TAT turned out to
do quite well against other proposed strategies in a "contest” with the
following environment: a large number of players, meeting pairwise at random,
but where each has a certain fixed probability of re-meeting (and thereby
being in a position to reward or punish) a partner in a preceding
engagement. Neither of these contexts corresponds to that discussed here.
The assumption here is that there will be only one round of actual play, so
that the one-time payoffs will be those indicated by some one of the four
cells of the basic underlying Prisoners' Dilemma matrix. If there is any
repetitive aspect here, it has been in the dynamic haggling process — not in
the payoffs. (TIT FOR TAT might in some "non-computable” cases turn out to be
a good haggling technique, but all the dynamics considered here have been
simple enough for the players to find the DRE by a direct reasoning
process.)
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— for example, a retentive equilibrium is not always attractive and vice
versa.

3., Among the elements needed to specify the dynamic process are: (i)
The status quo position — is it a clean slate, or some particular initial
strategy-pair? (ii) The sequentiality procedure — do the players move
alternately or simultaneously? (iii) The termination rules — who may
terminate the haggling process, and under what conditions?

4., Suppose termination 1is f}ggg.by some preordained formula (e.g., the
gameﬁends after two rounds of tries for each player). It turn out that, for

all alternating-move games, the DRE 1is perfectly determinate! (The question

of when the advantage lies with or against the last-mover is of considerable
interest.) When moves are simultaneous, however, the DRE remains
{ndeterminate for a number of game matrices —- including such famous ones as
Battle of the Sexes and Chicken.

5. The concept of "natural” termination seems to be an important idea
overlooked in standard game theory. A game is said to naturally terminate
whe; (after each player has had at least one try) either player chooses to
pass rather than switch in the alternating-move game, or both players do so in
the simultaneous-move game. Under natural termination, the "trap” solution of
the Prisoners' Dilemma turn out not to be the DRE 1in a considerable range of
cases. And in particular, for the simultaneous-move game, the efficient

rather than the trap outcome will always be the DRE,
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