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COMPETITIVE SIGNALLING RECONSIDERED

John G, Riley

In markets where product quality is diffuse and verification by buyers at
the time of purchase is costly, sellers have an incentive to seek some
indirect means of signalling high quality products. As emphasized by Spence,
any activity that has a lower marginal cost for a seller of a higher quality
product can act as a potential signal. However, with free entry and
competition not only over price but also over signals, there is, in general,
no Nash equiiibrium.

In this paper it is argued that, if the Spencian model is modified in one
simple way, then it 1s possible to derive conditions under wﬁich there is a
unique Nash equilibrium. Essentially, for a given distribution of types of
sellers, a Nash equilibrium obtains as long as the rate at which the marginal
cost of signalling declines across types is sufficiently large.

The results are then applied to models of labor and insurance markets,



The large and rapidly growing literature on principal-agent problems is
conveniently divided into papers which focus on problems of hidden actions and
those which focus on problems of hidden knowledge. The latter are also
naturally divided into studies of incentive schemes in which the principal is
a monopolist1 and those in which a large number of principals compete for
agents' services. Here we focus on the many principal-many agent problem when
knowledge is hidden.

The first formal discussion of the issues 1s provided by Spence [1973],
who examines markets in which sellers (agents) have private information about
the quality of their products. There is also some activity which is less
costly for sellers with higher quality products. Recognizing that this
activity is a potential "signal” of product quality, buyers pay a premium for
higher levels of the signal.

Spence modelled all market participants as price takers. Each seller
observes the market return to signalling and chooses that signal which is
individually optimal. In equilibrium, all those buyers making trades based on
signals find that their prior beliefs are confirmed ex post.

While very much in the spirit of traditional .Walrasian, "price taking",
models, the conclusion that emerges is strikingly different. Instead of there
being a unique equilibrium (or possibly a finite set of equilibria), Spence
shows that market signalling equilibria form a continuum.

More recent papers by Rothschild and Stiglitz [1976] and Riley [1975,
1979a] make it clear that this result is critically linked to the price taking
assumption. In the traditional full information equilibrium, each agent is
small relative to the markets in which he trades and there is no incentive to
attempt price competition — hence the price taking assumption. However, with

the externality that underlies a market signalling equilibrium, it is no



longer necessarily the case that price taking behavior is individually
rational for all market participants.

Focussing on the application of signalling to the purchase of insurance,
Rothschild and Stiglitz consider the simplest case of two types of agents —
high and low risk. They show that unless the proportion of high risk types is
sufficiently great, all the "Walrasian" signalling equilibria are unstable.
That is, there is always some alternative opportunity open to a buyer which,
in the absence of reactions by other buyers, generates strictly greater
expected profits. Equivalently if the market is modelled as a noncooperative
game, in which the buyers (principals) first announce what they will pay for
different levels of the signal, and sellers (agents) then respond, there is no
Nasﬁ equilibrium in pure strategies.2

My own papers focus primaril} én the opposite polar case — a continuum
of agents. Adopting the game theoretic terminology, a central conclusion is
that nonexistence 1s generic in the class of models considered by Spence. In
particular raising the price offered to those choosing the lowest observed
level of the signal is always profitable. Moreover, price competition may be
profitable at higher levels of the signal as well.

There have been several attempts to overcome this failure to explain
signalling behavior. Each of these bullds on a paper by Wilson [1977] which
begins with the premise that agents will anticipate the responses of others
when they consider new actions. The least demanding of the alternative
equilibrium concepts is the "reactive equilibrium."3 Loosely, a set of
strategies s¥* ,sg for n competing agents is a reactive equililbrium if
two conditions are satisfied. First, for any agent 1 and any alternative

strategy sy which raises 1i's payoff there is another agent j who can

benefit by reacting at the expense of agent 1. Second, there is no further



reaction by a further agent which can make agent j's reacfions unprofitable.
The idea then, is that agent 1 will recognize agent j's clear incentive to
react and therefore be deterred from choosing 8; rather than s¥%.

As argued in Riley [1979a], of the sets of signal-~price contracts which
separate out the different types of agents, there is a unique Pareto dominat-
ing set and this is a reactive equilibrium. Moreover, there can be no
reactive equilibrium in which high quality-low signalling cost agents are
pooled with low quality-high signalling cost agents. Thus the reactive
equilibrium is unique.

While the assumption of this greater level of sophistication is plausible
for some applications of the theory, there are other applications for which it
is possible to take a more skeptical view. Thus in this paper an alternative
way out of the nonexistence dilemma is examined. Instead of modifying the
equilibrium concept, the route chosen is the adaption of the model itself. It
is argued that, despite the negative conclusions of the published literature,
there is a family of signalling models which generate an equilibrium
satisfying the strong Nash equilibrium condition that all price competition
must be unprofitable, in the absence of reactions by other price setters.

These models differ from those appearing in the literature in only one
critical way. Rather than assume that all agents would enter a particular
market in a world of perfect information it is assumed that, even in such a
world, a positive fraction of the agents would choose not to participate. In
the labor market, for example, suppose 6 ¢ [0,1] 1is the productivity of a
given type in the production of a particular commodity. Then, as long as
there is some alternative job opportunity offering any worker a wage w, only

A

those for whom 6 > Wy have an incentive to produce this commodity.



Similarly, in the signalling of project quality by insider stockholding
(Leland and Pyle [1980]) and the signalling of loan quality by collateral or
loan size (Bestor [1984], Milde and Riley [1984]), those entrepreneurs with
sufficiently low quality offerings would not be financed in a world of cost-—
less information about quality.

Even in insurance markets, with perfect information about loss
probabilities, nonparticipation will often be plausible., Under fair
insurance, the risk of loss L with probability p will be fully covered by
a premium pL. Then those with sufficiently high probabilities of loss may be
better off not undertaking the risky activity.

This simple modification of the basic Spencian model is important because
it éliminates the profitability of price competition at the lowest observed
level of the signal. The primary focus of the paper is then to seek out
conditions under which price competition is also unprofitable at higher levels
of the signal. As Spence emphasized, an activity is a potential signal if it
18 less costly for those agents selling products with a higher quality
product. The central result of this paper is that if the proportional rate of
decrease with respect to quality, of the marginal cost of signalling is suffi-
ciently high, there exists a Nash equilibrium. That is, price competition is
never profitable.

The paper is organized as follows. Section I lays out a principal agent
model with hidden knowledge. Section II examines, in detail, a simple discrete
example in which the quality of the product traded is independent of the level
of the signal. This is essentially Spence's earliest model of a labor market,
with education providing information but not increasing marginal productivity.
Section III considers the same model under the assumption of a continuum of

agents and shows that, in this limiting case as well, there are reasonable



conditions under which a Nash equilibrium exists. Section IV returns to the
discrete model and reexamines the existence question under much less stringent
assumptions. It 1s shown that the insurance market example considered by
Rothschild and Stiglitz satisfies the weaker assumptions and the conditions
under which a Nash equilibrium exists are then explored. It is argued that,
as long as the probability of loss is sufficiently low for all types willing

to obtain fair insurance, these conditions are likely to be met.

I. A Many Principal-Many Agent Model With Hidden Knowledge

Consider a market in which each of the set of potential sellers (agents)
can provide one unit of a commodity or service. Sellers can also choose the
level, s, at which to engage in some sales related activity, that is, to
“signal.” Differences among selleré are assumed to be parametrizable by a
single hidden characteristic 6 € ©. Then we shall refer to an agent as being
of "type 6." |

A contract <s,r> between a buyer (principal) and seller is a payment
r in return for signal level s. If a type O agent accepts <s,r> the

value of his product is V(0,s8) so that the buyer's profit is
n(6,8,r) = V(0,8) - 1. (1)

Types are parametrized so that higher levels of 8 imply higher product
value V(0,s8). It is also assumed that V is nondecreasing in s.

Preferences over alternative offers <s,r> are represented by the
utility function U(8,s,r), where U 1is increasing in the return r and
decreasing in s. For every agent there is also a mutually exclusive alter-
native to trading in this market which yields a utility level Upe

Finally we assume that the wmarginal cost of signalling, that is, the

increase in return required for an agent to be willing to increase his



signalling activity, diminishes with 6. Formally,

dr gg (6,s,r)

MC =——| =-SC decreases with ¢ (2)
U

U E(e’s’r)

Condition (2) guarantees that, for any set of offers, the choice of signal

level s(0) will be nondecreasing in 6.

II. A Simple Labor Market Example

Rather than discuss this model in abstract terms, we begin with a simple
example of labor market signalling. A type 6 worker who chooses signal

level s has a value to each of the firms in some industry of
V(6,8) = 6. . 3)

Each worker also has an opportunity to work elsewhere for a wage rp. The
cost of signalling at level s 1is C(6,8), thus the net return to type 6

if offered the wage contract <s,r> 1is
U(e,s,r) = r - C(8,s) (4)

Condition (2) then reduces simply to the requirement that the marginal cost of
signalling 3C/3s be lower for more productive workers.

As Rothschild and Stiglitz showed for the two type case, no contract
which attracts more than one type can be part of a Nash (or stable Walrasian)

equilibrium. More generally (see Wilson [1977]) we have

Proposition 1. A Nash Equilibrium contains no pools.,

Given this result we need only examine sets of contracts which separate

out all those types who choose to signal. To 8implify the analysis further we



assume there are just three types of agents so that @ = {60,61,62} we

further assume that -

60 < T, < el < 62 (5)
Each worker chooses that contract <s,r> which maximizes his net gain
U(6,s,r). Moreover, if more than one contract yields the same utility we
assume that the contract selected is the one with the lowest level of the

signal.4

One possible set of contracts which separates out the three types is the
set {Eo,El,Ez} depicted in Figure 1. Type 8g» With the steepest indiffer-
ence map, w0 - U(eo,r,s), chooses the contract Ej. Type 81> with
indifference map, Ul = U(el,r,s),. éhooses E;. Finally, type 62’ with the
least steep indifference map, U2 = U(ez,r,s), chooses Ej.

Note that only those workers with productivity exceeding ry find
signalling desirable. Thus the allocation of workers between the two
industries is efficient. Note also that the profit on each contract is
zero. Note, finally, that each type ei is indifferent between his choice
E; and the choice Eqy41 of type °1+1' A

It should therefore be intuitively clear that, of all sets of contracts
which separate out the different types, the set {EO’EI’EZ} is Pareto

efficlent. Formally, modifying only slightly arguments in Riley [1979a] and

Engers and Fernandez [1984] we have the following result.

Proposition 2. Characterization of the Pareto efficient set of separating

contracts,

Suppose the hypotheses of Section I are satisfied. Then, of all the sets

of contracts which are individually not unprofitable and separate out those
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types who signal, there is a unique set that is Pareto efficient for the
agents. This set

(1) allocates types efficiently between those who signal and those who
do not,

(11) generates zero profits on each contract,
and, if the set of types is discrete,

(i11) has the property that if E; 1is the choice of type 8y »
E, ~ E

As shown in Figure 1, {EO’EI’EZ} is not a Nash equilibrium. Note that
any offer in the vertically shaded region is attractive to types 91 and
62. Then if the average productivity of these two types, 312’ is as
depicted, any alternative offer in the interior of the heavily shaded region
is strictly profitable.

Given the distribution of types who choose to signal, the question we
wish to address here is what are the conditions under which such profitable
alternatives do not exist.

First of all, as long as the proportion of types 60, who choose not to
signal, is sufficiently large, it will never be profitable to make an offer
which attracts all three types. Given this assumption, the vertically shaded
region 1s the entire set of potentially profitable alternatives. Since the
indifference curve U(OI,S,r) = Ué. bounding this set is upward sloping, the
most profitable of these alternatives is the point D where the indifference
curves
0

U(eo,s,r) = U(eo,O,rA) = UA

, (6)
U(ez,s,r) = U(ez,sz,rz) = Ué

intersect.,



Holding fixed the preferences of type 60, we can vary D by altering
the shape of the indifference curves (6). We then seek conditions under which

ry > 612. Clearly this will be the case if

D < 92 - 912
that is, if
XD ‘ 6, - 612 _ f1
Xz 92 - 91 f1+-f2
where £; 1s the proportion of type ei in the population. Since X2

exceeds XY 1t follows that a sufficient condition for rp to exceed 3&2

is that

f
XD 1
X < £, M

From (4) and (6) we can rewrite (7) as

S
£ C(e.,s.) - C(6.,5.) sfz-a-f’-(e s)ds
1 228 2°5p)  Sp s (O

> =
f1+f2 C(el,sz) C(el,sﬁj' 8,
8 f € (8,,8)ds
D 3 72
But
. ISZ
9C aC
SD -é-g (el,S)dS ES— (92,8)
8 < max “3C . .
s z-a—c- (e s)ds se[sbsszl a—s‘ (el,s)
D as 2?

Therefore wage competition is unprofitable if
aC

35 (02:9) ‘ £ g
e < T4

—a—s— (Bl,s) 1 2

For the three type case we have therefore proved
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Proposition 3., Sufficient condition for a Nash Equilibrium

If the proportional rate of decline with 6 of the marginal cost of

3C (8,s)
as

signalling, is sufficiently large, the Pareto efficient set of

separating contracts is a Nash equilibrium.

With more than three types it should be clear that the same argument
will hold for every potential pool of two types. Actually, an almost
identical argument can be used for larger pools as well. Thus the proposition
is quite general.

What remains unclear, however, is the stringency of the sufficient
conditions as the number of types becomes large. In the next section we
provide an example with a continuum of agents and show that the sufficient

conditions can be readily satisfied in this limiting case as well.

III. Nash Equilibrium with a Continuous Distribution of Types

Consider again the simple labor market model but this time suppose that
the set of workers ¢ 1s the interval [a,b], with a < ry, < b, and the
c.d.f. for 0, F(8) 1is twice continuously differentiable and strictly
increasing over [a,b]. To focus on essentials we make a further simplifica-
tion and assume that the cost of signalling

C(9,8) = —i;
Then _9 ., 3C

( )
_ 96 acas - Z (9)

as
so that the higher is e, the larger is the proportional rate of decline of

the marginal cost of signalling.5
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From Proposition 2 we seek a set of contracts which allocates the workers
across industries efficiently, separates out all those types who signal, and
generates zero profits. Thus we seek a wage function r = W(s) such that,
s(6), which solves

Max {U(e,8,W(s)) = W(s) - -2} (10)
8 e

also satisfies
rA , e < rA

W(s(8)) = | (11)

0 s 06> r,

~

Such a wage function is illustrated in Figure 2. Type 8, observing W(s),
chooses 3(6). As required the resulting wage paid, W(s(a)), is equal to
thié worker productivity, 5.

Suppose, as we shall later confirm, W(s) is differentiable. Then, for

any type choosing a positive s we require

W'(s(8)) --é- =0

e

Combining (11) and (12) yields the ordinary differential equation

W'(s) W(s)® =1, W(0) = r,

Integrating and making use of the bounary condition we obtain

W(s) e .
/ wdw = 8 (13)
T, )
and so
1+e
W(s)1+e Ty

THe - 1+e ' 8 (14)

Before turning to the existence question it is interesting to see how the

equilibrium cost of signalling varies with e. Since, in equilibrium
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Figure 2: Pareto Efficient Separating Wage Function



12

s(8) > 0 » W(s(6)) = 8, it follows from (13) that
o e
s(0) = [wdw
0

Then the equilibrium cost of signalling for type ©
s(8) 8 w_.e
C(e,S(e)) = = ! ('_) dw .
g¢ 0 )

We therefore have

Proposition 4. Ranking Signalling Technologies

With signalling cost function C(6,s) = s/ee and productivity
independent of s, the higher is e (and hence the largeriis the propor-—-
tional rate of decline in the marginal cost of signalling), the greater is the

equilibrium return to all those signalling.

We now seek condition under which W(s), given by (14), is a Nash
equilibrium. Initially we consider only small perturbations, that is, new
wage offers in the neighborhood of the wage function W(s). First we consider
a new wage offer ; with no signal required. This is also depicted in Figure
2. Since an agent of type r, 1is just indifferent between signalling and not
signalling, his indifference curve through <0,rA> must, as depicted, be
tangential to W(s) at s = 0. Of course with ; > ry, type r, strictly
prefers the new offer. Indeed there is an interval of types [rA,a) who are
strictly better off under the new offer than if they signal. In Riley [1979a]
it is established that, for ; sufficiently small, this new offer will

attract an interval of types with an average productivity in excess of the

offered wage. However, with the the alternative opportunity yielding a wage

T, < ; all those types on the interval [a,rA] also find the new offer
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attractive. Then the average productivity of those acceptihg the new offer is

8 X
[ edF/F(e) .
a

-~

As r » Ty 5 + r) and hence the average productivity approaches
frA edF/F(rA) which is strictly less than r,. Then for r> r, and
Zufficiently close the new offer is unprofitable.

The other alternative is a new offer <;,;> designed to attract all
those types on some interval (8,y). This is illustrated in Figure 3. An
agent of type B, with indifference curve UB through his best signalling
point <s(BR),B> 1s just indifferent between the latter and the new alter-
native. Similarly as agent of type vy 1is just indifferent, while all those
for whom 6 ¢ (B,y) strictly prefer <;,£>.

We next obtain an expression for r 1in terms of B and y and then

compare this new offer with the average productivity of those accepting it.

From (10) the steepness of an indifference curve for type 6 1s 6 .

Then <;,£> must satisfy

IZB g, LY ., (15)

s-s(8) s=s(y)
Eliminating s we then obtain

tly® - 1 = ¥ - g7 - (s(v)) - s(a)) . (16)
But, from (11) and (13)

s(y) - 8(B) = [Waw (17)
B
- Y1+e - 81+e _ er wedw .

Substituting (17) into (15), we obtain B

. BIY ewsdw

r = ———, (18)

Y -8B
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Thus, to attract workers with productivity in the interval (B,Y) an employer
announces the new offer <;,;> where ; satisfies (18) and ; satisfies
(15).

To determine the profitability of such an offer we must compare it with

the average productivity of those accepting, that is

JYeFt(0)dse

9"%m. (19)

To do this we fix g at some arbitrary level and examine the change in
r and 8 with Y a8 Y + B. Appealing to i'Hopital's Rule we have the

following useful result which is proved in the Appendix.

Lemma 1

{Y eH'(8)de

Define y(y) = g N ER O where H(.) 1s twice continuously

differentiable. Then

(i) Y'(B) =-;; and (ii) y“(B) =%—g:§g; :

From (19), 6(y) is in the family of functions defined in the statement
of Lemma 1. Also, setting H(8) = 6% it follows from (18) that (y) is
also in this family. Therefore ;(Y) and 6(Y) both increase with Y at
the same rate of 1/2 when y = g. Then local wage competition is unprofitable

if and only if ;"(B) > 8"(B). From Lemma 1 we than obtain

Proposition 5. Necessary and Sufficient Condition for Locally Unprofitable

Wage Competition,



15

With signalling cost function C(0,s) = s/6% and productivity

independent of 8, local wage competition is unprofitable if and only if

oF" (8)
e>1 +-—§TT€7

The final step is to establish conditions under which any nonlocal wage-
price pair is unprofitable. Since the arguments are somewhat intricate, the

proof of the following result is relegated to the Appendix.

Proposition 6. Sufficient Conditions for Globally Unprofitable Wage

Competition.
Under the hypotheses of Proposition 5 the Pareto efficient separating

wage schedule is a Nash equilibrium if, for all o

e > max {—Eg%%gl , 1 +-§%;%%%} (20)

To 1llustrate the stringency of the constraint (20), note that if F(8)
is concave 6F'(8) < F(6) and F"(0) < 0. Thus, as long as e exceeds
unity, the Pareto efficient separating wage schedule is a Nash equilibrium.

Finally, comparing Propositions 4 and 6 we note that those values of e
which generate sufficiently large potential gains from signalling, also lead
to existence of a Nash equilibrium. Thus, at least in this labor market
example, the equilibrium probiems tend to arise when the potential gains f;om

signalling are small.

IV. Nash Equilibrium for the General Model — the Case of Insurance
The example considered in the previous sections is special in two
respects. First the value of the contract, V(8,8), 1is independent of the

level of the signal. Second, the utility function is additively separable in
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income so that the marginal cost of signalling is independent of the return to
signalling, r.

In most hidden knowledge problems neither of these conditions are met.
Consider, for example, a human capital variant of Spence's labor market
model. A worker of type 6 can attain an educational level s in time
t(6,8). His lifetime product, discounted to the date of entry into the work-
force is then V(68,s). If such a worker is offered a lifetime income, also
discounted to the date of entry into the workforce, of r, and p 1is the
interest rate, the worker's present value of lifetime income

u(e,s,r) = re—pt(e’s).
It is a straightforward matter to confirm that, as long as the extra time
needed to increase educational achievement, 3t(8,s)/3s, is decreasing in
8, the assumptions laid out in Section I are satisfied.

A second example, and one which we shall focus on here, is provided by
the insurance model of Rothschild and Stiglitz. To obtain full coverage
against a loss L, an individual with von Neumann Morgenstern utility func-
tion wu(.), and wealth w, must pay a premium p. Alternatively, by
coinsuring, that is, accepting a deductible of 8, the individual receives a
premium reduction of r. In the no loss state, which occurs with probability

0, wealth is therefore

w=p

w=(p-r) =n +r, where n
In the loss state wealth is

w=L+(L-8) -(pr) =n+r-s
Expected utility can then be expressed as

U(e,s,r) = fulntr) + (1-6) ulntr-s) (21)
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If a type 6 individual accepts the insurance contract <s,r> the
expected profit on this contract
n(0,8,r) = p-r - (1-8) (L-s) = V(0,s) - r (22)

From (21) the marginal cost of signalling 1is

dr - - 30,30
ds U=U(e,s,r) as’ or
(1-6) u'(n+r-s) (23)

= ou’ (n+r) + (1-08) u'(ntr-s)

0 u'(n"'r) ]

= 1/0 + 1-0 u'(ntr-s)

It follows immediately that, as required, the marginal cost of signalling
declines with the quality of the insurance risk (the probability of no loss,
8).

We can now state the generalization of Proposition 3.

Proposition 7. Sufficient condition for a Nash Equilibrium.

Suppose that, for the general model of Section I, the marginal cost of
signalling is, for each of n types of agent, nonincreasing in the return to
signalling, r. Then the Pareto efficient set of separating contracts is a
Nash equilibrium whenever the proportional rate of decline in the marginal

cost of signalling with respect to 6

_9 dr
98 d8ly(o,e,r ) = T

- =
ds U(8,s,r) = U

is sufficiently large.

Proof. As in Section II we analyze the special case with Just three types,

The generalization to n types is straightforward. Consider Figure 1 again,
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Since V(6,8) 1is nondecreasing in s, the average value of types 91 and

92, if they both choose the contract D, 1is no greater than

Vlz(sz) = (£, 6,,8,) + fZV(ez,sz))/(f1+f2)

Then, just as in our earlier argument, there are no profitable alternatives

if XD/XY 1is sufficiently small. But

8
XD = 2 %% ds , where the integral is along the
D v? arc U = Ué
and s
XY = | 2drl 4 , along the arc vl - gl
ds}|. 1 ‘ E
8 i
D
By hypothesis
dr
ey is decreasing in r.
Then U
, %2 dr 1_ .1
XD < [ =| ,ds, along the arc U =U_,
dsi..2 E
s U
D
so that
dr
. 'a;' Uzds
¥ < p + » Wwhere both integrals are along
2 dr 1 1
8 f I5 1ds the arc U = UE
D U

s» along the arc U1 = Ué

By making the proportional rate of decline in the marginal cost of
signalling with respect to 8 sufficiently large, we can make the right hand

side of this inequality arbitrarily small. Then we can choose the offer D
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arbitrarily close to the horizontal line r = V(ez,sz) and hence above

V15(89)- Q.E.D.

We conclude asking under what conditions the hypotheses of this proposi-
tion are most likely to be satisfied in an insurance market. From (23), the
marginal cost of signalling is nonincreasing in r if u'(n+r)/ u'(n+r-s) 1is

nondecreasing in r, that is if

u' (ntr)

9 u'(n+r)
0 <3 u'(ntr-s) °?

3r .ETKEI;:;T = [A(n+r-s) - A(n+r)]

(24)

where

1s, the degree of absolute aversion to risk at wealth level . Assuming, as
is usually argued, that absolute aversion to risk does not increase with
wealth it follows that inequality (24) is indeed satisftied.

Finally we consider the rate of decline of the marginal cost of

signalling. Differentiating the logarithm of (23) by 6 we obtain

_9 dr 1 u'(ntr)
) Y] ds-ﬁ ) (1—6)2 u'(ntr-s)
dr 1 + 8 u'(ntr) *
ds T 1-9 u'(n+r-s)
- 1
(1-6)2 -“Tﬁ‘z‘%ﬂ + 8(1-8)

From Proposition 7, a Nash equilibrium exists if this expression is
sufficiently large. Note that as the probability of no loss, 0, approaches
unity, the denominator approaches zero. Therefore, as long as the loss
probabilities are all sufficiently low, the Pareto efficiency separating

contract set is a Nash equilibrium.
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V. Concluding Remarks

Taken together, the above results indicate that there are quite
reasonable assumptions, for both the insurance market and labor market appli-
cations, under which the many principal-many agent problem has a (unique) Nash
equilibrium. Furthermore, in the labor market application, the sufficient
conditions for a Nash equilibrium are satisfied whenever the gains to those
signalling are sufficiently large.

The first point to be emphasized is that the conditions derived are
sufficient conditions. It may well be that weaker and more precise necessary
and sufficient conditions conditions remain to be discovered. It also remains
to examine whether empirically reasonable sufficient conditions can be derived
in other applications, such as in the use of insider shareholdings to signal
the value of a new stock offering.

Turning to more fundamental theoretical issues, it should be noted that
all the published literature makes the key assumption that there is only one
hidden characteristic. Therefore a further important step will be to develop
models with multiple characteristics. Some preliminary work by Engers [1984]
suggest that parallel results are possible with equal numbers of
characteristics and signals. However, this area remains largely unexplored.

Another theoretical simplification made in this paper 1s the assumption
that the opportunity cost of choosing to signal at all, is the same for each
type. Especially in the labor market case it seems much more plausible that
those workers with a high productivity will have a higher opportunity cost.
While introduction of a reservation utility UA(e), which varies across
types, complicates the technical details, it is clear, from the recent work by

Engers and Fernandez, that the conclusions are essentially unchanged.
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A further simplification is that, in defining the Nash equilibrium, it is
assumed that a principal can only introduce a single new alternative <;,£>.
While a complete analysis would be rather technical, it seems clear, from mny
preliminary investigation, that the sufficient conditions developed here will
also sustain a Nash equilibrium when each principle can introduce multiple new
alternatives.

Finally, it would be incomplete to finish without some comment on how
behavior can be modelled when the underlying assumptions imply that no Nash
equilibrium exists. As indicated in the introduction, there have been various
attempts to model an euilibrium in which principals take into account antici-
pated reactions when considering alternative actions. To iilustrate, consider
Figﬁre 1 once more. Since the contract set {EO’EI’EZ} is the Pareto
efficient separating set, any new offer, such as D, which generates strictly
positive expected profits, must involve pooling. Then there is always a
reaction such as T which skims the cream from the pool. As a result the
initial "defection” D generates losses while the reaction T makes profits
on every agent who accepts it. It thus seems plausible that the principal
considering the defection, D, will recognize that the reaction T poses a
serious threat. As a result he will be deterred from choosing to offer D,
The Pareto efficient separating set is then a Reactive equilibrium.

The crucial step in this argument is the assumption that at least one
other principal will be able to exploit the opportunity arising from the
announcement of a new offer, such as D, before the new offer has generated
significant profits. (Alternatively, once offered, D cannnot quickly be
withdrawn, so that the initial profits are offset by later losses as other
principals respond.) Therefore, in using a non Nash equilibrium concept to
model behavior in some specific market it is important to begin by considering

the reasonableness of the quick reaction hypothesis.
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Footnotes

lone example is the choice of an income tax scheme by the tax authority
when ability is unobservable (Mirrlees [1971]). Another is the choice of an
optimal selling scheme by the owner of a unique object (Riley and Samuelson
[1981]).

2For a discussion of existence in a game theoretic model of a market with
differential information, when the informed players move first, see Stiglitz
and Weiss [1983].

3For a comparison of three alternative non-Nash equilibrium concepts see
Riley [1979b].

4This essentially technical problem, of nonunique optimal choices,
disappears when types are distributed continuously.

5The assumption that C(@,s) = 8/6% 1s not as restrictive as it might
seem. Suppose instead z is the level of the signalling activity with
signalling cost a(e,z) = A(z)/ee, where A(z) 1is strictly increasing. Then
we can always define the inverse function 2z = Afl(s) and define the equiva-

lent signalling cost function €(6,8) = C(8,A ~(s)) = s/g%.
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Appendix

Define y(y) =-§ﬁz7$:ﬁ(§y, where H(.) 1s twice continuously

differentiable. Then

W y'(®) =7 ad (1) y(®) =5 L)

Proof: Define N(y) = H'(y) [Y (H(e) - B(B))de
B

and

D(y) = (H(y) - H(g)? .

Taking Taylor's expansions about a, we obtain

N =3 807 (-9 + 28 (p) B (8) (v-») + o(y-p)*
(a-1) {
D(y) = B (8)% (v-g)% + H' () H"(B) (y-8)> + o(y-p)3

Integrating the numerator of the expression for y(y) by parts we obtain

o v - (H(e)-H(B))d®
(a-2) y(v) Y éY H(y)-H(B)

Then differentiating y(y) we obtain

(a-3) y'(y) = BH'(y) [Y (H(e)—H(B))ge
8 (H(y)-H(B))

Substituting from (a-1) this can be rewritten as
(a=4) y'(y) = N(y)/D(¥y)
Then

' N(y) 1
y (B) = 1im = ,
yg DV 2
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Differentiating (a-4) by Y we also have

N'(y)D(y) - D'(y)N(y) .

y'(y) =
D(y)>

Substituting from (a-1) we then obtain

y*(g) = 14m NODC(Y) - D'(YINCY)

o
;:j:z
~
hesJhe-]
N

Y8 D(Y)Z
Q.E.D.
Lemma 2
i* 6dF, (6) + b,
1
= R = ’2.
Define ¢1(y) Fn + o i=1
Then
¢1(Y) = ¢, (y) =>
d¢1(7) d¢2(Y) F]'_(Y) Fé(Y)
- A AN [Fl(y) ¥e, F,(m+ c2] .
Proof:

Taking the logarithm of

{Y edF(8) + b
(a-5) ¢(y) = &

F(y) + ¢

and then differentiating by vy we obtain
$'CyY) o YF'(y) - _F'(y)
a

Then multiplying both sides by ¢(y) and substituting from (a—-5) we obtain

$1(N) = (¥ = (1) iT%%Sﬁlz Q.E.D.
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Proposition 6. Sufficient Conditions for Globally Unprofitable Wage

Competition.
Under the hypotheses of Proposition 5, the Pareto efficient separating

wage schedule is a Nash equilibrium if, for all 6

(20) e > max | EE%%%% , 1 + E%;%%% }

Proof. The proposition is derived in three parts. We prove that an
alternative '<§,;> is unprofitable
(1) for s =0,
’(ii) for ; >0 and <§,;> attracting those who inifially S0 no
signalling as well as a subset of those signalling,
(111) for ; >0 and <;,;> attracting only those who initially choose

s(8) > 0.

Since it will simplify the exposition somewhat we define
e
(a-6) G(e) = o
Then the utility of type 6 can be written as
U(8,8,r) = r ~ 8/G(6)

For r sufficiently close to r, there is some type Y > T, indifferent

between signalling and accepting the new offer, that is

£ = W(s(y)) - g{% .

Since W(s(y)) =y and s(y) satisfies (13) we can rewrite this as

. rAjY G(w)dw
FTYT ey
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A
G(Y) *

Y '
rAf wG'(w)dw + r,6(r

Also the average productivity of those accepting is

3 6F'(0)d8
6= [T 5

a

We have already argued that, for <y sufficiently close to Tps r exceeds
8. Then for an offer of this type to be profitable there must be some Y

such that

Since ; and 8 have the form of the function defined in Lemma 2 this pair

of conditions can only hold if

G'(y) < F'(y)
G(y) F(y) °

Then a sufficient condition for all such offers to be unprofitable is that for

all vy > T, the inequality is reversed, that is

= 8G'(0) o BE'(0)

M T € ))

, for all 8> ye

Q.E.D. (1)

We next consider an alternative <s,r> which is strictly preferred by
those types 6 € (B,y) where
0 <8< r, <y<K1.
Then types B and vy must be just indifferent between the new alternative
and their respective optima in the Walrasian signalling equilibrium. Since

g < T, the equilibrium choice for type g is <O,rA>, while for type «y {1t

is <s(y),W(s(y))> where this 1s given by (13) and (14). We therefore have
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-~

r-y _ 1
ﬁ(‘T s(y) G(y) °

r—rA

Eliminating 8 and substituting for s(y) from (13) the new wage offer

may be written as

Y6(Y) - 1,6(8) - r{Yc(w>dw

G(y) - G(B)

ra(gr,) - 6() + [TwG'(w)dw
A
G(Y) = G(B) )

We now consider r as a function of y and compare 1t with the average

productivity of those accepting the new offer,

fY 6F' (8)d 6
50 = =¥ -

As Y + T, r(y) + T,. Also e(rA) < T,. So, by continuity,

;(Y) > 8(y) for Yy in some interval [rA,rA + 8]. Then, if the alternative
offer <;,;> attracting types with 0 ¢ (B,;) is profitable, there must be
some vy such that
(a-7) ;(Y) = §(y) and ;'(Y) <8'(y) .
Appealing to Lemma 2, we therefore require that
(a-8) TN = B = (- ) by Ry - reyaRe! < O -
From the definition of r we know that the term in parentheses is

positive. Moreover the bracketed expression, which we shall denote by B, can

be rewritten as

) - SR = F(B)) = F'(Y)(6(y) = G(B))
(a-8) B(") ORI ONEOERIO)
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Taking a Taylor's expansion of the numerator of (a-8), M(y), we obtain
' ' " Fl' 2 3
(a-9) M(y) = F'(B)G'(B) g+ - 7] (v=8)" + O(y-p)

From (a-6) 6G"(08)/G'(8) = e-1. Thus, by hypothesis G"(B)/G'(B) >
F"(B)/F'(B), and so M(Yy) and hence B(y) is positive in the neighborhoéd
of B. But, for (a-7) to hold, B(y) must be negative for vy = ;. Hence
there is necessarily some vy € (B,;) for which

B(y) 1s zero and decreasing. That is,

_ G'(y) F'(y)

(a-10) G(Y)-G(BY ~ F(y)-F(8) °’

and '

(ot 4 (&) d__Fi(y)

Y ey < & Foo-rcey

both hold. But (a~l1l) can be written as

(@12) Gl Ry ~ ey’ <l By - iRy’
Since (a-10) must hold, it follows from (a-12) that

G"(y) ¢ F'(y)
G'(y) " F'(y)°

But 6G"(6)/G'(8) = e - 1 so this contradicts hypothesis (20). Then (a-10)
and (a-11) cannot hold simultaneously and so, in turn, (a-7) cannot hold.
Q.E.D. (i1)
The final step in the proof is to consider the case depicted in Figure 3,
that is an alternative offer which 1s attractive to those types 6 e (8,Y)

where T, < B < Y. From the previous section we know that condition (20) is
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sufficient for local stability. Then for any B there exists & > 0 such
that ;(y) > 8(y) for all vy e (8,8 + §). The argument then proceeds exactly

as above with an appeal to Lemma 2 to obtain a contradiction.

Q.E.D. (111)



