GLOBAL SENSITIVITY RESULTS FOR
GENERALIZED LEAST SQUARES ESTIMATES

By

Edward E. Leamer
University of California, Los Angeles

Discussion Paper Number 296
June 1983



GLOBAL SENSITIVITY RESULTS FOR GENERALIZED LEAST SQUARES ESTIMATES

by Edward E. Leamer
Department of Economics
University of California, Los Angeles

Los Angeles, California 90024

ABSTRACT

The covariance matrix for the residuals of a regression process is
written as the identity matrix plus a matrix V. The matrix V is bounded
from above, and the corresponding set of generalized least-squares estimates
is identified. The extreme estimates in this set are functions of the usual
t-statistics; in particular the number ((T-k)/8)1/2/'t' measures the
influence of reweighting extreme observations, where T-k is the degrees—of-
freedom, t 1is the t-statistic, and where the weights on observations are

allowed to vary by a factor of at most two.
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Outlying observations are often discarded or otherwise rewelghted when a
regression equation is estimated. Both formal and informal techniques for
dealing with outliers can give fragile results in the sense that minor changes
in the assumptions can imply major changes in the inferences. In order to
study the sensitivity of estimates to choice of procedure, I consider here the
class of generalized least squares estimators 8(2) = (X'Z-lX)-IX'Z-lY which
are maximum likelihood estimators of B 1if the vector Y is normally
distributed with mean XB and known covariance matrix X. The covariance
matrix is written as I = I +V where I 1s the covariance matrix of the
"usual” errors and V 1is the covariance matrix of the “unusual” errors. If
V 1is proportional to the identity matrix, then E(Z) is just the least-
squares estimator, but otherwise, by choice of V, we can reweight some
observations or adjust for correlation among the errors.

This paper reports results on the global sensitivity of §(I+V) to
choice of V. A global sensitivity analysis characterizes the set S of

values for B(I+V) corresponding to a set F of values for V:
s = {g]g = (X'(I+V)_1X)—1X'(I+V)_1Y, V e F}

where F 1is a class of covariance matrices of analytical interest. Here, we

consider two such classes:



Fl = {VlV = diag{vl,vz,...,vT}; \ < v;, 1= 1,...,T}

F2 = {Vlsymmetric, 0 < V< V* Vk gym, pos def.}

where V < V* means V* -V ig positive semi-definite.

The set of estimates S; corresponding to the family of diagonal
covariance matrices F; 1s a set of weighted regressions with weights on
individual observations bounded between (l+v’i")—l and 1. If v; =1, for
example, weights on individual observations can vary by at most a factor of
two. Although this may be considered a reasonably wide set of weights, many
"robust” estimators proposed by Huber (1964) and others allow the weights on
extreme observations to go to zero, and can produce estimates outside of
Sy For studies of global sensitivity with other classes of weight matrices
see Gilstein and Leamer (1982).

An important problem with the set S; is that it 1s rather difficult to
characterize numerically. However, the set Sy 1s much more tractible since
it is necessarily elliptical. Moreover, if V* is proportional to the
identity matrix, then the boundary of the set can be described in terms of the
traditional t-values. Thus a t-statistic is a measure of the resistance to
rewelighting. In addition to ylelding this simple result, the class Fy of
covariance matrices often makes more sense than the class Fi. The statement
0 < V< V* means that the variance of a linear combination of residuals, say
d'u, where d 1is a vector of constants and u 1is the vector of residuals,
is bounded from above and below d'd < Var(d'u) < (d'd+d'V*d)., If V* = I,
for example, all weighted regressions with weights between 1 and 2 are
included in the set Sy, but also included in it are various generalized

least squares estimators with I close to a diagonal matrix I < I < 2I,



This seems actually to make the set Sy more interesting than the set 8
since in most settings the assumption that the covariance matrix I is
diagonal is not compelling but the assumption that the covariance matrix is
nearly diagonal is likely to be acceptable. In any case, the set 82

contains the set Sl’ and since it implies computationally simpler bounds for

estimates, it may be of practical interest even when Sl is preferred.

1. Results
The first result reveals that B(I+V) can be written as a least-squares

regression with the data Y corrected for outliers.

Theorem 1

The generalized least-squares estimator with I = I + V can be written

as
B(I) = (x'(1+V)"1x)'1x-(1+V)‘1Y
= xR = b - @ Iy (1)
where vy = vy Iy (2)
with b = (X'X) Ixvy,
and M =1+ XX'X) 1x (3)

Proof: Conceptually, the easiest way to get to this result is to write the

regression process as Y = X8+ Iy +u where y isa T x 1 vector of



constants with a normal prior distribution with mean vector zero and
covariance OZV. The posterior mean of (B,y) 1is in the usual matrix-

weighted average form (e.g., Leamer (1978, p. 78))

-1

B 2y _(=2lxx ox -2{0  o_ -2|x'y
E(IY| ¥,07) = (0 "1y |+ g ll) Y ' Y l
- (X' X' xry 4)
X I+ Y

Equation (1) is just the conditional mean of 8 given Y and vy and Equation
(2) is the mean of Yy given Y. Equation (2) follows from the partitional

inverse rule applied to (4)

-1

X'X X'
X I+

1 —c'lx(x')()'1 C

where C = (I+V—1—X(X'X)—1X') - (M+V_1). Thus E(YlY,cz)

= c'l(-X(x'x)'lx'Y+Y) = (M+v"1)'1MY.

This proof may leave non-Bayesians uncomfortable and an alternative can
be built on the matrix result
(a+BCB')™T = a7l _ A7lg(pralp4c Ly 1prplpipaL, (5)
From this it follows that

()1 =1 - (1+-v’1)'1 ,

X (I+V) I = x'x - x'(1+v'1)'1x



x(nInT - x4 @0 e omvy Ixxexy L,
Then
B = (X (+V) Iy Ixr ey "y
= 1@+ @ v TIxxrn ™
[X'Y - x'(I+v 1)Ly
= 0y + @ e Ixen e
- v H7T ooy xexexy e vy Ly
The term in brackets can be written as
v xexexy Tx vl - omvly - xx'x) Ixr vl
= v Hxaxen k(v - (v vyt
=~y ™y,
Inserting this into the formula above produces

B = (X' xy - x'0) x vy ay

which implies Equations (1) and (2).



Equation (1) is the least-squares regression using data Y corrected for
outliers. Equation (2) selects the outlier correction depending on X, V
and MY, the vector of least-squares residuals. The matrix-weighted average
form (2) has been studied by Leamer and Chamberlain (1976), Leamer (1978) and
Leamer (1982). If V isg a diagonal matrix, Leamer and Chamberlain (1976) or

Leamer (1978, p. 153) can be used to produce:

Theorem 2
The generalized least-squares estimator B(Z) with

V= diag{vl,vz,...,vT} can be written as

B(z) = ii‘ Wy by

where I indexes the 27 subsets of the first T 1integers, and selects the
observations which are included, by 1is least-squares with observations

i €I included but observations i ¢ I excluded, and

]
(]
n

(v = x @0 x|/ |u + vL
iel I 1

ZWI =1,

where X_ 1s the matrix of observations formed from excluded elements of
X. (Noti Wi as defined is zero if I has fewer than k elements.)

Theorem 2 describes the weighted regression estimators as a weighted
average of least-squares estimates based on subsets of the data. This theorem

suggests that the set of estimates of B corresponding to the set of matrices

V= diag{vl,vz,...,vr} with 0 v; < v; will be difficult to characterize



numerically, since estimates based on any subset of the data would have to be
considered. If attention is restricted to one—at—a-time deletions with vy =
0 for 1 # 3, then B(Z) is a weighted average of least-squares, b, and

least-squares with observation j omitted, bIj=

B(z) = wob + wlbIj

with weights

where x] 1is row j of X. As vy varies from 0 to vg, B(Z) then

3

sweeps out a line segment from b to b + v;(l-x:;(X'X)-lxj)bI
h|

/(v 1= xr) kL)),
] h| h
The other set 82 is much more easily described. By application of

theorem (3) in Leamer (1982) we obtain
Theorem 3

Given v = MV )My wien V< ¢ with V* symmetric positive
definite, then ; lies in the ellipsoid

(Y=£) "H(Y-£) < ¢ (6)

where



Ha= vl 4y
£ = (v¢ L luy/2
¢ = YM(vr Loy Inyya,
Conversely, for any value of ; in ellipsoid (6), there exists a V such
that V< V% and y = (v )L wy,
A corollary of theorem 3 which can be used to bound estimates of linear
combinations of parameters ¢'B 1is:
Theorem 4
The extreme estimates ¢'B = y'b =~ w'(X'X)-IX'; with ; constrained to
ellipsoid (6) are
o' - (X' X) "Lxr (vr ) luyy2

£(p' (X0 " 1x (v "Ly Tx(xrx) Loy /2

A special case of theorem 4 produces a surprising result. Let V% =

qI. Then
el o= (11 - xxrp Ik

v ™ = (14q™H T egxx ') x)y.

Then, since X'M = 0,



£ = (1+q 5 Iny/2
-1
c = (Y'MY)/4(1l+q 7);

and the extreme estimates of V'8 become

1/2

¥'h E [(1+) v (X'%) Lyrmr1 2 20147 Ly

1/2

= w'b(ltt-lq(T-k) /2(l+q)1/2)

where t 1s the t value for testing ¢'B =0
t = v'b/(" X0 y vy (1)) /2,

What is surprising about this result is that the usual t value tells
you all you need to know about the sensitivity of an estimate to the choice of
weights. A coefficient with a large t-value 1s relatively insensitive to
reweighting of observations to deal with outliers. One choice for q would
be one, in which case some observations are allowed to have twice the weight
of others. Then the maximum percentage change in the estimate that could be
induced by reweighting is ((T—k)/8)1/2/|t|. Note that constant resistance to
reweighting as sample size increases requires an increasing t-statistic at a
rate equal to the square root of the degrees of freedom. For example, the
sign of the estimate is insensitive to reweighting if the t-statistic exceeds

the critical value in the following table.
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Degrees of Freedom = T-k Critical t = ((T--lc)/8)1/2
50 2.5
100 3.5
1000 11.2

The traditional reason for requiring the critical t-statistic to increase with
sample size is to have a sensible tradeoff between Type I and Type II error.

A Bayesian treatment (e.g., Leameer (1978, p. 114) has the critical t
increasing like (T-k)l/z('l‘l/T - 1)1/2, which grows less rapidly than
(T-k)1/2,

It may also be noted that by choice of q, the interval of estimates can
be made to include any value whatever. This is a special case of the general
result that the set of generalized least-squares estimates {é(z) | pX p.d.}
is the whole space, Leamer (1981).

In some cases interest may focus on uncovering the outlying observations,
more than on correcting the estimates for the effects of outliers. The
outlier correction Y indicates adjustments to the data Y that are required
before applying the usual least-squares formula. Estimates of Y are given
by Equation (2) and bounds by Theorem 3. The extreme values of ¢'; on the

ellipsoid (6) are
V'Y = v'E 2 (pE Yy ol/2,

If ¢ selects the ith residual, and if V* = qI, then a bound for Yy is

-~

vy = @O e /2 # Ve ran s /414

= (14" 27 (e, + VITFEIESS) (7
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where h; 1is the ith diagonal element of X(X'X)'IX, e; 1is the ith residual
and ESS is the error sum-of-squares, ESS = Y'MY = e'e. This compares with
the t-value for a dummy variable which selects the ith observation, referred
to by Belsley, Kuh and Welsch (1980, p. 20) as the Studentized residual
1/2
t, ei/si(l hi) (8)
where sf is the estimate of the residual variance if the ith observation is

omitted, (T—k—l)si = ESS - ei/(l-hi) = ESSi. If q=1, Equation (7) can be

written as
> =l m_1_1y1/2 1/2
Yy = (ei/4)(1 + ty (T-k-1) g5

where g; = ESS(1+h;)/ESS;(1-h;). Thus the extreme estimate of the outlier
adjustment factor is the least-squares residual divided by four, times a
factor that depends on the Studentized residual in basically the same way as
the estimates of coefficients depend on their t wvalues, the biggest
difference being that the interval (7) is a function of 1 + hy whereas the

Studentized residual uses 1 - hi'
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