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Abstract

In Maynard Smith's seminal analysis of the war of attrition the gains to
competition are assumed to be public knowledge. As a result, the evolutionary
equilibrium is a mixed strategy. More recent work has emphasized the role of
private information (degree of hunger etc.) in generating an evolutionary
equilibrium in pure strategies, under the assumption that competitors are observa-

.tionally identical. 1Imn this paper it is shown that, for the war of attrition
Qith private information, there is, in general, a continuum of asymmetric equilibria.
Thus, even with only a payoff-irrelévant observational difference between potential

competitors, very asymmetric behavior is evolutionally viable.



In the original formulation of the war of attrition by Maynard Smith (1974)
two contestants each value a prize equally. The opﬁortunity cost of competing
~is an increasing function of the length of the contest and each contestant must
"decide™ when fo concede.

As Maynard Smith showed, the equilibrium strategy in this game is a mixed
strategy in ﬁ%ich the average time costs incurred are equal to the value of the
prize. That is, on average, a contestant gains nothing from competing and is
therefore equally well off always refusiﬁg to enter a contest.

This rather upsatisfactory feature of the equilibrium disappeérs as soon as
the assumption of symmetry is replaced by the assumption that potential contest-
ants in general differ in their valuations (or time costs),-;nd that each
contestant knows only his own valuation. As established by Biéhop and Cannings
(1978), if the distribution of valuations is the'same for each contestant there
is an equilibrium concession function T(v), which maps each possible valuation
onto the time of concession, generating positive expected gains to the
contestants. |

However Bishop and Cannings did not consider the possibility of asymmetric
equilibria. In_Riley (1980) an example is presented in which valuations are
distributed exponentially. It is shown that there is a one parameter family of
asymmetric equilibrium bid functions and the conjecture is made that this is an

i11lustration of a general proposition.

In this paper it is shown that there is indeed a continuum of equilibria
and the nature of the asymmetries are characterized. This conclusion is in
sharp contrast with the results of Maynard Smith and Parker [1976] and

Hammerstein and Parker [1982]. These authors focus on contests in which the
identity of the contestant benefitting more from winning is public knowledge.

Here we consider situations in which such identification is, at best, imperfect.



Of course, with a homogeneous population, asymmetric equilibria are
impossible since there are no observable characteristics upon which to condition
behavior. However, even within a species, complete homogeneity is a rather
extreme assumption. For example, age is a commonly observable difference.

Among the family of asymmetric equilibria are some in which ome sub-class
of agents is very aggressive while the second sub—elass is very passive; the
aggressive sub-class almost always wins. Such equilibria can therefore explain
the evaluation of "pecking orders” based on observable characteristics within a
species, However, theAtheory also suggests that these pecking orders will not
be absolute. Instead equilbrium involves occasional serious challenge from
agents lower in the pecking order.

A similar argument holds for competition between species. Indeed it is
tempting to suggest that the existence of highly asymmetric equilibria explains,
in part, the remarkable degree of specialization in nature.

To illustrate the point, suppose mutation results in color differences
emerging within a bird population and that these differences are sustained
through a tendency of like-colored birds to mate. 1f, instead of competing for
territory on all levels of trees, the two different color types begin to
specialize,each aggressively defending a different part of trees, both are
better off since the asymmetric equilibrium involves lower average costs of
combat. But once asymmetry ef behavior emerges, the pressure of selection can
begin to operate to create two very different sub-speeies.

In the following section we begin by briefly reviewing the war of attrition
and then present the main result on the existence of a continuum of
equilibria. Certain characteristics of these equilibria are also identified.

Section II concludes with some remarks about extensions of the model and
also discusses how economists have used the war of attrition to explain

competitive behavior.



I. THE WAR OF ATTRITION

Consider two observably different populations yhich may or may not belong
to the same species. We shall refer to these two groups of agents as class 1
and class 2. Let the value of some prize (food or territory) for member of
class 1 be vy. We assume that valuations vary across members of each sub-
class and define Fi(vi) to be the probability that the valuation of a member
of class 1 1is vy or less.,

Throughout, we assume that the function Fi(vi)’ is a member of the

family of distribution functiomns, ¥, defined as follows:

Definition 1: Feasible Distribution Functions.

" The c.d.f. F ¢ & if F 1s a strictly increasing and continuously

differentiable mapping from [0,a] + [0,1].

We choose units so that the valuation vy is measured in units of time
cost. Then if "combat" ends at time t the agent conceding has a payoff of
-t while the agent remaining has a payoff of wvy-t. Since we shall comnsider
equilibri#,in'which the time of concession, Ti(vi)’ is a strictly increasing
function of vi we can ignore the possibility that contestants concede

simultaneously.1

Rather than work directly with the concession functions <Tj(v), To(vy)>
it proves more convenient to define the inverse functions

7, (£) = T,°(0) 1=1,2

where yi(:) is the valuation of an agent in class 1 who concedes at time

t. We shall refer to <y1(t), yz(t)> as the concession value functions of

the two classes.



We now show that any <yj(b),ya(b)> satisfying a system of ordinary

differential equations and associated boundary conditions constitutes a pair

of concession value functions.

Proposition 1: Sufficient Conditions for an Equilibrium.

If <yy(t),yy(t)> 1is a solution to

(a) 3, (E)FH(To(£))y)(E) = 1 = Fp(y,(t))

(1)
() ¥, ()F}(y, (£))y]() = 1 = F (3, (£))
such that
(2) : min{yl(O),yz(O)} = 0 and 1lim yi(t) =gq, 1 =1,2

tro

then <y1(t),y2(t)> is an equilibrium pair of concession value functilons.

Proof: Suppose <yj(t),yp(t)> satisfies all the hypotheses of the
Proposition. From (1), it follows that for all t >0 yi(t) is strictly
increasing and differentiable. Thus if agent 2 concedes according to

To(v), the distribution of his.concession times can be written as F(yz(tz)).

Then if agent 1 concedes at time s his expected gain is

s
Ty (e,vy) = [P0y 6 Ry (75 (8)) = 8(A-Fy (7 (60).
Differentiating by s, agent 1's expected gain to increasing s 1is
' 8l

(3) —a-s—— (S;Vl) = vlFi(YZ(S))Yé(S) - (1‘F2(Y2(S)))-

Substituting for yé(s) from (1), we obtain



amy vy - l(s)
(4) EE—'(S;VI) = @——;I(gy—a (l_Fz(?z(s)))O

By hypothesis YZ(S) is a strictly increasiﬁg function. Hence for any

s >0, 1~ Fy(yp(s)) > 0. Then

BHI
[v1 - yl(s)} 3——-(s;v1) > 0.

)

Moreover the inequality is strict for all s such that yl(s) # vi® Thus
agent 1l's optimal response is indeed to choose s; so that yi(s1) = v;. A
symmetric argumenf establishes that v, = y,(sy) also defines an optimal
response for the second agent.

It remains to be shown that min {yl(O), yz(O)} =0 and fhat both yl(t)
and yo(t) approach a« in the limit as t+»., If both yl(O) and yZ(O)
were strictly positive then with some finite probability both classes of
agents would concede immediately. However, agents with strictly positive
valuations would then gain by waiting infinitessmally to see if their
adversary pffers an immediate concession. At the other extreme, both y;(t)

and y,(t). approach gq, but only in the limit as t+=; to see this, observe
from (1) that

¥, (t) y,(t) Fy(y,(t)) dy,

am
0 l- Fz(yZ(t))

and the integral diverges in the limit as y2(t) + Q.

Q.E.D.

. Having. provided sufficient conditions for equilibriuvm, it remains to show

that there are a continuum of pairs of concession value functions <y,;(t),

Yz(t)> which satisfy these conditions. Before providing a general



demonstration, we consider the special case in which valuations are
distributed uniformly on [0, 1], that is
Fi(v) = v’ i - 1,2.

Then the system of equations, (1), can be rewritten as
) - -
- 7,(8) yo(t) =1 - y,(t)

(5)
y,(t) yi(t) =1 - y,(t).

Dividing the second by the first and rearranging we obtain

1 ¥, 1
7,1 -y,) dy, vy, (A -y,y)

(6)

Thus equation (5) implicitly defines a mapping from the valuations of class 1

into the valuations of class 2. Integration of (6) yields

The set of solutions 1s indexed by the constant of integration, k. When
k = 0 then by symmetry, y; =y for all t; substitution back in (5) leads
to. -yy(t) - inf1l - yi(t)] = t, Inverting it follows that the symmetric

equilibrium concession function is

i In(l -~ vi), i=1,2,

By contrast, when k < 0 then y;(t) > yp(t) for all t. Since for any t

Ti(vi) - -y

the concession value of agents In class 1 is larger than the concession value
of agents in class 2, the probability that a member of class 1 will concede by
time t is also larger. Class 1 are therefore very passive in comparison

with class 2, Of course with k > 0 the opposite is true. The range of
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Figure 1: Alternative Equilibria for jdentical uniform
distributions of value.



equilibria is illustrated in Figure 1.

One interesting feature of this example is that for any k, the mapping
Y * Y, passes through (0, 0). Therefore the probability of immediate
concession by either class is zerb. This turns out to be a property of
equilibrium for some, but not all distributions. In fact we shall show that

the probability of immediate concession is zero if and only if the two

distribution functions F;, Fp are in the set &%, defined as fOIIOWS.2

Definition 2: Partition of &

8 Fi'(x) dx
If Hi(y) z g - l_Fi ")) increases without bound as y + 0 then

Fi € % Otherwise the integral has some finite limit as yiO0.

With both F; and Fp in 9% the family of equilibria have the

qualitative properties of the mappings i * y, as depicted in Figure 1.3

With only F; in & the family of equilibria have the qualitative
properties of the mappings depicted in Figure 2a, Note that y5(0) = 0 and
y1(0) > 0 " so that all those in class 1 with valuations less than y;(0)
concede immediately.A The third possibility, with neither F; or Fy in

%, 1s depicted in Figure 2b. We now summarize this formally.

Proposition 2: Continuum of Asymmetric Equilibria

For all F ¢ & there is a one parameter family of equilibrium

concession value‘functions <y1(t, k), yz(t, k).

If Fy, Fy € g% the probability of immediate concession is zero

(y4€0, k) = 0 ¥k).



!

Figure 2:

Alternative Families of Equilibria
with v bounded from above.

Fig. 2a:

F-I E %
Fo £ &

Fig. 2b:

F, and F2 £ 9%



If F) €& ‘and Fy £ 3% the probability of immediate concession is
positive for members of class 1 and zero for members of class 2.

If Fy, Fy £ 3€ the probability of immediate concession is always.zero
for one class and strictly positive for the other class in all but one
equilibrium,

-

Proof: From (1)

738 3,(F, () F{(yp)
® GRS RN ¢ N D)

Since yj(t) and yz(t) are both increasing functions, (8) implicitly
defines a first order ordinary differential equation for y, as a function
of yj. To prove the Proposition we must show that there is a one parameter
family of solutions to this differential equationm.

Rearranging (8) we obtain

o By &y Fils)
yz(l—Fz(yz)).dyl yl(l~F1(y1))

From Definition 2 we have

: Fi(y)
8O = sa oy

We can therefore rewrite (9) as

dy
d 2 4
4 g .4
iy, 2(75) &y, | @, B Gy)

Integrating we obtain



Hy(y,) = B;(y) +k |
Since both "H; and H, are strictly decreasing functions we can define the

increasing function

(10) v, = B (E () +K)
For vy > B
v Fi'(x) dx
Lo < I 5amen
1-F, ()

= __:.I.'_. log ( )
y I-F, (B)

Thus, as y + a and Fi(y) +1, Hi(y) + -o it follows that,'for all k, the
mapping Yy * Y, must pass through the point (a, a).

If F) and Fy e &, Hi(y) increases without bound as y declines to
zero. Then, for all k, equation (10) passes through (0, 0). When Fl(v) =
Fy(v) and k = 0, then yi(t) = yo(t). This is the unique symmetric
equilibrium examined by Bishop and Cannings. However, even with Fl(v) =
Fo(v) (which implies that Hy(y) = Hy)(y)) there are a continuum of
equilibria; when k > 0, then y;(t) > yp(t) and the second class of agents
are the "aggressors” — the opposite is true if k < O.

Next suppose F; ¢ ég and Fy £ qg. From Definition 2, ltg Hl(y) = o
while HZ(O) is finite., Then there can be no point (O, y2) sZtisfying
(10). It follows that equation (10) must, for all k, intersect the 1y,
axis as depicted in Figure 2a.

Finally, with F; and >F2 £ g%, both Hl(O) and HZ(O) are well

defined. Each member of the family of functions given by (10) then intersects

one of the axes as depicted in Figure 2b. , Q.E.D.
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Note that in each case, the equilibrium involves "aggressive™ behavior by
one class of agents and “"passive” behavior by the other class for small or
large values of k. In the first case both classes compete but one class
almost always concedes very quickly. In the other two cases one of the two
classes concedes immediately with high probability.

Moreover, each of the equilibria is a strong Nash equilibrium, that is,
any strategy other than the equilibrium strategy of agent 1 strictly lowers
this agent's expected return. Thus Maynard Smith's requirement for evolution-
ary equilibrium is satisfied.

This is not true of the limiting Nash equilibrium in which one class of
agents threatens never to concede while the other class always concedes. For
in this case a mutant conceding at any time t > 0 does equally well against
a completely passive opponent. The equilibrium is therefore not

evolutionarily stable.4

II. Extension and Other Applications
While we have modelled informational differences as arising from
differences in the benefits to éompetition, it should be intuitively clear
that systematic differences in the costs of competition will genmerate quali-
tatively similar conclusions. The crucial simplification is that the gains to
walting are, ceterils paribus; always higher for one member of a class than for
another member, regardless of the time elapsed since ;he start of a contest.
In this paper we have focused on animal conflict. However certain
aspects of economic competition have essentially the same structure.
Consider, for example, 2 firms working to create a patentable invention. The
market value of this invention i?. V, the cost per period of firm 1i's

P

research team, Cy» is a random draw from some distribution Fi(ci)'
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Finally, the probability firm 41 will make the breakthrough at time t,
given that there has been no prior breakthrough is; p. This last element of
the problem complicates the model somewhat but the essential ingredients are
the same and égain there 1s a continuum of equilibria.

A second model discussed by Nalebuff (1982), examines competition between
two agents when the rewards are delayed until agreement is reached. 1Initial
demands are incompatible and agreement requires one side or the other to make
a concession. Informational asymmetry is introduced by making the cost of
coﬁceding a random variable. As Nalebuff shows this model can be formulated
so that it 1is matﬁematically identical to the war of attrition.5

Finally, Fudenberg and Tirole (1983) have used a similgr model to model
the.possible exit from an industry by one of the two currentlf competing
firms. One interesting conclusion of their papér is that as long as there is
some probability of a positive payoff to both contestants, the equilibrium is
unique. Their work suggests a variation of the war of attrition that does
lead to a unique equilibrium.

Imagine that there is some probability, p, that an animal is
"irrational.” By irrational, we mean that once engaged in a conflict the
animal will never give in; the animal becomes enraged and is then willing to
fight to its death. The fact that there 1s a positive probability that an
animal will never concede leads to a unique outcome.

The distribution of concession times t 1s now

The probability that an animal will concede by time t is the chance that it

is both rational and has a valuation less than yi(t). The consequence of
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this transformation is that the waiting bid for an agent with a valuation of
a 1s now finite,

y,F}(3,) dy
(12) ey, = o) = [3ELE

- < alnfl - Fl(yl)llg’ = ~q 1ln p.
1-F,(y,)

1“1
A similar argument shows that ﬁi(yi) also converges in the limit as vyt o

Since ﬁi(yi) converges and
(13) H Iy, (0] = Byly (0] +k ,

there is no longer any guarantee that the mapping Yy * Y, will pass through
the point (a, a). But if this were to fail then one class of agents would
concede with a strictly positive mass of probability at the time t when
yi(t) = q. This contradicts the requirement in equilibrium that both classes

of agents, when rational, must find it optimal to make their final concessions

simultaneously.6

The unique equilibrium is then determined by the k that solves

(14) ﬁl(a) = ﬁz(a) + k.

Because the functions ﬁi(y) are strictly monotonic, the choice of k 1is
unique,

If the distribution functions are the same then Hl(y) = Hz(y), k =0,
and the symmetric equilibrium is the unique solution. The advantage of this

reformulation is that it suggests a method for choosing one of the continuum

of asymmetric equlibria when the density functions differ.7
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Footnotes

1Fudenberg and Tirole (1983) show that a necessary condition for
equilibrium is that Ti(vi) should be a strictly increasing continuously
differentiable function. Similar arguments for a model of sealed bidding can
be found in Maskin and Riley (1984).

2pn example of a family distributions F ¢ 3€ is

F(v) = 1-(1-v)%, a >0

An examfle of aAfamily distributions F £ 3% is F(v) =vS e > 1.

3However, there will not be asymmetric equilibrium, with Y1 = Y2
unlgss Fl H F2. u

41n one shot economic models the limiting equilibrium is élso less
satisfactory in that if a member of the passive’population does bid,it is no
longer in the interest of the aggressive contestant to carry out his threat.
In-the terminology of game theory the equilibrium is not sub-game perfect.
See Wilson (1983) for a more complete discussion-of'this point.

5The model analyzed also includes the possibility of escalation of the

conflict rather than concession. BHowever, this too is incorporated without

altering the underlying mathematical structure.

61f agents of class 1 never concede after time ¢t; then it cannot be
optimal for agents of class 2 to wailt until time tl + A Qnd then concede;
they would save costs by conceding at t; + A/2.

7For economic applications it should also be noted that the result does
not actually depend on the existence of irrational behavior; it is sufficient
for each class of agents simply to believe that there is some positive

probability that its opponent is irratiomnal.
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