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ABSTRACT
Under joint normality of all regressors, the errors—in—variables boundé
for linear regression may be extended to probit and related models of

censorship and truncation.
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Klepper and Leamer (1984) show how to find bounds and cher diagnostics
in the normal errors-in-variables model. In this paper I show how to extend
their results to a normal model with a latent dependent variable, such as
probit or normal censorship or truncation. Klepper and Leamer's results are
based on the idea of reverse regressions, that is, regressing each of the
explanatory variables measured with error on the remaining explanatory
variables and the endogenoqs variable. When the endogenous variable is a
latent variable so that it is observed only via a proxy the direct analogue of
a reverse regressioﬁ is not useful, The problem is that the covariance
between the latent variable and explanatory variables cannot be estimated by
the sample moments, since the latent variable 1s unobservable. However, the
covariance between the latent and explanatory variables can be estimated from
knowledge of the regression coefficients of the latent on the explanatory
variables, and these_coefficients‘ggg_be estimated By maximum likelihood.

Adopting the notation and assumptions of Leamer and Klepper 7y, is
normal with mean Bo + B'xt and variance 02 where X¢ is a (kxl) vector
of unobservables. The unobservables X, are measured by the vector x,
which, condit?onal on X, is normal with mean X¢ and diagonal covariance
Df The unobservables X, @&re normal with mean X and covariance I. The
unconditional variance of y, 1is sg, the covariance between y, and both
Xy and Xe is the k vector r and the covariance of X, is N. Thus the

covariance of the vector (yt,xé) is the matrix

2
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y

V(y,,x]) =
t’t r N

from which the reverse ;egression'and other diagnostics can be computed.



Klepper and Leamer assume Y, is directly observable so that likelihood
estimates of 33 and r are the sample moments. Suppose instead that vy, is
not observed, but instead only z(yt) is observable. For example in probit
1 Ve >0
z(y,) =
0 Ve <0
and censorship and truncation models can be similarly represented. Obviously

82 and r can not be consistently estimated by sample moments using 2z in

y
place of Veo
Let us now formally state the Klepper and Leamer problem in the latent
variable context. The problem is to maximize the joint likelihood function
derived from the joint density f(zt’ XCIB, r, N, Syz, D) with respect to
B8, f, N, gyz and D. Since the model is not identified the solution will be a
get rather than a point.

Joint normality, however, implies that conditional on x, the latent

variable y, 1s normally distributed with mean b, + b'xt and variance

_0%. Joint normality also implies the identities
r = Nb
B = (¥-D) r
(1)
. 2 _ 2 '
sy % + b'Nb

Thus the invariance property of maximum likelihood imlies that we can maximize

the joint likelihood then compute B from (1). Since given b, °b2 and .

N the joint normal distribution of y, and X, is independent of D

2
£(z,, x,|b, %, N, D) = £(z,, x.|b, o,?, M) and the maximum ltkelihood

estimates of b, o 2 and N are independent of D. On the other hand D 1is

b
restricted to be positive semi-definite and
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Viy,_, x',) =
t t T N-D

must also be positive semi-definite. These two restrictions characterize the
feasible D's and thus by (1) the feasible B8's,

Klepper and Leamer show how to find the feasible set of B and other
diagnostics making use of these restrictions. Their method is based on
analyzing the inverse of the estimated matrix V(yt, xt') which using (1)

may be written as
2 ' '
o + b'Nb Db'N

b
(2) V(y,., x ') =
t Tt b N

where 052, b and N are maximum likelihood estimates.

Analyzing the likelihood function for b, obz and N we see that
2 2 . 2
f(zt, xtlb, G s N) = f(zt|xt, b, o ) f(xth) since given X, s b and %
the distribution of y, doesn't depend on N, and given N the distribution

of X, doesn't depend on b or obz. Thus each factor may be maximized

separately. Since x, is observed and joint normal the maximum likelihood
estimate of N is just the sample moment; maximizing the likelihood from

f(zt'x b, cbz) simply involves doing probit, censorship or truncation as

t’
appropriate, since f(yt|xt, b, 052) is normal with mean bo + b'xt and

variance o 2
b
ab2 =1 1is usually imposed as a identifying restriction.

by the joint normality hypothesis. Note that in probit

The upshot is that b and o 2 should be estimated ignoring measurement

b
error and using X, in place of Xg o The matrix N 1is estimated by the
empirical moment matrix for x,. These estimates are then combined in (2) to

which the Klepper and Leamer methods apply.



What happéns in the non-nofmal case? In the OLS case the consistency of
the sample moments implies that the‘Klepper and Leamer methods give consistent
bounds on the feasible parameter values. The latent variable case has two
difficulties. The first is that the family of distributions for the latent
variable depends on whether we condition on x, or P For example if logit
1s appropriate when Xe is conditioned on, it will generally not provide the
correct family of distributions when x, 1is conditioned on. In the case of
discrete choice this problem is probably insurmountable. In the case of
censorship or truncétion the robust methods of Powell (1981) would be
consistent for a locatiom parameterilinear in either x, or Xt regardless
of hpw the latent variable is distributed (provided it is sﬁmmetric in the
case of censorship). A more serious problem 1s that (1) requires the location
parameter for the latent variable to be linear in x.. Unless Xe
-and X, are joint normal, linearity of the conditional expectation in Xe
does not guarantee linearity in x;. An open question is whether there are:
plausible non-normal joint distributions of Xe and x, for which a location
parameter for the latent variable is linear in both sets of variables. If so,
then (1) combined with Powell's methods yield consistent bounds; otherwise the

Klepper and Leamer method breaks down.
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