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THE VOLUNTARY PROVISION OF PUBLIC GOODS ——

DESCENDING-WEIGHT SOCIAL COMPOSITION FUNCTIONS

Abstract

When public goods are provided by separate individuals subject to private

cost-benefit calculations, the "social composition function” that determines

the socially relevant aggregate X 1is often not the simple sum of the
individual contributions, as has been traditionally assumed. For example,
there are important instances where X 1is determined by the minimum of the
individual contributions (Weakest-link case) or by the maximum (Best-shot
case). The "descending-weight" social composition functions, ranging from
simple Summation at one extreme to Weakest-link at the other, possess a
diminishing-returns property that is the most usual situation. It is shown
here that underprovision of the public good tends to be mitigated as the
condition for social supply approaches the Weakest-link extreme, especially
community si;e increases. Underprovision does not entirely disappear, how-
ever, even in the Weakest-link case, unless all individuals are identical.

Possible non-additivity in the social composition functions determining the

social supply of public goods is analogous to problems like "crowding” that

as

make for non-additivity on the demand side. Both demand-side and supply-side

non-additivities may be important in applications of public-goods theory —-

e.g., to the problem of "clubs” or optimal community size.
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THE VOLUNTARY PROVISION OF PUBLIC GOODS —--

DESCENDING-WEIGHT SOCIAL COMPOSITION FUNCTIONS

I

A previous paper [Hirshleifer (1983)] introduced the idea of alternative

social composition functions for public (collective) goods. Whereas public

goods by definition have a peculiar technological feature on the demand side
-- namely, that the quantity socially produced is available at no additiomal
cost for concurrent consumption by all members of the community — it has
traditionally been assumed that there is nothing at all special when it comes
to the technology of the social supply of public goods. Thus, the standand
assumption has been, the socially available aggregate of a public good is
simply the sum of the amounts privately produced. In contrast, the earlier
paper showed, the relevant technology may dictate that the amounts provided by
separate individuals are compounded into a socially available aggregate supply
in ways that deviate from the traditional additive formula.

Three especially simple social composition formulas were explicitly

discussed in the original paper:

SOCIAL COMPOSITION FUNCTIONS

1) X=1Ix Summation
i

(2) X = min X Weakest-1link
i

(3) X = max x, Best-shot
i

Here the x; are the separate amounts supplied by the individual i=1,...,N

members of the community while X represents the socially available aggregate



under the Summation, Weakest-link, and Best-shot composition functions
respectively.

The Summation function (1) corresponds of course to the traditional
model. To use the famous lighthouse example, imagine a long coastline with an
indefinitely large number of private harbors. Each harbor-owner can, by
providing a lighthouse, make his own port safe and usable. Then the social
aggregate of the public good, the total number of harbors available to each
and every mariner as user, is the sum of the number of lighthouses separately
provided.

Continuing with nautical examples, for the Weakest-link function (2)
imagine there is only a single communal harbor, whose topography is such that
a series of sandbars blocks the way for low-draft ships. If each separate
individual in the community is responsible for dredging a depth of channel
through just one of the successive barriers, then the relevant social aggre-
gate of the collective good — the overall depth of channel available to
mariners —— is not the sum but the minimum of the separate dredged depths.
Here the shallowest barrier is the "weakest-link"” which governs the capacity
of the system. For an illustration of the Best-shot case (3), imagine once
again a long coastline with multiple harbors, but now let each port be barred
by its own separate sandbar. Assume also that any single harbor is
locationally just as desirable as any other, and furthermore that each has
indefinitely large capacity for handling additional traffic at constant
costs., Then, from the users' point of view, the only thing that matters is
the depth of channel at the single best harbor, i.e., the socially relevant
supply of the public good is the maximum of the depths provided by the

different private suppliers.



The previous paper showed that the tendency toward private underprovision
of the public good is substantially mitigated (in comparison with the standard
Summation case (1)) when the relevant social composition function is of the
Weakest-1ink type (2),1 but aggravated when the Best-shot formula (3) applies.
Perhaps more importantly, underprovision relative to the efficient ideal tends
to grow sharply with community size N 1in the standard Summation case (1), to
remain substantially unchanged as N 1increases in the Weakest-link case (2),
but to grow even more drastically with N in the Best-shot case (3).

In this paper I adopt a more general approach, in which all the social
composition functions tabulated above are regarded as special cases of the

more general form:
(4) X = Wixi

Here the Xy are as before the quantities individually provided, while the

w; are the corresponding weights entering into the social aggregate. I shall

g have come across an anticipation of this conclusion in Mueller (1979),
PP. 13-14:

One can envisage goods...in which the participation of all members

of the community is necessary to secure any benefits. The crew of

a sall boat, a two-man bobsled, are examples. With such goods...

cooperative behavior is voluntarily forthcoming. Such cases

undoubtedly make up a small portion of the set of all public

goods, however, and almost always involve very small groups of

individuals and constrained technological conditions.
My previous paper showed, in contrast, that the Weakest-link "technological
condition” that Mueller has in mind here is by no means limited to relatively
trivial examples like a two-man bobsled, nor to small numbers of participants.
A considerable range of behavior takes place under conditions corresponding
closely to the Weakest-link social composition condition — examples being a
community struck by disaster or a military unit under heavy attack. An
explanation is thereby provided, without calling upon "altruism,” for the
surprising degree of solidarity and mutual aid often observed under such
conditions. I shall also be claiming further that public goods normally fall
somewhere between the extremes of the Weakest-link situation and the standard
textbook Summation case. However, I am happy to claim Mueller as an ally and

predecessor in glimpsing this development.



henceforth be assuming that the individual inputs are ranked from the smallest

to the largest. Then we can define three generalized classes of social

composition functions that correspond to three special assumptions about

welghts, to wit:

(5) 1=w =w, =coo= Wy Constant-weight
(6) =Wy 2W, 2 eee 2w 20 Descending~weight
(7) 0w SWy S oer Sy =1 Ascending-weight

where, in (b) and (c¢), at least one inequality must hold strictly.

The constant-welght case (5) here is of course equivalent to the standard
Summation formula (1). The Weakest-link summation function (2) can be seen to
be a special extreme case of descending weights (6), to wit, the case where
w; =1 while wy = ... = wy = 0. And similarly, the Best-shot function (3)
1s the extreme case of ascending weights (7), to wit, the case where w; = w,

= .. =N T 0, while wy = 1.

I1

In this paper I provide a generalized analysis of descending-weight

social composition functions, i.e., the range of cases limited at one extreme
by the Summation formula (1) and represented at the other extreme by the
Weakest-1link formula (2). Descending-weight social composition functions
possesses a kind of “"diminishing returns” characteristic: the minimum
individual contribution x; enters fully into the social aggregate (wl = 1),
while all the larger-than—-minimum individual contributions Xgsees XN are
discounted to greater or lesser degree before incorporation into the socially

available aggregate (Wp,«.., L § 1.



To illustrate, using the previous nautical example of a series of
sandbars, imagine that, if some of the sandbars are dredged to greater depths
than others, the "excess” depths may have some value. There may be local
deep-draft traffic that does not literally have to traverse each and every
successive barrier in the entire series. Or perhaps some of the through deep-
draft traffic can, if need be and at additional but possibly non-prohibitive
cost, be portaged around the shallowest barriers.

Getting away from nautical examples, consider "linear” technologies for
public goods (see Hirshleifer [1983], p. 373) — as when each member of the
community is responsible for defending a length of dike against a flood, or
each soldier responsible for manning his sector of the front against enemy
breakthrough. The Weakest-link assumption strictly holds, say in the dike
case, if the social benefit (flood protection) depends entirely upon the
minimum individual performance — i.e., the lowest stretch of dike determines
the degree of protection. But we can imagine less extreme cases. In defend-
ing a military front line, for example, extra strength elsewhere can possibly
(at some cost) be diverted to reinforce a weak point, or can be used to mount
a distracting counterattack. More generally, we may say that the Weakest-link

assumption corresponds to a fixed-proportions technology (with regard to the

individual contributions), while the more general descending-weight formula

corresponds to a diminishing-returns technology. It seems likely that

diminishing~returns technologies —— the class of descending-weight social
composition functions, lying between the two extremes of the Summation formula
(1) and the Weakest-link formula (2) -- are the normal case whenever provision
of a public good depends upon separate individual productive contributions.

In what follows I will illustrate the conditions for individual

optimization and Nash-Cournot equilibrium: first for the standard Summation



or constant-weight case, then for the general descending-weight case, and
finally for the limiting Weakest-link model.

Figure 1 pictures the traditional Summation (constant-weight) social
composition function., The axes X, »Xp here represent the respective
quantities of a public good produced by two individuals A and B comprising
a community. Following the standard social composition formula, each has
available for consumption the amount X = x, + xg. In producing the public
good, furthermore, each individual trades off his x; (1 = A,B) against
amounts yj that he could alternatively produce and consume of a private good
Y. As will be seen shortly, the pattern of each person's indifference curves
reflects this tradeoff, and also of course the fact that each party benefits
from the other's production of the public good. The diagram shows: (i) A's
indifference curves U, (solid) and B's indifference curves Ug (dashed);
(11) A's Reaction Curve R, drawn through his Nash-Cournot optimal reactions
to B's choices (i.e., through the horizontal points on his U, curves) and
B's Reaction Curve Rg through his Nash-Cournot optimal reaction positions
(1.e., through the vertical points on the Uy curves); and (iii) the Nash-
Cournot equilibrium point E. (The curve CD, representing the locus of
mutual indifference-curve tangencies, will be discussed later on.)

For the generalized descending-weight case, the individuals continue

respectively to produce x, and xpg, but now each consumes X = wax, +
wpXp, where w = 1 for the smaller while 0 < wj < 1 for the larger of
xp, and xg. Figure 2a indicates the shape of A's preference map. Here, in
the region where x, < xp (northwest of the 45° line), the indifference
curves are relatively steep (in the negative sense). With a kink at the 45°
line (due to the abrupt shift of weights), the indifference curves turn

sharply less negative, or more positive, as they enter the region where =x, >
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' FIGURE 1: Ffficient and eguilidbrium solutions, Sunmation Composition Functionm
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xg southeast of the 45° line.
More formally, the absolute slope of A's indifference curves in the

standard Summation composition function (Figure 1) is given by:

aUA axX . aUA dyA

® ) de ] BUA/BXA _ oX X, 3y, dx,
Halu, aUy/3xy Wy  x
X BxB

Since (aUA/aX)/(aUA/ayA) can be identified with MRS,, A's Marginal Rate of
Substitution in Consumption between the private and public good, while
-dyA/dxA is his private Marginal Cost MC, of producing the collective good,

A's absolute indifference-curve slopes on Xx,,Xxp axes can be written more

intuitively as:2

dxy MRS, (X) - MC,(x,)
9) - =
dx, U, MRS, ()

For the descending-weight social composition function (Figure 2a), the

indifference-curve slopes in the two different regions can be expressed as:

"MRSA(X) - MCA(xA)

MRS (%) for X, < Xp (where Va <1)
de B A
(10) - -d—x— =
A UA w, MRSA(%E -AEFA(XA)

MRSA(X) for X, > Xg (where Wy <1)
As (10) indicates, the kink in the U, slopes at the 45° line is due to the
fact that the weight attached to the individual's own contribution shifts

discontinuously in crossing this line. Northwest of the 45° line, where x) <

2g0e Hirshleifer (1983), fn 2.



xg, A's marginal production of the public good is fully translated, unit for
unit, into the relevant social aggregate X; southeast of the 45° line, where
Xxj > Xg, his contribution is discounted by the multiplicative factor wy < 1.
In Figure 2a, as in Figure 1, A's Nash-Cournot Reaction Curve R, cuts
through all the minima of his UA indifference curves. But, because of the
slope discontinuity along the 45° line, R, now overlies the 45° line over a

finite range (QF in the diagram). And in that range, of course, R, will

necessarily have positive slope instead of being, as before, everywhere
negatively sloped.

Figure 2b shows the corresponding picture for B's indifference curves
Ug and Reaction Curve Ry (both shown as dashed). Here Rpg overlies the
45° line in the finite range SG. Finally, Figure 2c puts the two pictures
together, eliminating unessential elements for purposes of clarity. As will
be evident there are three possible classes of Nash-Cournot equilibria: the
Reaction Curves R, and Ry might intersect southeast of the 45° 1ine,
northwest of it, or along the 45° line itself. This last, the most interest-
ing case, is the one pictured in the diagram.

Intersections along the 45° line will generally have R, and Ry
overlying one another in a finite range —— the distance SF in the diagram.
All the points in this range meet the conditions for a Nash-Cournot equilib-
rium. However, the previous paper argued, given adequate knowledge (as by
learning, or by mutual visibility), under plausible dynamic processes the
parties will be led to an equilibrium at the upper limit of this range —

point F in the diagram.3

31t a chooses first, for example, he will (given adequate knowledge)
gelect the xA—coordinate of point F as his contribution. For, he knows, in

I
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What happens now as we proceed to the limiting case -- the strict
Weakest-link formula (2) that is the extreme of the class of descending-weight
social composition functions?

Consider the situation for individual A. When Xp < Xg » A makes his
productive tradeoff decision between x, and y, knowing that any additional
marginal contribution on B's part will have no effect on the social aggre-
gate X of the public good. Thus, in Figure 3, in the zone northwest of the
45° line A's indifference curves U, are all vertical.? This is confirmed
by equation (10) since (in the upper line) wy in the denominator goes to
zero. Furthermore, in this zone there will be one single_hggg_vertical
indifference curve for A (labelled ﬁA in the diagram). B's production of
the public good being irrelevant in this zone, X becomes in effect a private
good in A's calculations. Then there will be some optimal ;A such that

3 As for the zone of Figure 3 to the southeast of the 45°

MCA(xA) = MRSA(XA).
line, here A's indifference curves will generally be curved. However, since
it is always irrational for A to choose x, > xp (so long as his Marginal

Cost MC, 1is positive), A's indifference-curve map is shown in Figure 3

(fn. 3 cont.)...that case B 1is motivated to go along and choose as his
contribution the xB-coordinate of point F. B in his turn can be confident

that A will not be motivated thereafter to renege on his initial choice.

4Regrettably, my presentation in the previous paper (Hirshleifer [1983],
p. 378) erred in showing normally curved rather than vertical indifference
curves even for the limitiqg"(Weakest-link) case. The indifference curves do
retain curvature for the general descending-weight class of composition form-
ulas, but in the 1limit they lose their curvature and become straight lines.

5Note that the two distinct verticals both labelled UA represent the

same level of utility. The more westerly vertical represents producing too
little of the public good, the easterly vertical represent producing too much
— either way there is a loss of satisfaction for A.
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northwest of the 45° line only.

Corresponding arguments of course hold for individual B. His
indifference curves are shown only southeast of the 45° line, where they take
the form of horizontal lines. In this zone he will have a single best indif-
ference curve ﬁB’ where the amount of the public good he produces ;B
satisfies the condition MCB(QB) = MRSB(;B).

It will also be evident that A's Reaction Curve R, will overlie the
45° line from the origin until point F, after which it will run vertically
along his optimal indifference curve ﬁA' Similarly, B's Reaction Curve Ry
will run along the 45° line until point G, and then horizontally along his
optimal indifference curve ﬁB' The Reaction Curves therefore again intersect
over a finite range along the 45° line, in this case the distance OF. By the

same argument used previously, the equilibrium position is taken to be the

upper limit of this common range, to wit, the point F.

III

I now turn to a comparison of equilibrium versus efficiency conditions,

to show how underprovision of the public good varies over the different social
composition functions. And I especially want to analyze in each case how the
extent of underprovision changes parametrically — first, in response to the
number of individuals N comprising the community, and second, in response to
degree of inter-individual heterogeneity (in tastes, endowments, and
productive opportunities).

Summation (constant-weight) social composition function:

Returning to Figure 1 that pictured the standard Summation or constant-
weight formula for aggregating individual contributions, we have seen that the

equilibrium is at point E where the two Reaction Curves intersect, This
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solution is obviously inefficient, in that the shaded area in the diagram
pictures a "region of mutual advantage"” such that both parties can gain from
increased production of the collective good.

What are the requirements for efficiency? It is useful to distinguish

what I shall call a mutual-tangency condition and an absolute condition. The

mutual-tangency condition is pictured in Figure 1 by the curve CD, of which
the portion CD, 1s included within the shaded region of mutual advantage.
CD 1is the locus of points satisfying

MRSA(X) - MCA(xA) MRSB(X)

(11) -
W0 W0 - WGy

Notice that this equation relates the ratio of Marginal Cost MC to Marginal

Rate of Substitution MRS as between the two individuals. The absolute

condition adds the requirement that the two Marginal Costs be equal, since
otherwise production of the public good could efficiently be reallocated from

one party to the other:
(12) MCA(xA) - MCB(xB)

Putting the two conditions together leads to the familiar formula for optimal

provision of a public good:
(13) MCy(x)) = MCh(xp) = f MRS; (X) [i = A,B]

Unfortunately, our diagrammatics on Xjp,Xp axes lacks the dimensionality
required to show satisfaction of the absolute condition (12) constructively,
and therefore to locate the point or points satisfying the full optimality
expression (13). Let us assume that the functional forms are "nice"” enough to
guarantee a unique solution. Even so, the solution point might either 1lie
along CD within the region of mutual advantage (like point H) or, more

surprisingly, along CD but outside the region of mutual advantage (like
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point H').6 The interpretation would be as follows., Attaining an efficient
point like H requires only that the parties mutually agree that each will
increase his production of the public good X, by specified amounts, at the
expense of his own production of the private good Y. But if the efficient
point is located like H' outside the region of mutual advantage, its

achievement would in addition require a compensating transfer of the private

good between the two parties.7 This is clearest in the case where, due to
differing comparative advantages in production, achievement of the absolute
condition (12) would require one of the parties to almost fully specialize in
production of the public good X. Such an optimum could only be Pareto-
superior to the equilibrium point E 1if the individual specializing in
producing the public good were compensated by a transfer of the private good
Y from the other party.

The equilibrium conditions that define point E in the diagram
correspond to Nash-Cournot behavior on both sides:

MCA(xA) = MRSA(X)

(14)
MCp(xp) = MRS, (X)

Thus, for efficiency, (13) indicates that each individual should set his

6My previous paper was erroneous in implying that the solution points
would necessarily be like H, 1located within the region of mutual advantage.

7When the compensating transfer is allowed for, both parties will of
course end up better off in comparison with the equilibrium at E. I.e., H'
would lie in the region of mutual advantage with respect to the four dimen-
sions sXBsYpsYpe The paradox of the efficient solution lying outside the
region o% mutual advantage is resolved when we appreciate that the shaded area
in the diagram is really a projection of the true 4-dimensional region onto

the Xp»Xg Pplane.
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Marginal Cost equal to the sum of the Marginal Rates of Substitution. But,
for equilibrium, (14) indicates that each would set his MC simply equal to
his own individual MRS, It will immediately be evident that, in this

standard Summation case, underprovision tends to increase proportionately with

community size N, at least as a first approximation.8 Heterogeneity, on the

other hand, tends to reduce the extent of underprovision, as can intuitively
be seen if we go to the limit. If one person has practically all the social
weight (possesses almost all the resources, and therefore 1is responsible for
almost all the effective demand), he will consider the public good X almost
as if it were just as much a private good as Y, and hence would produce
approximately the efficient amount.

Weakest-link social composition function

Before turning to the general descending-weight case, it will be useful
to skip to the opposite limit represented by the Weakest-link social composi-
tion formula (2). We have seen in Figure 3 that the Reaction Curves RC,
and RCp intersect over the whole range OF along the 45° line, but that

under plausible dynamic protocols of interaction the equilibrium will actually

81t 1s not clear whether this first approximation is likely to be on the
high side (in which case underprovision does not quite grow proportionately
with N) or on the low side (so that underprovision grows more than propor-
tionately with N)., First, as is well-known, equilibrium provision does tend
to increase with N. The reason is that a new entrant's provision of X,
while a perfect substitute for others' production of X, also tends to enrich
all previous members of the community. Hence, if X and Y are normal
superior goods, these previous members will cut back their production of X,
but not quite 1:1. (This tendency of aggregate equilibrium provision of X
to grow with N tapers off for large N.) As for efficient provision, as N
increases in (13) each separate individual should produce more and, in addi-
tion, there are more individuals. But this double effect tends to be
counterbalanced by diminishing-returns considerations in the MC and MRS
functions. Hence the final net balance is unclear as to whether efficient
provision rises more than or less than linearly with N, and therefore as to
whether underprovision grows more or less than proportionately with N.
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lie at the upper limit of this range — point F,
Formalizing this, we have:
MC,(x,) = MRS,(X), where A 1is the first to reach the
equality
(15)
MCB(xB) < MRSB(X), where xp = X
Of course, X = min(xi) here equals the common value of x, and xg.
The efficiency conditions can most clearly be understood in the following
way. The mutual-tangency conditions specify, first, that the parties must be

on the 45° line, and second that mutual agreement to move away from any member

of the efficient set cannot be achieved. Thus, recalling that X = min(x1)=

(16) X, = Xg

MC,(x,) < MRS,(X) and MCy(xp) > MRSy(X)
17 or

MCA(xA) > MRSA(X) and MCB(xB) < MRSB(X)
These combine to specify only the range FG along the 45° line —— since, in
the range below point F both parties find that M.C1 < MRS1 while the
reverse holds in the range above point G. Notice that the equilibrium solu-
tion point F 1lies at the lower limit of this range.

The absolute condition here takes the form:

(18) I MC, = I MRS
i i

Incorporating this condition will identify a subset of points, or in nice

i

cases a single point like H along the 45° line, as the efficient solution.
The crucial implication here is that, necessarily, H will lie along the

45° line between points F and G. Thus, as in the standard Summation case,

there will also in general be underprovision in the Weakest-link case. One

interesting difference emerges if we recall that, in the Summation analysis,
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the efficient point might lie either inside or outside the region of mutual
advantage relative to the equilibrium solution. In the Weakest—link case, in

contrast, there is no region of mutual advantage relative to the equilibrium

point F: moving northwest from F necessarily reduces A's utility while
increasing B's. So the efficient solution must lie outside the region of
mutual advantage on Xx,, xg axes. Any such solution could not be attained
merely by negotiating as to the amounts x, and xp of the public good to be
produced by the two parties —— some kind of compensating transfer of Y would
have to be involved as we11.9
Turning now to parametric changes, we get a very neat result in allowing
the degree of heterogeneity to change. In particular, if A and B are
identical then points F and G coincide in Figure 3. Since F 1is the

equilibrium point, and the efficient solution H must lie between F and

G, 1t follows that as heterogeneity decreases, in the Weakest-link case

underprovision tends to disappear.

What about the effect of increasing community size N? There is a slight
trend toward reduced eguilibrium provision as N increases, since a new
entrant k might possibly reach the equality in (15) at a lower x; than any
of the individuals previously comprising the community. On the other hand,
there is no systematic tendency for the efficient provision to either rise or
fall with N. All we can say in general is that the efficient point H 1lies
between F and G. Increasing community size N will thus tend to enlarge
the range FG at both ends, with no clear net effect. (Also, either change

becomes decreasingly likely as N grows.)

9Once again, of course, the efficient solution is in the region of mutual
advantage if a diagram could be drawn in the four dimensions x),Xg,Y¥psYp*
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Summing up, then: In the Weakest-link case, there is no underprovision
unless individuals are heterogeneous. Given heterogeneity, underprovision
increases but only relatively slightly, as community size N 1increases,

Descending-Weight Social Composition Function (General Case)

The implications of generalized descending—weight social composition
functions should now be reasonably clear, being intermediate between those
holding for the standard Summation case pictured in Figure 1 and for the
limiting Weakest-link case of Figure 3,

Recall, however, that in the general case equilibrium could fall in any
of three different zones of Figure 2¢c: on the 45° line, or off to either
side. Figure 2c¢ pictures the most characteristic case (the one likely to be
achieved unless the individuals are very heterogeneous) in which equilibrium
occurs at point F on the 45° line, i.e., at the upper limit of the range
where the Reaction Curves RC, and RCp overlie one another. The equations

of equilibrium are identical with (15) that held for the extreme Weakest-link

case, except that X must now be interpreted as a descending-weight sum of
the individual contributions in accordance with (6).

For equilibrium along the 45° line, (6) here takes the special form:

(19) X = wx + W,

X = 3(1+w2)
where x represents the common magnitude of the individual contributions.
Since w; =1 and wy <1 for the descending-weight function, here x < X <
2x - the social aggregate X 1is greater than the equalized individual
contributions, but is less than their unweighted sum.

Turning now to the efficiency conditions, in Figure 2c there 18 now a
region of mutual advantage relative to the equilibrium point F, The mutual-

tangency condition now determines a curve like CD in the diagram, overlying

the 45° line along a range C'D' — which range lies between the respective
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contact points of A's 1indifference curve with the 45° line (point K) and
B's (point L). The CD curve will of course be described by different
equations in its various ranges, to wit:

MRSA—MCA MRSB

——— = ——, for x, <
wgMRS —  WoMRS MC, A S *p

(20)
wAusz-MCA i} —YAMRSB for ‘< x
o ]
MRS, MRS ~MCy X A

Of course, for the sector C'D' along the 45° line the equation is x, = xg.
Over this range the mutual-tangencies occur at the respective indifference-
curve kinks, the slopes in either case being between the limits represented by
the upper and the lower expressions for slopes along Uy (the left-hand
expressions) and along Up (the right-hand expressions).

Now, as heterogeneity parametrically decreases, points F and G tend
to merge in the equilibrium solution. Similarly, points K and L (and
therefore also C' and D') tend to merge in the efficient solution. Since
G and K are separated by a finite gap along the 45° l1ine, some underprovi-
sion will in general persist even in the case of completely identical
individuals. Only as the weights w; approach the Weakest=-1link condition
(i.e., the more powerful is the diminishing-returns effect that discounts
greater-than-minimum contributions) will underprovision tend to disappear in
the identical-individual case.

As for population size, we saw that underprovision tended to grow
proportionately with N 1in the Summation case that represents one end of the
descending-weight spectrum, but only very slightly with N in the Weakest-
1link case that represents the other end. Thus, in the general descending-

weight case, the population-size effect will be intermediate between these
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two extremes,

Iv

Since the idea of social composition functions is a relatively new one, 1
believe it will be useful to discuss certain additional features of different
production technologies for public goods, to see how these features are
reflected in the form of the composition function.
1. Inequality

In considering descending-weight composition functions I have allowed for
individuals who are heterogeneous with respect to tastes, productive advan-
tages, and endowments. But there is one respect in which I have implicitly
assumed everyone to be on a basis of equality: to wit, each has equal

responsibility for the public good. In the case of a chain, each individual

was assumed responsible for one single link —— though varying personal
circumstances might incline some of them to produce links of greater or lesser
strength than others choose to provide.

This equality assumption is by no means necessary for the analysis. We
could easily generalize by allowing for unequal responsibilities, for example,
letting individuals have control over varying numbers of links in the chain.

I will not attempt to provide the generalized equations here, but it can
intuitively be seen that qualitatively similar results continue to hold.
Imagine a two-person community using a chain of 100 links (perhaps for the
purpose of supporting a bridge for common use), and suppose a "little man” A
is responsible for only one link while a "big man” B 1is responsible for the
other 99. 1If the technology is still of the strict Weakest-link form, despite
his small share of responsibility A still has “"veto power" over the strength

of the chain.
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Weakest-link social composition functions are of course somewhat
analogous to unanimity-rule voting schemes, and the veto power of the small
individual in this example suggests the "strategic holdout” problem that
arises in unanimity voting.lo However, there is an important contrast here.
While it is true that the "little man” A has veto power, his willingness to

exercise that veto is weakened by the fact that his costs of production are

low. At one extreme we might imagine that the "big man” B derives no more
benefit than A from any given level of X. For example, A and B might
use the chain bridge with equal frequency. Here the individual benefit-cost
calculus makes the bridge relatively much more desirable for the little man,
hence it is B who has greater strategic bargaining power. Or, it may be
that the big man derives higher benefit roughly in proportion with his higher
cost, e.g., suppose B also uses the bridge 99 times as frequently as A.
Here there is no particularly greater bargaining advantage one way or the
other, at least in proportionate terms.

2. Amount of public good in relation to community size

There are possible ambiguities about the meaning of the social aggregate
of X when N varies. As a specific metaphor for the Weakest-link case, let
us return to the earlier example of a port whose topography is such that ship
traffic has to pass a series of sandbars. Each individual member of the com~
munity is responsible for dredging a depth of channel through one sandbar. The
socially available amount X of the public good is the minimum depth of chan-
nel. For simplicity, we will also assume here that the members of the community

are the only beneficiaries — the channel is not available to outsiders.

10See, for example, Black [1958], p. 147. Of course, strategic behavior
is only relevant if negotiations prior to final decision are permitted, such
negotiations being generally ruled out in public-good models like ours.
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What do we have in mind when we say that community size N grows,
parametrically? We must not think of the ratio of population to sandbars as
increasing —- this changes the nature of the problem. Rather, we want to
compare another community where “everything else is equal” in some relevant
sense while N grows larger — and we want to ask how this change in size
affects both equilibrium provision and efficient provision of X.

An interpretation consistent with the previous diagrams and equations
would be that the larger community in terms of N 1is located in a port with a
correspondingly larger number of sandbars. Then, as was argued above, the
efficient solution shows no systematic tendency for a larger or smaller X to
be provided as N increases. For, in (18), any additional individual repre-
sents an additional element in the Marginal Cost summation on the left-hand-
side of the equation (the cost of dredging another foot of depth through one
additional sandbar) but also an additional element in the MRS summation on
the right-hand~side (the value of another foot of depth for a member of the
enlarged community). As for the equilibrium provision, we saw that (given a
degree of heterogeneity) equilibrium provision tends to fall, though perhaps
slowly, as N grows. The reason is that a larger population is likely to
have a more extreme "minimal individual” who hits the limit in equation (15)
earlier, in terms of willingness to dredge the sandbar for which he is
responsible.

3. Social composition functions, "impure” public goods, and clubs

Public goods may be said to be "impure" when crowding occurs as
consumption is extended over more individuals., More explicitly, when it is no
longer possible to extend consumption of the public good without imposing some

loss of benefit to previous consumers. A clear instance is the physical

crowding of a theater as audience size grows. When public goods are impure,
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therefore, there is a kind of decreasing returns in the social demand for the

public good ~~ in the sense that, for any aggregate quantity X assumed to be
available, the sum of the willingnesses to pay grows less than proportionately
with community size N.

The theory of social composition functions discussed here deals with the

technology of social supply of public goods. The key point, as we have seen,

is that the socially available quantity X may not be represented by the
simple summation of the quantities provided by the separate individuals, but
may instead follow the Weakest-link, the Best-shot, or some other law of
soclal composition. Thinking in terms of a Marshallian scissors, the degree
of "impurity” affects the aggregation of individual demands for a public good,
while the social composition functions governs the aggregation of individual
productive contributions into a socially available supply.

An interesting application of public-goods theory, that involves both
demand-side and supply-side considerations, is "the theory of clubs” (Buchanan
[1965]). The theory of clubs inquires into the determination of optimal

community size N. Following the original argument of Buchanan, it is

necessary to balance an impurity or crowding effect leading to a range of
diminishing returns (possibly after an initial range of increasing returns) on
the demand side, against some kind of technological function showing how cost
responds to N on the supply side. With regard to the latter, however,
Buchanan's assumption was relatively uninteresting, the dominant feature being
the saving due to simple cost-spreading as N increases. That is, given any
amount X of the public good, he in effect assumed that the aggregate cost
was a fixed magnitude to be divided over the members of the community. Thus,
Buchanan was implicitly assuming a completely collectivist production

function, subject to a joint community decision. In contrast, the analysis
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here assumed separable individual production functions, with voluntary private
decisions as to the amounts of the public good each person provides. We might
say that Buchanan's analysis refers to the optimal size of a "tight" or
collectivist community, while the discussion here would be applicable to a
"loose” or voluntarist community. (Of course, optimal community size is only
one of the many questions that can be addressed by such a generalized approach

that takes account both of demand-side and supply-side considerations.)

v

I can sum up briefly. Assuming that individuals voluntarily provide
quantities of the public good in response to personal cost-benefit calcula-
tions, there are many important instances where the socially relevant
aggregate is not the simple sum of the individual contributions. For example,
the relevant magnitude for consumption purposes may be determined by the
minimum of the individual contributions (Weakest-1link) or the maximum (Best-
shot). More generally, individual contributions are aggregated into available
quantities of the public good via a "social composition function” that can
take any of a variety of forms. I argue that the most usually observed

instances tend to fall into the class of descending-weight social composition

functions, which include the Weakest-link case at one extreme and the standard
Summation case at the other. This class has a kind of diminishing~returns
property with regard to the number of individuals comprising the community.

The main concern of the paper was to show how underprovision of the

public good — the divergence between the ideally efficient and the equilib-
rium quantity — varied as descending-weight social composition functions
approach the Weakest-link condition at one extreme or the Summation condition

at the other. Also, I investigated how the degree of underprovision responds
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to certain shifts — in particular, to greater or lesser individual

heterogeneity (with respect to endowments, tastes, and productive capacities)

and to larger or smaller or community size N.

Some of the specific results arrived at are:

(1) Underprovision is of course normal in all public-good situations, but
(for any given community size) underprovision tends to become less
serious as the social composition function approaches the Weakest-link
case,

(ii) Underprovision disappears entirely (i.e., the equilibrium result is
effiéient) only where (a) the strict Weakest-~link condition applies,
and (b) heterogeneity is absent (all individuals are identical).

(i1i) Underprovision tends to increase proportionately with community size in
the standard Summation case, but only relatively slowly with community
8ize in the Weakest-link case.

Finally, I pointed to a certain logical complementarity between the

analysis here of how the socially relevant supply of a public good is

compounded from individual contributions, and recent discussions as to how
"crowding™ phenomena affect the aggregation of individual desires into a

socially relevant demand for public goods. Specifically, for an applied

problem like the “"theory of clubs,” simple summation is often not the relevant
composition function governing social supply of a public good, just as simple

summation may not always be the way to derive social demand.
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