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I. Introduction

This paper extends the characterization of dominant stgategyvmechanisms
to models with a continuum of agents. This entails, as a preliminary,
formulating an appropriate non-atomic analogue of the dominant strategy
| concept. As in the finite agents case (Vickrey [12], Clarke [2], Groves and
Loeb [6], Green and Laffont [3], Walker [13], Holmstrom [7]), we show that
they are equivalent to Groves mechanisms.

Research on economies with many agents has typically been divided into
limit economies where each individual has zero weight or limiting economies
consisting of an increasing sequence of finite agent models. Here, we combine
the limit and limiting techniques in the notion of an "infinitesimal agent."”
An infinitesimal individual is the limit of a sequence of non-infinitesimal
groups of individuals as their size diminishes to zero. This construct
permits an idealized mirroring in the limit economy of asymptotic finite

results,

The role of an infinitesimal individual, as distinct from a non—atomic
agent, can be appreciated when one considers the problems in extending the

definition of a Groves mechanism to non—atomic models. In a finite agent

economy, a Groves mechanism gives each individual an allocation whose utility



will the mechanism exhibit the dominant strategy property.

Besides filling a niche, what is the value added by establishing an
equivalence between dominant strategy and Groves-marginal-product mechanisms
with a continuum of agents that is not already present in the finite agents
case? We believe that the extension leads to a change in perspective on what
these results tell us about public versus private goods. Focusing exclusively
on finite economlies, there is a tendency towards overemphasis of the remark-
able properties of Groves mechanisms and a corresponding underemphasis on the
distinctions between public and private goods. This 1s because such
mechanisms work equally well with public or private goods iq the sense that
they characterize the class of dominant strategy mechanisms and equally poorly
in the sense that they generally lead to allocations that are infeasible
and/or not fully Pareto—efficient (Vickrey [12], Groves and Ledyard [5],
Walker [14]).

When the non-atomic setting is introduced, another issue emerges. While
the purpose of this paper is to demonstrate that the same rule continues to
characterize the dominant strategy property in finite and nonatomic economies
—— you have to pay individuals their marginal products —— one begins to see
that another important consideration is whether you can, through some feasible
allocation, pay them their marginal products. In forthcoming work we shall
maintain it is the "can" and not the “have to" that divides private from
public goods models. But, before we go on to examine the "can” we must first

establish the "have to".



u(x(a),t(a)) and v(y(a),t(a)).

The set of y-efficient outcomes in t {is

PO (t) = arg max{f v(y,t(a)dl};
y Y A

and, for any y € POy(t),

g(t) = fAv(y,t(a))dx

represents the maximum potential gains in t,.

Let T C {t:A » V] be a set of possible populations. We shall assume

that

(1) for each t € T there is a finite partition o= {Et} of A into

intervals and finite set {vt}(: V such that ¥a e E, t(a) =v e {vt}.

This restricts the set of populations to type economies. Note that while the
number of types in any t 1is finite, the number of types in T n;ed not be
uniformly bounded. PFurther, the set V of possible types may be infinite.
Just as the simple functions are a dense subset of the integrable functions,
so the set T satisfying (1) is "rich"” in the set of measurable mappings

t:A + V (assuming V has a Borel structure).

In addition, suppose that
(2) ¥ ¢ T, Poy(t) + P

Condition (2) is assumed rather than derived fromm more primitive assumptions
about Y and V. It presumes that ¥t ¢ T ¥y ¢ Y, fv(y,t(a)) exists.

A mechanism is a mapping £:T + Y x L. Say that f 1is y-efficient,

written f ¢ POy[T], if ¥t, £(t) ¢ POy(t).



says that each member of E;, makes the same representation (constant over
- k)'

We shall repeatedly refer to a t, {Ek} and {tlcé} which will be
implicitly understood to satisfy (respectively) t € T, (3) holds for {Ek}’
and (4) holds for {t|t!}€ T.

For the population t, the utility function of the group E; over
outcomes is

Uk(x,t) = IE u(x,t(a))dAi.
k
(The existence of Uk(.,t) is presumed.)
Let Gk(t|té,t) be a measure of the amount by which the mechanism fails
to achieve the dominant strategy property for the group E, when the true
population is t and the announcement by E, 1is t|t£. The measure

satisfies
(5) S (tltht) > T (£(e),0) = U (ECe[el), 0.

Relative to the mechanism £, B, can improve its payoff by at most |6k|
units of money if it changes the population from t to tltﬁ.

The mechanism f has the dominant strategy property for infipitesimal

individuals, written f € DS[T], 1f ¥t ¥{E }¥{t|t]}, there exists

Gk(tlti’t) satisfying (5) such that

§(eleg,t)

(6) lim
M

0 ()‘k = A(Ek))

When added to (5), condition (6) says that the per capita advantage of

misrepresentation goes to zero faster than the size of Epe. Thus, any



satisfies the Radon—Nikodym condition if ¥t ¥{E | V{tlté},

U (£(ef{t!),t)
(7) lim k Al k exists,.

This restriction means that the per capita payoff to Ek cannot oscillate
indefinitely throughout the sequence {t|ti}. When NE, = {a}, the
definition of u(f(t|t'(a)),t(a)) is given by the limit in (7).

An Interpretation of condition (f) for infinitesimal individuals can
now be given in terms of a derivative. Regard Gk(tlti,t) as a function of
Ak. The slope of & at A = 0 measures the mechanism's -departure from

incentive compatibility for an infinitesimal agent of type t(a). For a

o a8, (e e1.0)|
dominant strategy mechanism, dkk I = (0, Similarly, regarding
A
k
. au (£(e|e0),0)|
Uk(f(t|t£),t) as a function M (7) says that dkk
exists, Thus, (1) can be written as ka,o
. dék(t|ti,t) X dUk(f(tlti),t)I i du, (£(t),t)

dh A =0 dh | A =0 dhe xk=o.
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small group E.'s deviation from t and varies not at all in the limit for
any infinitesimal individual. Thus, for infinitesimal individuals the

quantity Hp 1s a lump sum.
Theorem 1. G[T] C.DSPOy[T].

Proof: If f e G[T], then ¥t,

v(y(£),t(a)) + g“(£(t),t) + B, ()

U, (f(t),t) = (y(t),t(a) + M (t)
k N S

g(t) + H (t).

The last inequality follows from f£(t) ¢ POy(t). Similarly,
U (ECe|el),0) = gly(e|e)),e) + H (e|e)),

where g(y,t) = IAV(Y,t)o

Noting that S(Y(tlti),t) < g(t), let
s (elel,e) = B (e]e)) - B (e) > [g(y(e|e)),e) - g(e)] + [H (c]t)) - H (E)]

= U (£(t|e)),t) - T (£(8),0).

Thus, E, satisfies (5) and dividing by Ak’ (9) implies (6).

B. The Replacement of Groves Mechanisms by Marginal Product Mechanisms

If £ 1is a Groves mechanism, the proof of Theorem 1 shows that
U (£(t),t) = g(t) + H(t), i.e., the utility received by E, equals the

entire gains from trade in t plus a lump sum. In finite economies, this
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marginal product. The mechanism £ ¢ MP[T] is a marginal product (MP)

mechanism {f £ & PO [T] and ¥t v(g } ¥{t|e)},

I (t]tl) = L (t)
k%) 7
(11) lim =0
e

With the definition of I, in (10), condition (11) says that small
groups receive a per capita utility that differs from their marginal product
by an amount that does not vary very much with their characteristics. So, in
any MP mechanism, every infinitesimal individual always gets his/her marginal

product plus a lump sum.
. Theorem 2., G[T] = MP[T],

Proof: Suppose f ¢ G[T]. Then by the argument in the proof of Theorem 1

ve ¥{E } ¥{t|el},

U (ECe|eD),eel) = gle]e)) + B (e|e))

lsCe|e]) - g5Ce[eD)] + [gCe|e)) + B (t[e)]

Me, (ele)) + [°(e[e)) + B (e|eD)]

= MPk(t|t£) + Ik(tlti).

Since gk(tlti) = gk(t)’ condition (9) on Hy implies (11) on Iy.

. The converse just runs the argument 1in reverse. H

REMARK 3: Within the class of Groves mechanisms for finite economies, the

pivot mechanism (see Green and Laffont [4], p. 42]) is the one which rewards
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mechanisms are the only ones in DSPoy[T].

Throughout the following discussion, ¢, {Ek}’ and {tlti} are fixed.
Consider a one—dimensional parameterized family of populations {t'té(a)},
where a € [0,1]. Say that {t'té(a)} connects t with {tlti} if for all

a and Kk,

(12) (1) tlef(a)(a) = t(a) if a e AR
(i1) tlti(a)(a) = t(a) e V if ae B
(111) t|tr(0) = ¢t
(1v) elel(1) = tfe]

Restrictions 12(i) and (ii) imply that {t|ti(a)} exhibits the same condition
(3) as we imposed on {t|té}. -Restrictions 12(1i1) and (iv) say that for each
k the family of preferences start at t and end at tltﬁ. Merely by
putting t|t£(a) =t when 0 < a<1 and tltﬁ(l) - tltﬂ we have a trivial
example of (12)., We shall need more.

For a mechanism f, let y(tlté(s)) be the y-outcome when individuals

in Ep announce that their preferences are of parameterized type B8, or

simply type B, where B ¢ [0,1]. Define
g, (B,o) = g(y(t|ef(B), t]ty(a))

as the total galns when Ek announces that it is of type B when it is

actually of type a. Because t and t ti are fixed, we have suppressed the

functional dependence of g, on them.

~Following Holmstrom, T is smoothly comnected if ¥t ¥{E |} V{tlté},

there exists a parameterized family satisfying (12) and ¥B,a € [0,1]

and ¥k, there is an M such that
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Note that Akmpk(a,a) = MPk(tlté(a)). Further, since agklaa = 0,
condition (13) defining smooth connectedness implies that
(14) ¥k ¥a,B € [0,1], ampk(B,a)/aa exists and is uniformly bounded by M.

To show that the dominant strategy property requires that infinitesimal
agents must be rewarded with their marginal products, we shall have to assume

that such marginal products exist., Say that T is regular with respect to

£f if £ ¢ POy[T] and ¥t V{Ek} V{tlté}, there is a function mp:{0,1] x

[0,1] + TR differentiable in its second argument such that ¥B,a ¢ [0,1]

(15) (1) lim mpk(B.a) = mp(B,a) -

3mPk(B,G) amp(B,a)
3o sa

(11) 1lim

Let RNDSPOy[T] be those mechanisms in DSPOY[T] that also satisfy the

Radon-Nikodym condition (7). We can now state and prove our main result.

Theorem 3: Assume f ¢ RNDSPOy[T] and that T 1is smoothly connected and

regular. Then, f € MP[T].

Proof: Suppose f ¢ RNDSPOy[T] and consider an arbitrary ¢t, {Ek}’ and
{tlté}. Without loss of generality, we can assume that for all a,B, and

k there exists a hk:[0,1] + IR such that

U (£Ce|€L(B)),t]t(a))

Me

(16) = mpk(Bm) + hk(B).

To verify, note that
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(18) a € arg max mp(B,a).
B

Finally, observe that (14) and (15) imply that ¥a,8,

omp(B8,a)

(19) 5 < M,

Given (17), (18) and (19), we can apply the principal lemma in Holmstrom

(71.

Lemma: Let ¢:[0,1] x [0,1] + TR and v:{0,1] + IR satisfy ¥a,B8 ¢ [0,1],

(a) a € arg max Y(B,a) + v(B),
(b) a € arg max Y(B,a),
B .
' )
(c) | _‘L(gg?.)_l <M.

Then, Vv 1is constant on [0,1].

Substituting mp(B,a) for w(B,a) and h(B) for v(8), we conclude

that h must be constant on [0,1].
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