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Abstract

In this paper I give an axiomatic basis for an anticipated utility
function of a preference relation between lotteries, which is a generalization
of Expected Utility Theory. I prove that this function can explain the Allais
paradox and the common ratio effect. Moreover, this function is compatible
with both the Independence Axiom and the Reduction of Compound Lotteries
Axiom. I show that when used together with the Independence Axiom, this
function can explain some phenomena concerning two-stage lotteries, including

the probabilistic insurance phenomenon.



1. Introduction

The optimal choice among a set of uncertain alternatives has been
discussed since the early 18th century. Bernoulli (1738) suggested that
people prefer the lottery yielding the greatest expected utility rather than
the lottery with the highest expected value. According to this theory, the
value of the lottery (X;,Pjjess;X,sPy)s Which yields x; dollars with
probability py, 1 =1,...,n, is Zpiu(xi). Von Neumann and Morgenstern
(1947) first presented a formal set of axioms implying maximization of
expected utility, most important being the Independeﬁce Axiom (TA). This
axiom states that lottery A is preferred to lottery B if and only if for every
positive ﬁ and for every lottery C, (A,p;C,1-p) 1is preferred to
(B,p;C,1-p). ((A,p;C,1-p) constitutes a two-stage lottery where one
participates with probability p 1in lottery A and with probability 1-p in
lottery C). In addition to this, von Neumann and Morgenstern need the
Reduction of Compound Lotteries Axiom (RCLA), This axiom states that a
decision maker would be indifferent between a two-stage lottery and the one-
stage lottery that yields the prizes of the original lottery with the
corresponding probabilities, That is, if A = (xl,pl;...;xn,pn) and B =
(yl,ql;,..;ym,qm), then (A,p;B,1-p) 1is equally preferred to the one-étage
lottery (xy,PPyje««;XpsPPy3¥1»(1-P)qy 5037y, (17P)qy). Savage (1954)
replaced the IA with the Sure Thing Principle (STP), where (x,p;Y¥,q;0,1-p-q)
is preferred to (x,p;y',q';0,1-p—q') if and only if (x',p';y,q;0,1-p"'—q)
is preferred to (x',p';vy',q';0,1-p'-q').

Recent experimental evidence shows, however, that people do not always
behave in accordance with this theory (see Allais (1953), Kahneman and Tversky
(1979), MacCrimmon and Larsson (1979), Ronen (1971), and Snowball and Brown

(1979)). To provide a descriptive theory consistent with these data, Kahneman



and Tversky proposed Prospect Theory. They agreed with the STP, but suggested

that the value of the lottery (x,p;v,q;0,1-p~q) 1is

(1.1) n(plu(x) + n(q)u(y).

However, the only = consistent with this axiom is the identity function,
which reduces this theory to Expected Utility Theory (EU) (see Machina
(1982) and Segal (1984)). The basic problem with this theory is that it
contradicts first order stochastic dominance, where (a) (x,p;x,q;y,1l-p=q)
and (x,p+q;y,l1-p~q) are equally preferred, and (b) 1if x>y, p+q =
p'+q' =r, and p > p', then (x,p;v,q:;2z,1-r) is preferred to
(x,p';y,9';2,1-1).

‘Machina (1982) took a different approach. In his view, one cannot accept
the IA and still behave in accordance with the Allals paradox (see Section 3
below). He assumed that the preferences are continuous and transitive, and
that they can be represented by a Frechet-differentiable functional. Quiggin
(1982) too claimed that if one wants to differ from EU without violating some
fundamental assumptions such as transitivity or first order stochastic
dominance, then the IA must be omitted or at least weakened.

This paper shows that observed violations of EU may be consistent with IA
if RCLA is relaxed. Indeed, Kahneman and Tversky (1979), Ronen (1971) and
Snowball and Brown (1979) presented empirical evidence suggesting that
decision makers do not obey the RCLA, Kahneman and Tversky's experiments even
indicate that people will accept the IA.

In Section 2 I present a set of axioms implying that the value of the

lottery (xl,pl;...;xn,pn) where Xy € eee € X equals
(1.2) ul(xy) + [ul(xy) - u(x)]E(ppteeetpy) + vou + [u(x,) = ulx,-1)1£(p,)

This function resembles Quiggin's function, therefore I follow him in calling



it Anticipated Utility (AU). I discuss the differences between (1.2) and

Quiggin's function in Section 9.

In Section 3 I show that (1.2) is compatible with the Allais paradox
when £ 1is convex. If, in addition, the elasticity of f 1s increasing,
(1.2) is compatible with the common ratio effect and certain phenomena
concerning two-stage lotteries. I discuss some generalizations of these
phenomena in Section 4 and the IA and the RCLA in Sections 5 and 7. 1In
Section 6 I show that AU can explain the probabilistic insurance phenomenon,
even 1f the utility function is always concave, provided that f 1s convex.

A discussion of AU and the Ellsberg Paradox will appear in a separate paper,

2. Representation of é:

Let L; be the family of all the bounded random variables. For every

Ael define the cumulative distribution function Fy by FA(x) =

1’
Pr(A < x). Let A% = C¢ {(x,p) € R x [0,1]: p> F,(x)}, At =

inf {x: F,(x) = 1} and A = sup{x: F,(x) = 0} (see Figure 1).

N\

Figure 1

o

1
satisfy the following conditions:

Let L. be the family of all?the closed sets A° in R x [0,1] that



1., If (x,p) €A%, y<x and p<q<1l, then (¥,9) € A°,

2, There exists x such that (x,l1) £ A°,

3. There exists x such that (x,0) ¢ A°.
Obviously, there is a one-to-one correspondence between L, and Lg.
Let L* be the set of all the elements of L, for which the range of

1
FA is finite. Elements of L

*
l’
of the form (xl,pl;...;xn,pn), where Xy <X € eee & X and Zpi = 1.

cailed prospects, will be denoted by vectors

Such a vector represents a lottery yilelding x4 dollars with probability py,
i=1,...,n, Obviously, if A = (xl’pl;'°';xn’Pn)’ "then

0 x < x

1
i
FA(x) = z pj X, ¢ X < Xin
j=1
1l X >»X
n
-—
n-1
Z p. ’
i=1 *
PP,
——— P
! *2 0 *n-1 Xn
Figure 2

On L, (and Li) there exists a complete and transitive binary
relation, > . A~3B iff AX B and B>A, and A >B iff A>B but

not B> A, I assume that ,%. satisfies the following assumptions:
~ )



(a) Continuity: }I is continuous in the topology of weak convergence.
That is, if A, B, B}, By,ees € Ll’ for all 1 A?:Bi, and if at each
continuity point x of Fp, FBi(x) +> FB(x), then A?:B. Similarly, if A,

B, Aj, Ajyeee € L for all 1 Ay >: B, and if at each continuity point x

l’
of A, FAi(x)-»FA(x), then AtB_.

(b) First Order Stochastiec Dominance: If, for every x, FA(x) <

FB(x), then A.t B.

Remark: The representation function (1.1) suggested by Kahneman and Tversky
(1979) contradicts this assumption, unless 1w i1is linear.

Let A be the set of all the bounded closed sets in R x [0,1], and let
v={(4°,8) e L) x At Int AN Int § = 9, A°U & ¢ L7}

Define @: ¢ » L] by A% @ &=2A"Us.

(¢) Cancellation: A° @ § i’- B & § iff Aot 8°.
o o
Define on A orders R, by SlRAGZ iff A" & 8 >A" @ 62.
Lemma 2,1: For every A and B, R, and Ry do not contradict each other.
Proof: All the proofs appear in the Appendix.

Let R ={JR,. That is, GlRGZ 1ff there exists A such that SlRAGZ.
A
It can be proved that R 1is acyclic. That is, GIRGZR...RGtRél imply

* *
letR...RGZRél. Let b be the transitive closure of R: 61 b 62 iff

there exist 63,...,6

s

*
such that § Ré6,R...R§_ RS, and > is obviously
1 t 2 ~

t 3

complete and transitive.

(d) For every x <y <z agﬁ 0<p<q<<r«l, [v,z] x [p,q] 2;

[y,2) x [q,r] 1£f [x,5] x [p,a] g [x,y] x [q,r].



For the reasoning behifxd this assumption, consider Figure 3. Assume that
8 ~ 5, and & U8 "6, That 1s, A°U 65~ A°U & and
LU 8 UsU 8 ~8°U 8 U 8§, AU 6,U 6 58°U &, hence
65U 66 .5:* 65 and 62 }; 61. Since the projections of the rectangles
61 and 62 on the prizes axis are .the same, the b* order between them is
determined by their projections on the probabilities axis. The projection of
63 and 54 on the prizes axis is also the same, hence the '}:* order between
them is defined by their projections on the probabilities axis. Since the
probabilities axis projections of 63 and 64 equal those of 61 and 62

. * *
respectively, 64}_ 63 iff 62*_ 61.

8 %
A® r
61 63
q
62 ) 4
P
X )4 Z
Figure 3

Theorem 2.2: There exists a function u: R+ R, unique up to positive linear
transformations, and a unique function f£f: [0,1] + [0,1], satisfying £(0) =
0 and £(1) =1, such that A >B {ff

+ | +

jl u'(x)£'(1-p)dpdx » u(B”) + j_B jl u'(x)f'(1-p)dpdx
]

(2.1) u(a”) + JA
A F,(x) B Fp(x)

' *
Conclusion: On Ll the relation > can be represented by the function



V(XysP15eeesXysPy) =
(2.2) u(x )E(py) + ulxy ) E(pytpyoy) - £(p)] + oot +
u(x))[1 = £(p +...4p,] =
(2.3) u(xy) + [u(xg) = u(x))IE(PFeeatpy) + ouu +
lu(x,) = u(x,_y)1f(p,)

Remark: If £(p) = p, then (2.1) - (2.3) reduce to the EU representation

function.

3. Unravelling of "Paradoxes"

In this section I show that some behavioral patterns, although
inconsistent with Expected Utility Theory (EU), may agree with AU theory.
In each case I will present the behavioral pattern, explain why it contradicts
EU, and show that it may be consistent with AU theory. (MacCrimmon and
Larsson (1979) discussed these patterns and their relationship to EU

hypotheses in detail.) As before, u(0) = 0.

3.1 The Paradox of Allais (1953)

Problem.1l: Choose between

A, = (0,0.9; 5000000,0.1) and By = (0,0.89; 1000000,0.11)

Problem 2: Choose between

Ay = (0,0.01;’1000000,0.89; 5000000,0.1) and B, = (1000000,1).
Let 1M denote 1000000. According to EU, A1 i:Bl iff 0.lu(5M) » 0.11lu(1M)
1iff 0.lu(S5M) + 0.89u(1M) > u(1M) Aiff A2 E;Bz. However, most people prefer
Al to Bl’ but B2 to A2. @

Using (2.3) yields A, > B, iff



(3.1) u(5M)£(0.1) > u(IM)£(0.11)
and By ™ A, iff
(3.2) u(IM)£(0.99) + [u(5M) - u(IM)]£(0.1) < u(IM)f(1).
(3.1) and (3.2) together imply
u(IM)[£(1) - £(0.99)] > u(5M)£(0.1) -~ u(IM)£(0.1) > u(IM)[£(0.11) - £(0.1)].

Thus, if £ 1is convex and if

£(1) - £(0.99) + £(0.1) N u(5M) N £(0.11)
£(0.1) u(1M) £(0.1)

then the choices A; > B; and B, > A, are compatible with (2.3).

The following data come from Kahneman and Tversky (19795:

Probiem 3: Choose between

A3 = (0,0.67; 2500,0.33) and By = (0,0.66; 2400,0.34)

Problem 4: Choose between
Aa = (0,0.,01; 2400,0.66; 2500,0.33) and B4 = (2400,1).

According to EUT, A3>;B3 iff A4$; Ba. Most people, however, prefer A3
to Bj, but B, to A,. These results are compatible with AU theory if f

is convex and if

£(1) - £(0.99) + £(0.33) s u(2500) > £(0.34)
£(0.33) u(2400) £(0.33) °

3.2 The Common Ratio Effect

Problem 5: Choose between
A5 = (1000000,1) and BS = (0,0.2; 5000000,0.8)

Problem 6: Choose between

Ay = (0,0.95; 1000000,0.05) and Bg = (0,0.96; 5000000,0.04).

According to EU, AS‘E B5 iff u(IM) > 0.8u(5M) iff 0.05u(1M) » 0.04u(5M)



iff A_>B Most people prefer Ag to Bg, but Bg to Ag.

6 6°

u(IM)£(1) > u(5M)£(0.8)

s £Q) o u(sM) o £(0.05)
£(0.8) w(1M) £(0.04) °*

u(5M)£(0.04) > u(IM)£(0.05)

A sufficient condition for £(1)/£(0.8) > £(0.05)/£(0.04) 1is that for
every a > 1, f(op)/f(p) 1is increasing with p. (In this example a =
5/4)., This occurs iff

apf ' (ap) pf'(p)

of'(ap)f(p) > £(a@)f'(P) <=> oy I

The elasticity of a function f is defined as =xf'(x)/f(x). Thus, if
the elasticity of f 1is increasing, then choosing A5 and B6 is compatible

with (2.3).

MacCrimmon and Larsson (1979) investigated a more general form of this

decision problem:
Problem 5*: Choose between

* *
A5 = (0,1-p; x,p) and B5 = (0,1-0.8p; 5x,0.8p)

By (2.4), A;bB; 1FF u(x)£(p) > u(5x)£(0.8p) 1ff

£(p) 5 ulsx)
£(0.8p) u(x)
* *
MacCrimmon and Larsson found that the preference for A5 and B5 is
increasing with x and with p. One obtains these results if the elasticity

of f 1s increasing and the elasticity of u, decreasing.

Kahneman and Tversky (1979) observed similar patterns. For example:

Problem 7: Choose between

o

A; = (3000,1) and By = (0,0.2; 4000,0.8)
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Problem 8: Choose between
A8 = (0,0.75; 3000,0.25) and B8 = (0,0.8; 4000,0.2).

Most people prefer Ay to B4, but Bg to A8. Increasing elasticity of

f may explain this phenomenon.

4, The Convexity of f

In this section I discuss some properties of the preference relation 2:

resulting from the assumption that £ is a convex function.

Definition: Fp is said to differ from F, by a simple compensated spread if
. *
A ~ B and if there exists a point x* such that for every x € X FB(x) >

FA(x) and for every x > x* FB(x) < FA(x) (Machina (1982, p. 281)).

Generalized Common Ratio Effect (GCRE): Let A, B, C, D ¢ L1 such that C
and D stochastically dominate A and B respectively, and FD - Fo =
g(FB - FA) for some & > 0. If Fg differs from Fy, by a simple compen-
sated spread, then C é;D, and if FD differs from FC by a simple

compensated spread, then B A A (Machina (1982, p. 305)).

The common ratio effect (3.2 aBove) constitutes a special case of the
GCRE, Let A = (0,1-p; x,p) and B = (0,1-q; y,q) such that 0 < x < vy,
1>p>q and A~ B, By definition, B differs from A by a simple
compensated spread. Let 1 < A <-% and let C = (0,1-)p; xX,Ap), D =
(0,1-)q; ¥,)q)s C and D stochastically dominate A and B respectively,

and Fp - Fq = A(FB - F The GCRE requires that C > D, as MacCrimmon and

A)'
Larsson (1979) found.
1f &: can be represented by an EU function, then it satisfies the GCRE

assumption because B~ A 1iff D~ C, I now prove that EU function is the
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only function satisfying assumptions (a) - (d) and the GCRE. This functional
form cannot resolve the Allais paradox and the common ratio effect. Hence, if
a decision maker behaves in accordance with assumptions (a) - (d) and the

Allais paradox or the common ratio effect, then he cannot satisfy the GCRE,

Theorem 4.1: 1If 2: satisfies assumptions (a) - (d) and the GCRE, then it can

be represented by an EU function. In other words, AU reduces to EU.l

Although AU cannot satisfy GCRE (unless f£f(p) = p), it satisfies some

modifications of this assumption.

Generalized Allais Paradox (GAP): Let A, B, C, D ¢ Ll such that C and D

stochastically dominate A and B respectively, and Fp - Fo = Fg = Fye

Assume, moreover, that B differs from A by a simple compensated spread,
* *

and let x° be such that for x < x FB(x) > FA(x) and for x » x Fg(x)

< Fp(x). 1If for x > x* Fo(x) = Fu(x) (and Fp(x) = Fg(x)), then C &;D.

To obtain the Allais paradox, let A = (0,0.89; 1000000,0.11), B =
(0,0.9; 5000000,0.1), C = (1000000,1), D = (0,0.01; 1000000,0.89;
5000000,0.1), and x" = 1000000.

It is reasonable to assume that decision makers obey the GAP. Let A =
(0,1-p; x,p), B = (0,1-q; y,q), C = (0,1-p-r; x,ptr) and
D = (0,1-q~r; x,r; yV,q) such that 0 <{x<y, p>q and A~B, C may be
understood as A plus an r chance of receiving x, while D equals B
plus an r chance of receiving x. Note, however, that with the shift from

A to C the probability of 0 1s reduced relatively more than with the

(%3
IMark Machina pointed out to me that Quiggin's theory of AU is consistent
with GCRE 1iff it reduces to EUT.
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shift from B to D. Since A~ B and Fg=- Fy = F - Fy, C should be

preferred to D, as predicted by the GAP.

Theorem 4.2: Assume that &; can be represented by (2.1). t; satisfies the

GAP iff f 1s convex.

Machina (1982) defined the local utility function U(x,F) and proved that
A E;B whenever A stochastically dominates B 1iff U(x,F) 1is nondecreasing
in x for every cumulative distribution function F. Also, A i; B whenever
B differs from A by a mean preserving increase in risk iff U(x,F) 1s a
concave function of x for every F.2 One can prove that if t; is

represented by (2.1), then the local utility function U(-,F) is given by
U(x,F) = |* u'(s)f'(1-F(s))ds.

Differentiating twice with respect to x implies

(4.1) ul(x,F) = u'(x)f'(1-F(x))

(4.2) ull(x,F) = u"(x)f'(1-F(x)) - u"(x)E"(1-F(x))F'(x)

Because u and f are increasing functions, by (4.1), U is nondecreasing
in x. t; indeed satisfies the first order stochastic dominance axiom
(Section 2, assumption (b)). If u 1is concave and f 1is convex, then by
(4.2), U 1is a concave function of =x. According to Machina's theorem, if

B differs from A by a mean preserving increase in risk, then A k;B.

2The local utility function is defined in Machina (1982), Section 3.1l.
For the definition of mean preserving increase in risk see Rothschild and
Stiglitz (1970).



13

5. Two-Stage Lotteries and the Independence Axiom

A two-stage lottery is a vector (Al’pl;"';Am’pm)’ where Aj;,...,A;
*

are prospects in L1 In such a lottery there is a py probability that the

decision maker will participate in lottery Ai’ Ai = (xi,pi;...;xi ,pi ),
i 1
*1 *
£ =1,000,m Let L, = {A,p 500038 ,p )¢ AjseeesA € Lyy pryeeespy >0,

*
2

*
complete and transitive preference relation i: on L2, which, when

*1 *
Ip, = 1}, 1let L, = L, U L,, and assume that the decision maker has a

*
restricted to Ll, satisfies assumptions (a) - (d) (and can therefore be

*
1

Ttwo independent axioms concern the transformation of a two-stage lottery

represented on L, by (2.2) - (2.3)).

into a one stage lottery.
1. Reduction of Compound Lotteries Axiom (RCLA):

i 1 i i
Let Ai = (xl,pl;c-o;xni,pni) i= 1,-.- yMe

(501) (A19P1;°'°;Amapm) ~

(xl 1, 'xl 1, - m, :x® ,p m
l’plpl’...’ n ’plpn yecey l'pmpl""’ n ? mpn
1 1 m m

2. Independence Axiom (IA): For p > 0, (A,p;C,1-p) :;(B,p;C,l—p) iff
A LB,

Conclusion: Let CE(Ay) be the certainty equivalence of Ay, given
implicitly by (CE(A;),1) ~ A/, and explicitly by CE(Ay) = u~levea ).
Assume without loss of generality that CE(AI) € eee € CE(Am). 1f ﬁ:

satisfies IA, then
(5.2) (AysPyseeesAn,py) ~ (CE(A)),py5...3CE(AY),py) =
(uL(V(A)) Py e e 5u™ L V(AL spy) -

EU employs both axioms. Quiggin (1982) accepted only the RCLA and a weak

version of the IA (see Section 8 below).
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Kahneman and Tversky examined the wvalidity of the RCLA.
Problem 9: Choose between

Ag = (0,0.75; 3000,0.25) and Bg = (0,0.75; (0,0.2; 4000,0.8),0.25)

3000 0

4000 0

According to the RCLA, By~ Bg, hence Ag >~ Bg 1iff Aq ~ By. Most
people prefer Ag to Bg, but Bg to Ag in accordance with the IA, A9 =
(¢0,1),0.75; Ay,0.25), Bg = ((0,1),0.75; B;,0.25), and indeed, Ay > By
and Ag > Bg.

Other empirical studies, like Ronen (1971) and Snowball and Brown (1979),

also showed violations of the RCLA,
Problem 10 (Ronen (1971)): Choose between
Ajq = (~50000,0.1; (~50000,0.5; 70000,0.5),0.9)
Byg = (~50000,0.4; (-50000,0.25; 70000,0.75);0.6)
By the RCLA, A5~ Blo~ (~50000,0.55; 70000,0.45).. Most people prefer,
however, A;; to Bio*

AU theory, as developed so far, is compatible with both the RCLA and the

TA., Since pi in (5.1) may equal zero, we may assume without loss of

generality that the set of prizes %in each of the prospects Aj,eensAy 1s the



15

0.6 0.4
B0 j
;
- -50000
0.75 \ 0.25
70000 -50000 70000 ~-50000

same, denote these prizes by xl,...,xz, and assume that Xy € vee € Xge By

the RCLA and (5.1)

m

pX pjpj)

(A ,P 500034 a’Pn )~(x , 2 p pj,--.,x ’
1°F1 jF1

Vim Y

hence by (2.3)

m
(5.3) V(A ,p 5ee03A n’Pn ) = U(x ) + [u(x,) - u(x ) 1£( L‘ I p Pj) + o0 +
1°71 2 122 3-1 i1

- b
[u(x ) u(xz l,lf(jtl Pjpz)

If the IA is employed, then by (5.2) and (2.3)

(5.4) V(Al,pl;...;Am,pm) = V(A;) + [V(Az) - V(Al)}f(pm+...+p2) + 0o +
[V(Ay) - V(A _;)1£(py)

In particular, it follows from (5.4) that if z: satisfies the IA, then the

value of the two-stage lottery (O0,1-p; (0,1-q;x,q),p) equals

u(x)f(q)f(p). Applying this function to problem 9 shows that Ag > Bg iff

u(3000)£(0.25) > u(4000)£(0.8)£(0.5:5), while BS> Ag iff u(4000)£(0.2) >

u(3000)£(0.25). These two inequalities are consistert only if



6 A <u'1[u<x>f(q>f<p>] 1)

f(1) > £(0.25)
£(0.8) £(0.2) °

Increasing elasticity of f implies this inequality. Ronen's results (Alo)*
Big)  may also be explained in the same way. V(Alo) = u(-50000) + [u(70000) -
u(-~50000)1£(0.5)£(0.9) while V(BIO) = u(~-50000) +

[u(70000) - u(~-50000)]£(0.75)£(0.6), therefore V(AIO) > V(BIO) only if

£(0.75)
£(0.5) °

£(0.9)
£(0.6)

>

Increasing elasticity of f implies this inequality.

6. Probabilistic Insurance

Problem 1l (Kahneman and Tversky (1979, p. 269)): Suppose you considervthe
possibility of insuring some property against damage, e.g., fire or theft,
After examining the risks and the premium you find that you have no clear
preference between the options of purchasing insurance or leaving the property

uninsured. [Denote the possible loss by x, 1its probability by p, and the

insurance premium by Kk.]

It is then called to your attention that the insurance company offers a

new program called probabilistic insurance. In this program you pay half of

the regular premium. In case of damage, there is a 50 per cent chance that
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you pay the other half of the premium and the insurance company covers all the
losses; and there is a 50 per cent chance that you get back your insurance
payment and suffer all the losses.,

Let Ay = (-%,p;-k,1-p) (no insurance), Byg = (-k,1) (full
insurance), and C;; = ((~x,%1-k,%0,p; - %wl-p) (probabilistic insurance).
Kahneman and Tversky found that givén A . ~B most subjects preferred not

11 11

to buy the probabilistic insurance.
By EU, All ~ Bll > Cll iff

pu(-x) = u(-k) > %U(-X) + £ u(=k) + [1-plu(- %) <=

1 u(- %)
1 < 7+%+[l-p]m <=
k
u(- 7 1
(6.1) e} > e

A risk averse EU maximizer has a concave utility function. By (6.1),
B11}> C11 implies that u cannot be concave. In Kahneman and Tversky's
words, "This is a rather puzzling consequence of the risk aversion hypothesis
of utility theory, because probabilistic insurance appears intuitively riskier
than regular insurance, which entirely eliminates the element of risk™ .(p.
270). Kahneman and Tversky suggested instead that u for losses is convex.

In this section I show that AU can explain the probabilistic insurance
phenomenon even if u 1is concave, using RCLA or IA. For the general case

*

define C1
* Lo he sake of

for q =1, C11 = B;;s and for q =5, 11 = Cyy+ For the sake o

*
1= ((-x,1-q;-k,q),p;-qk,1-p). Note that for q =0, C;; = Aj;;

simplicity I assume in this section that there exists 8 > ~= such that for

every A ¢ Ll’ A" > 8. In particular, -x, -k 32 B.

i
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6.1 Probabilistic Insurance and RCLA

*
If t; satisfies RCLA, then by (5.1), Cll ~ (=x,(1l-q)p; -k,qp;

*

u(-x)[1 - £(1-p)] = u(-k) >
u(-x)[1 - £(1-p+qp)] + u(-k)[£(1-p+qp) - £(1-p)] + u(-qk)£(l-p) <=>
1< L EGRHD 4 fiopiap) - £Q-p) + E0IS f1-p) >
f(1-p+qp) - £(1-p) u(-qk)
(6.2) 1 - £(ip) NETE)

If u(x) = x, then (6.2) holds for every convex function £. There are

therefore strictly concave u and convex £ satisfying (6.2).

6.2 Probabilistic Insurance and IA

1f > satisfies the IA, then by (5.2)

*
(6.3) C11 ~ (CE(-x,1-q;-k,q),p; —qk,l1-p).

By (2.2), CE(~x,1-q3-k,q) = u"l(u(~x)[1 - £(q)] + u(~k)£(q)), hence by (6.3)
and (2.2), A, ~B, > cIl 1££
u(-x){1 - £(1-p)] = u(-k) >
(u(=x)[1 - £(q)] + u(-k)£(q))[1 - £(1-p)] + u(-qk)£(1-p) <=>
1 < 1-£(q) + £(Q)[1 - £(1-p)] +2§7'§% £(1-p) <=>
(6.4) £ < L98
Assume that u(B) > -=. Define g(q) = min {ﬁ—E{—E‘)‘—) : 6 <k < -g}. By

the L'Hospital's rule,

u(-qk) _
(6.5) tig a(-Kk) q.

It thus follows that g(0) =0, g(1) =1, and g 1is strictly increasing.
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For every function u (concave or convex) there therefore exists a convex

function f that satisfies (6.4).

7. Further Remarks on the IA

As proved in the last section, AU and the IA do not depend on each other,
even for a preference relation on tﬁo-stage lotteries. Quiggin (1982)
suggested that AU must contradict the IA, but, as proved above, this holds
only if one accepts the RCLA, As mentioned above, some evidence sugests that
decision makers obey the IA and not the RCLA (problems 7 - 10). In this
section I discuss some possible arguments against the IA.

Machina (1983) suggested that the Allais paradox and the common ratio
effect violate the TA, Let A = C = (1000000,1), B = (0,%T; 5000000,%%9
and D = (0,1). By the IA, (D,0.89; A,0.11) k;(D,O.89; B,0.11) {iff
(C,0.89; A,0.11) &;(0,0.89; B,0.11), while most people prefer the second
lottery to the first, and the third lottery to the fourth (p. 64).

This argument proved valid only if one accepts the RCLA. Without this
assumption, there is no reason to assume that (D,0.89; B,0.11) ~ (0,0.9;
5000000,0.1) or that (C,0.89; B,0.11) ~ (0,0,01; 1000000,0.89; 5000000,0.1).
Siﬁilarly, the common ratio effect violates the IA only if one assumes the
RCLA. 1Indeed, IA and RCLA together imply EU, which is inconsistent with the
Allais paradox and the common ratio effect., However, in the absence of the
RCLA, these phenomena do not contradict the IA,

A stronger objection to the use of the IA with AU is that if a decision
maker behaves in accordance with the IA, he should also accept Savage's Sure
Thing Principle, which in turn implies EU., Savage (1954) outlined his

assumption on a space of lotteries, where the winning of each prize depends on
54

the occurrence of a certain event. The adoption of this principle to
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prospects (where the prizes are not necessarily ordered) is as follows:

Sure Thing Principle (STP): If Zpi = Zqi, Zri = Zsi and Zpi + Zri = 1,

then
(721)  (xpPyseees® 0P 52)5T 500032,5T ) 25 (F) 50y 5eeesY 0 320 5T 500032,,T )
$=> (X sPyseeesX sP 3W 58150005W 58, ) > (F15Q150003Y 5q 5W)s8750005W 58, )
As Savage proved, this assumption, together with transitivity and
continuity, implies EU., Note that the STP applies to one-stage lotteries and
therefore is in no way a consequence of the IA unless one assumes the RCLA,
It may be argued, however, that the reasoning behind the IA and the STP are

very much the same, By the IA, if A, B, and C are lotteries and p > O,

then>
(7.2) (A,P; C,l-P) ‘E‘ (Bsp; C»l'P) <=> At B

One possible justification for the IA is that the induced order between A
and B should not depend on the common outcome C. Similarly, the induced
order between (xl,pl;...;xn,pn) and (yl,ql;...;ym,qm) of (7.1) should not
depend on the common outcome (zl,rl;...;zz,rz) or (wl,sl;...;wk,sk).
Careful consideration of the IA and the STP proves, however, that one may
accept the IA without the STP, The IA states that if A 1is preferred to B
in an existing preference relation, then whenever A replaces B, the
decision maker is better off. The natural version of this assumption for one-
stage lotteries suits lotteries over a set of prizes X, where there exists a
preference relation &;. This relation, defined on the priies themselves,
does not depend on the existence of the preference relation f: for lotteries.

By using the reasoning behind the IA, we may assume that for every x,y,z2 ¢ X

and p > 0, (x,p; z,1-p) b (y,p; z,1-p) 1iff x b' y (see assumption (e) in
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Section 8 below). This argument cannot justify the STP because there exists
no a priori order between (xl,pl;...;xn,pn) and  (¥1,915ee3Yp19y? of
(7.1). 1Indeed, as AU predicts, the induced relation need not be independent
of the rest of the lottery.,

Finally, notice that the IA does not imply that the value of lottery A in
(7.2) does not depend on lottery C.A By (2.2) -~ (2.3) and (5.4) it follows
that the "value” of A 1is a function of A, p, and C. What one may deduce
from the IA is that if the values of A and B equal (i.e., A ~ B), then

their "values” will equal in the presence of the alternative lottery C.

8. The Case of Non-Money Prizes

The construction of the representation function in Section 2 depends on
the assumption that the set of prizes is an ordered set. When the prizes are
bundles of commodities, one must explicitly outline this assumption. For the

%
sake of simplicity I deal only with prospects. Let Li = {(xl,Pl;---§!h,Pn)=
xl,...,xn € Rk, pl,...,pn > 0, Zpi = 1} and let E? be a complete and
*

transitive continuous preference relation on Ll. Define on BRK a preference
relation E{ by x t; y 1iff (x,l) 2;(y,1), and assume from now on that

- * . . ,
if (xl,pl;...;xn,pn) € Ll’ then x 5oeee > x;. As stated already in

‘ *
Section 7, the natural interpretation of the IA to Ll is:

]

(e) If x, ~ x5 then (xl,pl;...;xi,pi;...;xn,pn) -~

)
(X} 3Py seeei® 5Py 500 esX 4P Je
1f, as assumed, b is continuous, then so is ?:". Hence, .b' can be
represented by a real, order-preserving function (Debreu (1954)). For the

time being, I arbitrarily choose one such function, v, Later, I will show

that the representation of E: doé§ not depend on v. By using the function
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*
v, elements of Li may be represented as lotteries over utilities of the
form (v(x;),py3.+.3v(x,),P,). On such lotteries assumptions (a) - (d) of

Section 2 imply that 3 on L; can be represented by
u(v(x))) + [u(v(x,)) - a(v(= N IE(P_+eratpy) + oo +
[uCv(x ) - ulv(x__, )]E(p )
Let u =1u o v and obtain that > can be represented by
(8.1) V= u(xl) + [u(xz) - u(xl)]f(pn+...+p2) + 00 +
[u(x ) - u(x _,))E(p))

where f(0) =0, f(1) =1, f is unique, and v 1is unique-up to positive

linear transformations.

Lemma 8.1: u and £ do not depend on the choice of v.

9. Some Remarks On the Literature

Quiggin (1982) first presented AU. He presented a set of axioms implying
that the value of the lottery (xl,pl;...;xn,pn) where X) € eee € X equals
i i-1

)-E(zI p

I Py lulxy), £(0) =0, f(1) =1, £(1/2) =1/2.
i=1 i=1

(9.1) [£(

T
i
To obtain the functional form of (2.2), let £(p) =1 - £(1-p). Obviously, f
is convex iff f 1is concave. Although this function seems the same as (2.2),
it is not because an essential part of Quiggin's theory is that £(1/2) =

1/2. 1In particular, f 1s not concave. It follows from Theorem 4.2 that
such a function cannot satisfy the GAP unless f(p) = p. The results of

Section 6 also suggest that f(%) >.%, Substitute into (6.2) p =1, q = %3

k » 0, and substitute into (6.4) q = %3 k + 0. It follows from (6.5) that

in both cases f(%) < %u
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Quiggin suggested that f 1is concave on [0,-;— and convex on [%-,l].
Problem 12: Choose between
Ay, = (0,0.51; 1000000,0.39; 5000000,0.1) and
Bio = (0,0.5; 1000000,0.5)

MacCrimmon and Larsson (1979) found that about 31% of their subjects
preferred A; to B; (see Section 3), but B;, to Ajj. By (9.1), 4 be B,

1ff
(9.2) [£(1) - £€0.9)Ju(5M) > [£(1) - £(0.89)]u(1M)
and 3125 A12 iff
(9.3) [f(i) - £¢0.5)Ju(iM) > [£€0.9) - £(0.51)]u(1M) + [£(1) - £(0.9)]u(5M).
From (9.2) and (9.3) it follows that

£(0.51) - £(0.5) > £(0.9) - £(0.89)

in contradiction to the assumption that f 1s convex on —;‘-,1]. Note, \
however, that choosing A; and B;; is consistent with (2.2) - (2.3),
provided that f 1s convex.

In addition to RCLA, continuity, completeness, and transitivity, Quiggin

assumed:

Qi: If (xl,l) t(xz,l), then (xl,l) b (xz,p; xl,l-p), and from his
theorem it follows that (x,,P; X;,1-P) > (x5,1).

Q2: Let A = (X{,Py3ere3XpsPy)s B = (Y1»Pyseeei¥psPy)s 25 =
CE(xy,p; ¥y,1-p) (that is, (z;,1) ~ (x4,p; ¥4,1-P)), x = CE(A),
and y = CE(B)., Let C = (zl,pl;...;zn,pn) and D = (x,p;¥y,1-p).

For p = 1/2, C~D,
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Assumption (e) of Section 8 follows directly from these axioms. Let
(xi,l) ~'(x;,1), A= (xl,pl;...;xi,pi;...;xn,pn), and B =
(xl,pl;...;x{,pi;...;xn,pn). By Q1, (x;,1) ~'(xi,l/2; x{,l/Z) and
obviously for every j # 1, (xj,l) ~ (x,,1/2; x:,1/2). By Q2, A~
(CE(A),1/2; CE(B),1/2). Hence, by Ql, CE(A) ~ CE(B). By the transitivity
assumption, A ~ B,

In the same way that one proves Quiggin's theorem, one can prove that if
Q2 holds for p = py, then f(po) + f(l—po) =1 (that is why £(1/2) must
equal 1/2). I believe that if one accepts Q2 for p = 1/2, then one should
accept it for every O < p < 1. Moreover, by Lemma 9.1, t; actually
satisfies Q2 for every p provided that B stochastically dominates A or
vice versa., Thus, generalizing this axiom for every A and B does not
require much more than already assumed. 1In such a case, ;b violates the

Allais paradox, because f(p) + £(1-p) = 1 implies £'(0.99) = £'(0.01) (see

Section 3.1).

Lemma 9.1: If 3: satisfies Q2 for p = 1/2, then it satisfies Q2 for every

p provided that B stochastically dominates A, or A stochastically

dominates B,

Schmeidler (1984) suggests a similar axiom. An act maps states of the
world to outcomes. Two acts ¢ and ¢ are comonotonic if it never happens

that ¢(s) > ¢(t) but P(t) > y(s).

Comonotonic Independence (CI): For all pairwise comonotonic acts ¢, ¢, and

8, and for all 0 < a<1l, ¢ >¢ implies a¢ + (1-a)6 > ap + (1-a)6.

Obviously, CI is weaker than IA., Schmeidler suggests that the statement

“If the space is partitioned into k symmetric events, then the probability
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of each event is %? should be accepted only for k = 2, This of course
agrees with Quiggin's results, namely that f(%) = %u
One of the tools for analyzing the behavior of individuals in uncertainty
situations 1is the risk aversion measure. The Arrow-Pratt measures are deter-
mined by the utility function and their properties are based on the assumption
that decision makers maximize expecfed utility. However, some behavioral
patterns cannot be explained through the common definition of risk aversion,
although they seem to depend on the decision maker's attitude toward risk. To
solve this problem, Yaari (1984) dgfines risk aversion through the deciéion
welghts rather than through the utility function. Let (0,1-p-q; ¥,9; X,P)
be a lottery such that x > y » O. This lottery may be broken up into two
stages. First, the decision maker participates in the lottery (0,1-p-q;
y,p+q), then in the lottery (0,l1-p; x-y,p). Given this assumption, Yaari
proves that the value of the lottery (xl,pl;...;xn,pn) when X € aee € X

equals
(9-4) Xl + [XZ - xllf(p2+...+pn) + see + [xn - Xn_llf(Pn)o

Note that this function coincides with (2.3) if u is linear. From Yaari's
assumptions it follows that the utility function is linear. This result
enables us to define a risk aversion measure through the decision weights,
since a linear utility function is risk neutral.

Yaari demonstrates that a decision maker is risk averse if f 1is convex.
The results of this paper agree with this definition. The GAP, which implies
the convexity of f (Theorem 4.2), seems acceptable because with the shift
from A to C the progability of the risky prize (0) 1is reduced relatively
more than with the shift from B ﬁo D. Probabilistic insurance, which
appears riskier than normal insurance, is rejected if £ 1is convex. The

convexity of f also implies that A E;B whenever B differs from A by a
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mean preserving increase in risk.

An interesting use of AU was suggested by Karni and Safra (1984). They
proved that AU, together with RCLA can explain the so-called preference
reversal phenomenon. Since they employ an example as proof, no specific

properties of f can be deduced from their paper.
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Appendix

Proof of Lemma 2.1

Let Ag, A; € Li, such that A: ® Gj are defined, 1i,j = 1,2. Let

(o)

A® = A;l\ Ag. Obviously, A e L; and A% @ Gj j = 1,2 are defined.

Cl(Ai\\Ao), Cz(AZ\.AO) € A, hence by the cancellation assumption A; ] 61

S0 06, 1£f A% 06 3% 66, Lff A 6§ A 0,

Proof of Theorem 2.2

Let u(0) =0, u(l) =k, £(0) =0, f£(1) = 1; According to the
continuity assumption, there exist p, q, and x such that [1,x] x
[q,1] ~ [0,1] x [p,q] (Figure 4). By the same assumption, there exist x1
and zi such that [1,x1] x [q,1] ~ [O,Zi] x [p,q] and [xl,x] x [q,1] Iy
(0,211 x [p,al. Since A° @ [0,1] x [p,a] ~ A° ® [1,x] x [q,1] ~ A° & [1,x]
x [q,1] ® [O,Zi] x [p,q], we obtain that [l,xll x (q,1] ~ [xl,x] x [q,1]

~ [zi,l] x [p,q). Let u(zi‘) =k/2,

A°

, 1
0 z'i 1

& Figure 4
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2 2 2
Similarly, there exist xz,...,xm,...; 21’22’23""’ZT""’zgm-l""

% - * *
such that [l,xm] x [q,1] ~ [xm,xm 1] x [q,1] ~ [O,ZT] x [p,q]l ~ .. &

2m -
21

< z}. By the continuity assumption, {z?} 1s dense in

m
zZ

i° Let u(z?) = 1k/2® and u(z) =

[ng_l,ll x [p,q]. Obviously, =z

m

m -
sup {u(zi). zg

[0,1], hence u 1is continuous.

Using the same methods, u can now be defined on every segment [a,b]
where a < 0 and b » 1. Moreover, if u(0) = 0 and u(l) = k, then this
can be done in only one way.

For every 0 < p < 1 there exist x <y < z such that {y,z] x
[p,11] ~ [x,y] x [0,p]. Thus one may define fp on [O,p]. This can be done
for every p, and in such a way that if q > p, then on [O,p] fq and fp
coincide. Moreover, fp can be defined such that ;i; fp(p) =1, By

asumption (d), one sees that kf can be represented by the product of u'

and f'., Hence, 2‘ can be represented by (2.1).

Proof of Theorem 4.1

Let 0<x<vy, p>q be such that (0,1-p; x,p) ~ (0,1-q; y,9). By
the GCRE, it follows that for every p < p' < 1 and for every 0 <r < p',
(0,1-p'; x,p'-1; y,r) > (0,1 - [q(p'-r) + rpl/p; y,lq(p'-r) + rpl/p). Since

> satisfies assumptions (a) - (d), it can be represented by (2.3). Hence

u(x)£(p) = u(y)f(q)

-r) + :g)

WGOE(RT) + [u(y) - w(IE(D) > u(y)EARE)

and it follows that

£(p) . uly) f(p') - £(r)
£(q) u(x)

f(q(p'—rr)) + Py _ £(r)

Because f 1is increasing, it is almost everywhere differentiable. If f is

differentiable at p', then by the L'Hospital's Rule



29

£(p) gy (P - £(x)
£(q) r+p’ f(q(p -r‘)) + rp) - £(r)
= lim £ (1) - 2

rap' (p;q)f.(q(p'-r; TPy _ fe(p)

Since f 1s a continuous function, it follows that

(4.3) p>q => f_l()2_>.<f_(%)_

Let 0<x<vy, p>q be such that (0,1-p; x,p) ~ (0,1-q; y,q). By

the GCRE, (x,1) & (0,p-q; x,1-p; ¥,q). By (2.3),
u(x)£(p) = u(y)f(q)
u(x) > u(x)f(l-p+g) + [u(y) - u(x)1f(q)
hence 1 » £(1-p+q) + £(p) - £(q). For q = 0 we obtain
(4.4) f(p) + £(1-p) < 1.

Since f(1) =1, it follows from (4.3) and (4.4) that £(1/2) = 1/2. Let

1/2 < p < 1. By (4.3),

£(1/2) £(p) £(1)
1- §/2 > pp > =3~ = 1

hence f(p) = p.
let 0 < p <1/2. By (4.4) f(p) +1 -p <1, thus £(p) < p. By (4.3)

f(p) £(1/2)
D > 172 = 1

hence f£(p) = p.

Proof of Theorem 4.2

Let A, B, C, and D be as«in the definition of the GAP and assume that

E: can be represented by (2.1) with a convex function f. A ~ B implies that
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- L AT . - L. B ovgy
(4.5) u(A) + |7 ] u'(x)£'(1-p)dpdx = u(B ) + [_ | u'(x)f'(1-p)dpdx
A FA(x) B FB(x)

Obviously, C > A, A" >B and D > C. By (2.1), CX>D iff

+ +

(4.6) ua™) + /S b wrfr@-pdapdx > w(B) + [° [1 u'(x)f'(1-p)dpdx
A Fc(x) B FD(X)
1ff (by (4.5))
* F,(x) * F_(x)
BT o a-pdpdx > 5 )P ut (£ (1-p)dpdx.
BT Fo(x) BT F (%)

According to the definition of the GAP, Fp - Fy = FC - FA and on [B',x*],

Fp F Since f 1is convex, for every r f'(l - FD(x) +r) < £'(1 - Fc(x)

C.
+ r), hence by (4.6), C b D.
Assume now that k; satisfies the GAP. Let 0 < x <y and p > q such

that (0,1-p; x,p) ~ (0,1-q; y,q). Hence
(4.7) u(x)f(p) = w(y)f(q).

By the GAP, for every 0 < r <1 - p, (0,1-p-r; x,pt+r) > (0,1-q-1; x,T13; ¥,q).
By (2.3), this preference holds 1ff u(x)f(ptr) > u(x)f(q+r) + [u(y) -
u(x)]£(q) 4iff (by (4.7)) f£f(p+r) - £(p) > f(qt+r) - £(q). Hence

£'(p) > £'(q) and f 1s convex.

Proof of Lemma 8.1

Assume that the relation > on LI can be represented by (8.1) and by
[a*(x) - u*(x,_)1E%(p)

where £(0) = f*(O) =0, f(1) = f*(l) =1, u(0) = u*(O) = 0., Therefore,
there exists a continuous function h such that V* = h(V) (see (8.1) -

(8.2)). In particular, for every x and p
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(8.3) o E*(p) = h(u(x)£(p))
Substitute p = 1 and obtain
u¥(x) = h(u(x))
Substitute x such that u(x) =1 and obtain
R(L)E*(p) = h(E(p)).

Hence, by (8.3),

h(u(xgzggf(p>> = h(u(x)£(p)).

The solution of this functional equation is h(a) = aab (see Aczel (1966)),
hence u'(x) = alu(x)]? and f*(P) = [f(P)]b-
I now prove that b =1, Let x>y and X =u(x), Y =u(y) and P =

f(p). There exists z such that (z,1) ~ (x,p; y,1-p), hence
u(z) = u(y) + [u(x) - u(y)]E(p) = Y + [X - Y]P.
By (8.2) we obtain
u*(z) = u'(y) + W@ - F @)
Since u*(z) = a[u(z)]b, it follows that
(8.4) [Y + (X - V)P]P = Y0 + (xP - ¥P)pP
Diferentiating with respect to X we obtain, for P # 0,
[Y + (x - PPl = (xp)P71,

For b #1, this last equality implies that Y(1-P) = 0, in contradiction to
the assumption that (8.4) holds true for every X, Y, and P. It follows

that b = 1. This completes the proof.
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Proof of Lemma 9.1

Let A = (Xy,Pj;+ee3X,,P,) and B = (Y1sP13see3YqsPy) such that for
every 1, x4 < Yy Also, let x* = CE(A) and y* = CE(B). By Q2 and (9.1),

and since £(1/2) = 1/2,
-1,1 1 . Ll 1 1
(ll (—2’ u(xl) + 7’ u(Yl)),Pl, ees U ('2' u(xn) + '2' U(Yn)),Pn) ~
* *
(x ,1/2; y ,1/2) ~
- * *
G u™) + 5 uG™ D
Assume now that for every m < £ and for every 0 < k < Zm,

(9.5) (u‘l% u(x)) + [L - :—mlﬂyl”ﬂ’l?--';“'l(f; ulx) +

[ - l;;]u(yn)),l—"n ~ (u_l(% ax™) + [ - -‘z‘fnluw*»,n

2 L+l

To prove that (9.5) also holds for £ + 1, let 0 < k < be an uneven

number. By the induction hypothesis, (9.5) holds for E%l and &, and for

E%l and 2. By Q2 it follows that (9.5) also holds for k and ¢ + 1. By

the continuity assumption, (9.5) holds for every O < a < l. Since by (9.1),

CE(x4,P; ¥4,1-p) = u_l(u(xi)f(p) + u(yi)[l - £(p)]), Q2 holds for A, B,

and every p.
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