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Abstract

Previous authors who have considered the issue of noncooperative entry
deterrence have concluded that the free rider problem is not a significant
issue. In reaching this conclusion, however, these authors have only
considered models in which the exact investment needed to deter entry is known
with certainty. 1In this paper I add uncertainty to their models, and
demonstrate that the free rider problem can be significant, but is not so in
all cases. That is, for certain types of entry deterring investments the
introduction of uncertainty causes the oligopoly to underinvest in entry

deterrence, however, for other types no underinvestment result arises.



I. Introduction

Much recent theoretical work has been devoted to the role played by entry
deterrence in the behavior of pre-established sellers.1 In looking at markets
which are initially inhabited by an oligopoly, these studies have generally
taken one of two approaches. First, some studies assume that the oligopoly
behaves like a shared monopoly (e.g., Spence 1977). Second, other studies
assume that the firms which comprise the oligopoly act in a purely noncooper-
ative manner (e.g., Nti and Shubik 1981, Bernheim 1984, and Gilbert and Vives
1985). This paper falls into the latter category, and in particular is
concerned with the role played by the free_rider problem when oligopolists are
unable to collude on an investment in entry deterrence.

Consider an oligopoly which cannot collude on an investment in entry
deterrence. In such an environment entry deterrence has the properties of a
public good. A public good in fhis context means that, because of the effect
on the probability of entry, increasing the investment in entry deterrence
yields a return to the oligopoly as a whole, some of which is not reflected as
a return to the actual investor. Given such a situation, the free rider
problem suggests there should be an underinvestment in entry deterrence. That
is, the investment in entry deterrence should be less than that which would
maximize the expected joint profits of the oligopoly.

Two previous papers which have addressed the issue of noncooperative
entry deterrence and the free rider problem are the papers of Bernheim, and
Gilbert and Vives. In each of these papers the formal analysis uncovered no
evidence of the free rider problem, and in each paper it was subsequently
suggested that the free rider problem may not be a significant factor whenever
entry deterrence is an issue. Given the straightforward nature of the above

argument, it seems difficult to believe that the free rider problem is never



an important factor in noncooperative entry deterrence. Hence, in the present
paper 1 reconsider the models of Bernheim, and Gilbert and Vives in an attempt
to get a clearer understanding of when the free rider problem is important.

One property shared both by the Bernheim model and the Gilbert and Vives
model is a lack of uncertainty. That is, in each model there is a critical
~investment in entry deterrence such that, if the actual invéstment is less than
this critical level, then the probability of entry is one. If, on the other
hand, the actual investment is greater than the critical level, then the prob-
ability of entry is zero. This is significant in that a simple rationale
suggests the free rider problem is more likely to be important when uncertainty
is present. The argument follows. As indicated above, without uncertainty
there is a critical investment in entry deterrence such that an € increase in
the investment causes the probability of entry to change from one to zero. At
this margin the oligopoly faces an infinite return to investing in entry
deterrence, while everywhere else the oligopoly faces a zero return. Consider
what happens if the oligopoly cannot collude on the investment. In that case
the relevant return is the return to the oligopoly divided by the number of
pre—established sellers. Dividing by the number of sellers does not change the
return, however, since the initial return was either infinite or zero. Hence,
one should not be surprised if the free rider problem is shown to be
unimportant in a model which lacks uncertainty. Note, further, the addition of
uncertainty eliminates the critical investment level, and the straightforward
intuition is then that the free rider problem should be important.

In this paper I add uncertainty to both the Bernheim model and the
Gilbert and Vives model, and investigate whether the conclusions found in the
original papers still hold. The answer is that once uncertainty is introduced

the free rider problem can be an important factor, but it will not be so in



all cases. In particular, adding uncertainty to Bernheim's model does cause
the free rider problem to become important, with the result being that there
is a strong tendency for the oligopoly to underinvest in entry deterrence.
However, adding uncertainty to the Gilbert and Vives model only reinforces the
conclusion contained in their original analysis that the free rider problem is
not an important factor.

We can understand these differing results by considering the properties
of the entry deterring investment in each model. In Bernheim the entry
deterring investment serves no role other than the entry deterring one, and in
such an environment the free rider problem will be important as long as
uncertainty 1s present. On the other hand, in the Gilbert and Vivesvsetting
the entry deterring investment does have another function since whether or not
entry occurs 1s determined by the combined output of the pre—established sel-
lers. This means that in their setting a second important factor is present.
We know that in the absence of a potential entrant there is a tendency for a
non-colluding oligopoly to “"over-produce.” Hence, in the Gilbert and Vives
setting there are competing forces. The free rider problem suggests that
there will be underproduction, while this second factor suggests
overproduction. The analysis demonstrates that even with uncertainty the
second factor will always be dominant, and hence, in their setting the free
rider problem is not a significant factor.

The outline for the paper is as follows. Section II constructs a variant
of the model analyzed by Bernheim. Section III demonstrates that in this
setting the free rider problem becomes important once uncertainty is intro-
duced. Section IV constructs a variant of the model analyzed by Gilbert and
Vives. Section V demonstrates that in the Gilbert and Vives setting the free

rider problem is not important even after uncertainty is introduced. Section



VI contains some concluding remarks, including a discussion of what the

results tell us concerning other models where entry deterrence is an issue.

II. Model 1: A Variant of Bernheim's Model

There are two major differences between the model presented in this
section and the one analyzed by Bernheim. First, as indicated earlier, here
there will be uncertainty concerning the exact investment in entry deterrence
needed to deter entry. Second, in this model there will be only a single
potential entrant, rather than many potential entrants and the resultant
sequential entry problem.

The structure of the model is as follows. There are N risk neutral
pre—established sellers who face a single potential entrant. Each pre-
established seller can invest in entry deterrence prior to the entry decision,
but the pre—established sellers are unable to collude on this investment.
Denote as Xy the investment in entry deterrence of pre-established seller

N
i, and let X = I x,. If the potential entrant decides not to enter, then

i

the profits of pr:z:stablished seller 1 equal =(N) - xi. If, however, the
potential entrant does enter, then the profits of pre—established seller 1
equal w(N+1) - X, where w(N+1) < m(N). There are two reasons for assuming
m(N+1) < m(N). First, when entry takes place the total profits of the
industry must be divided among more firms. Second, entry may cause the degree
of cooperation on price and output decisions to decrease.

The next aspect of the model to be described is the entry decision. The
potential entrant is assumed to enter if and only if he anticipates positive
profits. Further, if entry occurs, then the potential entrant earns profits

equal to w(N+1) - 6D(X), where D(0) =0 and D' > 0. 6D(X) 1is simply the

extra costs imposed on the entrant which are due to the entry deterring

activity of the pre—established sellers. The uncertainty in the model is



captured by the fact that 6 is a draw from a random variable which has a
cumulative distribution function G( ). It is additionally assumed that the
realization of © 1s only observed by the potential entrant. Thus, the pre-
established sellers base their investments in entry deterrence solely on the
distribution function G( ), while the potential entrant bases his entry
decision on the actuai realization of 6. G( ) 1is asumed to satisfy the
following restrictions: G(8) = 0, G(0) = 1, G'(z) >0 and G"(z) exists
for z ¢ (Q,E). That is, © falls somewhere between the extreme values

§ and E, and the density function for 6 1is both strictly positive and

differentiable in this interval.

Finally, before proceeding to the analysis, it is convenient to define
some additional notation. Let a(X,N) be such that w(N+1) - a(X,N)D(X) =0
for all X,N pairs, X > 0.2 Given this definition, the potential entrant
will enter if and only if 6 < B(X,N), or equivalently, the probability of

entry equals G(8(X,N)).

I1I. Analysis of Model 1

Bernheim's claim concerning his model was that the free rider problem is

not a significant factor. His logic was that, even without the ability of
collude, there always exists an equilibrium where the pre—established sellers
behave in a joint profit maximizing manner. Since this model is a stochastic
version of Bernheim's, the first step of the analysis is to demonstrate that
in this model Bernheim's logic is correct when the stochastic element 1s
removed. By doing so, I clearly demonstrate that later results concerning the
importance of the free rider problem must be due to the presence of

uncertainty.



Proposition 1: If 6 can only take on a single value, then there necessarily

exists an equilibrium where the total investment in entry deterrence is

exactly as 1f the pre-established sellers could collude.

25222: There are two cases. The collusive result could be that the oligopoly
invests zero, or it could be that the oligopoly invests just enough to deter
entry. Consider the latter case and call this critical investment level i.

1 caﬁ prove the proposition for this case by demonstrating that 1f N-1 of
the pre-—established sellers sst x4 =-%, then the remaining seller will also
have an incentive to invest '%.A It is obviogs that this seller camnot have an
incentive to invest more than -%, because %- deters entry and the entry
deterring investment serves no other role. On the other hand, if he invests
less than %; then entry necessarily occurs. Thus, the only other possibil-
ity is that he invests zero. However, because we are dealing with the case
where deterring entry is jointly profit maximizing, this investment level is

also dominated by the investment level 'é.

The proof for the other case follows similarly. Q.E.D.

The next step of the analysis 1is to return to the initial specification,
i.e., where there is uncertainty concerning 6, and establish a benchmark
with which later results can be compared. Let X*(N) denote the total

investment in entry deterrence which the oligopoly would make if it could

collude on this investment, given that N 1is the number of pre-established

sellers. X*(N) 1is defined by equation (1).3

(1) X*(N) = arg max N[1-G(6(X,N))][n(N)-n(¥1)] - X
X

Further, if X*(N) is such that 0 < G(8(X*(N),N)) < 1, then (1) ylelds the

following first order condition.



—NAG(B(X*(N) ,N)) dB(X*(N),N)

2) dé dX

[n(N)-w(N+1)] -1 =0

We can now proceed to the main part of the analysis. That is, when the
oligopoly cannot collude in the face of uncertainty, how does the total
investment in entry deterrence compare with that which maximizes the expected

joint profits of the oligopoly.4’5

Proposition 2: If 0 < G(6(X*(N),N)) < 1, then any equilibrium must be

characterized by X < X*(N).

Proof: Let X__1 = I xj. The maximization problem faced by pre—established
J#i ’

seller 1 1s given by (3).

(3) max [1-G(8(X_,+x, ,N))] [n(M)-n(¥1)] - x,

X4

If X = X*(N), then (3) yields the following first order condition.

(4) -dG(e(X;gN) ,N)) de(x;)((N) ’N){H(N)—ﬂ(N+1)] - 1 = 0

Comparing (2) and (4) immediately yields X # X*(N).
I now need only demonstrate that X > X*(N) also yields a contradiction.

Suppose X = X', where X' > X*(N). This means there is a pre-established

seller who is investing at least %—. Let this be seller 1. There are two

cases to consider. Case 1 is X_i < X*(N)., We know it is not profitable

under collusion for the oligopoly to increase the investment from X*(N) to
X'. Further, the return to firm 1 from this increase is strictly less than
the return faced by the oligopoly under collusion, but the cost is the same.
Thus, 1t must also not be profitable for the firm to increase the investment

from X*(N) to X', which implies a contradiction. The other case 1is X_i >

]

X*(N), Given Xy ? .S

N the expected profits for firm 1 are less than what



it could get if the pre-established sellers were to collude, i.e., given that
all the firms are treated symmetrically in the collusive agreement. However,
because X__i > X*(N), firm 1 could invest zero and do better than it would

if the pre-established sellers were to collude, i.e., a contradiction.

QOE.DI

Proposition 2 demonstrates the first main point of the paper. If in an
uncertain environment an oligopoly cannot collude on an investment in entry
deterrence, then it is quite possible the oligopoly will underinvest. The
intuition for the result is straightforward. Investing in entry deterrence
yields a return to the oligopoly as a whole, some of which is not reflected as
a return to the actual investor. Thus, the free rider problem suggests there
should be underinvestment.

One question concerning Proposition 2 is why are there restrictions? The
answer for the restriction G(S(X*(N),N)) <1 1s straightforward.
G(a(x*(N),N)) = 1 says that the probability of entry is one, which in turn
means that X*(N) = 0., Further, it is clear the oligopoly cannot underinvest
if the optimal investment equals zero. The rationale for the restriction
G(a(x*(N),N)) >0 1is as follows. G(a(X*(N),N)) = 0 says that the probabi-
1ity of entry is zero. This means that under collusion the oligopoly is
choosing a corner solution. Further, it is not surprising that, given a
corner solution, changing the incentive to invest will not necessarily change

the investment.

IV. Model 2: A Variant of the Gilbert and Vives Model

The only difference between the model presented in this section and the
one analyzed by Gilbert and Vives is that here there will be uncertainty

concerning the exact investment in entry deterrence needed to deter entry.



The structure of the model follows. There are N risk neutral pre-
established sellers who produce a homogeneous product and who face a single
potential entrant. Each pre-established seller chooses an output level prior
to the entry decision, and the pre-established sellers are unable to collude
on this choice. Let x; now denote the output level of pre-—established

N
seller i, and let X = I x,. The potential entrant 1s assumed to enter if

i
and only if he anticipate:=;ositive profits. That is, the firm will enter if,
given the pre-established sellers' choice of X, the residual demand curve
the firm faces is such that positive profits are possible.
The next aspect of the model to be described is the specification of

costs. Each pre-established seller 1 1incurs a cost C(x) when it produces

x units of output, where
(5) C(x) = S + vx.

In (5) S represents a sunk cost while v is the constant marginal cost of
production. On the other hand, the potential entrant incurs a cost a(x)
when it produces x wunits of output, where

- F+vx 1f x>0
(6) C(x) =

0 if x =0,

The uncertainty in the model is captured by the fact that F 1is a draw from a
random variable which has a cumulative distribution function H( ). Similar
to the previous model, it is assumed that the realization of F 1is only
observed by the potential entrant. Thus, the pre—established sellers base
their investments in entry deterrence solely on the distribution function
H( ), while the potential entrant bases his entry decision on the actual
realization of F. H( ) 1is assumed to satisfy the following restrictions:

H(F) = 0, H(F) = 1, H'(z) > 0 and H"(z) exists for z ¢ (g,i).
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Let P(XI) be the industry inverse demand function, where XI is the
industry output. It is assumed that P( ) 1is twice continuously
differentiable, downward sloping (P' < 0), and concave (P" < 0).

Before proceeding it is again convenient to define some additional
notation. For all X, let ﬁ(x) equal the realization of F such that the
potential entrant just breaks even if he enters. Given this, the potential

entrant will enter if and only if F < F(X), or equivalently, the probability

of entry equals H(F(X)).6

V. Analysis of Model 2

Section III demonstrated that édding uncertainty to Bernheim's model
causes the free rider problem to become a significant factor. In this section
I demonstrate that in the Gilbert and Vives setting the addition of
uncertainty does not have this effect., The analysis in this section follows
along the same lines as the analysis of Section III. I begin by presenting a

result which is derived by Gilbert and Vives.

Proposition 3: If F can only take on a single value, then in any

equilibrium X will be at least as large as the collusive value of X.

Proposition 3 simply states that, similar to the Bernheim model, in the
absence of uncertainty the free rider problem is not a significant factor. We
can now go back to the uncertainty case and derive a benchmark with which
later results are compared. Let X* denote the aggregate output level of the

pre—established sellers under the assumption they can collude on output. X¥*

is defined by (7).7’8

) X+ = arg max (L-H(F(X))) (XX + H(F(X)) B(X+x (X)X - vK - NS,
X

where xp(X) 1s the output of the potential entrant given entry, and given
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that the pre-established sellers are producing X. Further, if X* 1is such

that 0 < H(F(X*)) < 1, then (7) yields the following first order condition.?
(8) AX* + B = 0,

where

[—dn(ﬁ(x*)) dF(X*)
dF dax

(9a) A= (P(X*) - P(X* + x(X*)))

- a de(X*)
+ (1-H(F(X*))) P'(X*) + H(F(X*)) [P'(X* + XE(X*)) 1+ “‘Eﬁ“)]],

and
(9b) : B = (l—H(g(X*))) P(X*) + H(E(X*)) P(X* + xE(X*)) - V.

The next step 18 to again consider the oligopoly when it cannot collude
in the face of uncertainty, and ask how the total investment in entry
deterrence compares with that which maximizes the expected joint profits of

the oligopoly.lo’11

Proposition 4: If H(F(X*)) >(=) 0, then any equilibrium must be

characterized by X >(Z) X*,

Proof: Let X_ 4 = I xj. The maximization problem faced by pre-established
j#1
seller i 1is given by (10).

(10) max (1-H(§(X_1+xi)) P(X_i+xi)x1
X, A

+ H(F(X—i+xi)) P(X—i+xi+xE(x—i+xi))xi - vx, - S

If X = X* and H(ﬁ(x*)) > 0, then (10) yields the following first order

condition.

Since B > 0, a comparison of (8) and (11) yields X # X*.
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I now need only demonstrate that X < X* also yvields a contradiction.
Suppose X < X*, and let & represent the change in the profits of the

oligopoly as output is increased from X to X*. § is given by (12).

B(X*-X) + (B—E)X,

(12) § =
where
(13) B = (1-H(F(X))) P(X) + H(F(X)) P(X + x (X)) = v.

Now hold fixed the output of all pre-established sellers except 1. Further,
let 61 represent the change in the profits of seller 1 as its output is

increased from xy to x; + (X*-X). 61 is given by (14).

(14) 61 = B(X*-X) + (B-l;)xi

Since B> 0 and 6 > 0, a comparison of (12) and (14) yields 61 > 0.

Hence, X { X*, Q.E.D.

Proposition 4 demonstrates that the free rider problem is not a
significant factor in the Gilbert and Vives setting even after uncertainty is
introduced. The intuition is as given in the introduction. In the absence of
a potential entrant, the pre-established sellers in this setting have an
incentive to "over-produce”. Hence, there are competing forces. The free
rider problem suggests underproduction, while this second factor suggests
overproduction. Further, the analysis demonstrates that the second factor is
dominant, with the result being that the free rider problem is not important

in this setting.

VI. Conclusion
Previous authors who have considered the issue of noncooperative entry
deterrence have concluded that the free rider problem is not an important

factor. In reaching this conclusion, however, these authors have only



13

considered models in which the exact investment needed to deter entry is known
with certainty. In this paper I have added uncertainty to the models
investigated by these previous authors, and shown that once uncertainty is
introduced the free rider problem may be important. 1In particular, adding
uncertainty to the model previously considered by Bernheim causes the free
rider problem to become important, with the result being that the pre-estab-
lished sellers have a strong tendency to underinvest in entry deterrence. The
logic here is that in the Bernheim setting the entry deterring investment
serves no role other than the entry deterring one, and in such an environment
the free rider problem will be important as long as uncertainty 1is present.

On the other hand, adding uncertainty to the model previously investigated by
Gilbert and Vives does not cause the free rider problem to become important.
The reason is that 1in their setting the entry deterring investment serves
another role, such that in the aBsence of a potential entrant there is a
tendency toward overinvestment. Further, as the analysis demonstrates this
second factor is always dominant.

One final point concerns what the above conclusions tells us about entry
deterring investments other than the specific ones considered in this paper.
For example, one might be interested in knowing what would occur in a world
where excess capacity deters entry (see e.g., Spence 1977), but where pre-
established sellers are unable to collude on investments in capacity. 1In the
model investigated by Spence there is no reason why pre-—established sellers
would overinvest in capacity in the absence of a potential entrant. Hence,
the above results suggest that in a Spence type world the free rider problem
will be important as long as uncertainty is present, with the result being an
underinvestment in entry deterrence.!? On the other hand, one could imagine a

world where entry 1s deterred either through expenditures on advertising or
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expenditures on R&D. Here one would expect a natural tendency to overinvest
in the absence of a potential entrant. Hence, the above results suggest that
in this type of world the free rider problem may very well not serve an

important role.
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Footnotes

1Recent papers concerned with the entry deterrence issue include Bernheim
(1984), Dixit (1979, 1980), Eaton and Lipsey (1980, 1981), Gilbert and Vives
(1985), Grossman (1981), Kreps and Wilson (1982), Milgrom and Roberts
(1982a,b), Nti and Shubik (1981), Perrakis and Warskett (1983), Salop (1979),
Spence (1977, 1979), and Spulber (1981). Earlier important work in the field
includes Bain (1956), Modigliani (1958), Sylos Labini (1969), Gaskins (1971),
and Kamien and Schwartz (1971). |

2let 8(0,N) = 0(8) 1f mw(N+1) >(K) O.

3Equation (1) does not necessarily uniquely define X*(N). The text will
be written as if X*(N) were uniquely defined, while in footnote 4 I make it
clear how the main result changes if X*(N) can take on more than one value.

4Suppose X*(N) 1is not uniquely defined, and call X*(N) the lowest of
these multiple values for X*(N). If 0 < G(a(g*(N),N)) <1, then any
equilibrium must be characterized by X < X*(N).

5n a proof available upon request 1 demonstrate that for the situation
considered in Proposition 2 an equilibrium necessarily exists.

6Note that, as opposed to what was true in Model 1, here the probability
of entry only directly depends on the investment in entry deterrence and not
directly on the number of pre-established sellers.

7Note that, as opposed to what was true in Model 1, here the collusive
entry deterrence level does not depend on the number of pre—established
sellers.

83imilar to equation (1) (see footnote 3), equation (7) does not
necessarily uniquely define X*. The text will be written as if X* were

uniquely defined, while in footnote 11 I make it clear how results change if
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X* can take on more than one value.

I1f H(;(X*)) = () the first order condition need not hold. This is
because of a possible discontinuity in the marginal benefit to investing in
entry deterrence.

10Note that when H(é(x*)) = (0, 1t can only be shown that X » X%, This
is because the first order conditions are not necessarily valid for this case
(see footnote 9).

11Suppose X* 1is not uniquely defined, and call X* the highest of
these multiple values for X*, If H(E(i*)) >(=) 0, then any equiliﬁrium

must be characterized by X >(>) X*,

1260 Waldman (1982) for a formal demonstration of this point.
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