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INVESTMENT DECISION CRITERIA

Investment is present sacrifice for future benefit. Individuals, firms,
and governments all are regularly in the position of deciding whether or not
to invest, and how to choose among the options available. An individual might
have to decide whether to buy a bond, plant a seed, or undertake a course of
training; a firm whether to purchase a machine or construct a building; a
government whether or not to erect a dam. Under the heading of investment
decision criteria, economists have addressed the problem of how to rationally

choose in such situations involving a tradeoff between present and future.

The Economic Theory of Intertemporal Choice

The object of investment is to optimize one's pattern of consumption over
time. The elements needed to determine an individual's investment decision
are: (a) his endowment, in the form of a given existing income stream over

time; (b) his preference function, which orders in desirability all possible

time-combinations of consumption; and (c) his opportunity set, which

specifies the possibilities for transforming the original endowment into other

time-combinations of consumption.
[Figure 1 about here.]

Figure 1 illustrates an artificially simple case of only two periods
(say, this year and next) under conditions of certainty. Each point
represents a combination of current consumption ¢ and future consumption

ci. The endowment combination Y has coordinates (yg,y1). Time-preferences

are portrayed by the indifference curves Up,Up,U3,..., each such curve



connecting all combinations yielding equal satisfaction. The curve QQ'
through the endowment position Y pictures the intertemporal productive

opportunities. By sowing seed, for example, a person can sacrifice current

consumption for future consumption -- represented in the diagram by a movement
from Y along QQ' to the northwest. (There may also be disinvestment
opportunities, i.e., the individual might be able to draw upon the future so
as to augment current consumption, which would be represented by a movement
from Y along QQ' to the southeast.)

For a Robinson Crusoe, the optimum balance of present and future
consumption — which in his isolated state must necessarily be identical to
his provision for present and future production —— occurs at point X* along
QQ'. In the situation pictured he achieves this optimum by investing the
quantity yg—xq of current consumption claims. E.g., having at hand a
current corn endowment of Yo he retains x5 for current consumption and
plant the remainder as seed. Next year he will reap as his return from
investment the amount Xy-y; to augment his endowed avallability for future
consumption.

1f markets for trading between present and future income claims exist,
however, in contrast with the Robinson Crusoe situation the individual will be
able to disconnect the amount he invests from the amount he saves. These
trading opportunities are shown in Figure 1 by the family of "market lines”

whose general equation 1is:
(1) cog + cl/(1+r1) = Wy

Here r; 1is the interest rate that discounts one-year future claims c; into

their equivalent value in terms of c¢g claims. Along each market line the
parameter WO represents the associated level of wealth. Put another way,

wealth in equation (1) measures the present worth of any specified (cg,c})




vector -~ the future-dated element being "discounted™ at the given market
interest rate r;. In the diagram two market lines are shown: MM' through

the endowment vector Y = (yg,y;) indicates the individual's endowed wealth

Wg =y, t Yl/(l+rl), while NN' represents the maximum attainable level of
*
= q* *
wealth W, = q* + ql/(1+r1).

If an individual has both productive and market opportunities, his
optimizing decision in Figure 1 can be thought of as taking piace in two
stages. First he locates his "productive solution” Q* = (qa,qi) by moving
along QQ' so as to maximize attained wealth at the tangency with market line
NN'. Second, he then transacts in the funds markets, by lending or borrowing
(exchanging current for future claims or vice versa) along NN' to find his
“consumptive solution” C* = (cs,ci) at the tangency of NN' with indiffer-
ence curve U, in the diagram. Notice that his preferences do not at all
affect the productive solution, but only how he chooses to "finance” the
investments made. Specifically, in the diagram here the amount he invests
(vo—qs) exceeds the amount he saves (yo—c6 . By borrowing on the markets,
in effect he has been able to get others to undertake part of the saving
necessary to finance his projected investments.

This disconnection between the individual's productive and consumptive
decisions in a regime of perfect markets is known as "Fisher's Separation
Theorem™. The essential implication is that individuals with diverging time-
preferences can nevertheless come together and agree upon joint productive
investments. Business firms and (to some extent) governments can be regarded
as Institutions designed for undertaking joint investments whose scale 1is too
large for any single individual. The underlying principle 1is that those
investment choices maximizing wealth value or present worth of the mutual

undertaking will also maximize wealth for each and every participant therein.



The Present—Value Rule

The economic theory of intertemporal choice leads immediately to what is

known as the Present-Value Rule for investment decision. This rule can be

expressed in two essentially equivalent forms:

(1) Among the opportunities available, adopt the set of investments that.
maximizes investors' wealth WO.

(ii) Adopt any single investment project if and only if its present value Vj
is positive. (Taking into account, of course, any repercussions of that
project upon the returns yielded by other members of the adopted
investment set.)

As an obvious corollary, if two available projects are mutually exclusive, the

one with the larger present value Vj should be chosen.

Generalizing to the multi-period context, wealth as maximand becomes:
(2) WO = qo + ql/(1+r1) + qz/[(1+r2)(1+r1)] +.0et qT/[(1+rT)...(1+r2)(1+rl)]

Here the q, are the coordinates of points along the T+l-dimensional pro-
ductive opportunity surface ¢(q0,q1,...,qT) = 0, a generalization of curve
0Q' in Figure 1. T 1is the "economic horizon,” which may be infinite. And
the r, Trepresent the successive short—term interest rates, each of which
discounts prospective payments at any date into its wealth—equivalent at the
next preceding date.

For a single project in the multi-date context, present value is defined

as:
(3) VO = ZO + zl/(1+r1) + z2/[(1+r2)(l+r1)] + eee + zT/[(1+rT)...(1+r2)(1+r1)]

Here the 1z, are the dated payments or "cash flows" associated incrementally
with the project considered. Normally the 2z,  elements for earlier dates

would include some with negative signs — else the project could not be



described as an investment — while those for later dates would have predomin-
antly positive signs. 1In the special case where ry = r9 = ¢eo = Trp =T =~

that is, where interest rates are expected to remain constant at the level

r over time -— the Present-Value formulas reduce to the more familiar forms:
(2") Wo = g + 4y /(141) + ap/(1+1)2 + wen + qp/(140)T
(3" Vg = zg + z1/(1+1) + zz/(1+r)2 + .. + zT/(1+r)T

The Present—Value solutions can also be formally generalized to allow for
continuous rather than discrete time. As an illustrative simplified example,
consider a project whose scale of current input or investment sacrifice ig
is fixed while the output date is subject to choice. (E.g., when to cut a
growing tree.) In Figure 2, horizontal distances represent time t and
vertical distances value V. at each date. Present Value Vj, is indicated
by height along the vertical axis. The curve GG' represents productive
growth of the asset -- in the case of a tree, market value of the standing
timber at any date. The "discount curves”™ D, D', D",... are analogous to the
"market lines" of Figure 1. FEach such curve represents the growth of a
specific sum of present dollars by continuous compounding at a constant market
rate of interest r, or alternatively the Present Value of any future payment
continuously discounted at r. The optimal investment period t = t* is then
the one that maximizes Present Value VO’ subject to the constraint on the

available Vt described by the curve GG', 1in the equation:
- -rt
(4) VO = io + Vte

Geometrically, t* is determined by the tangency of GG' with the highest

discount curve (constant-wealth curve) attainable. The solution condition is

then:

(5) Vé/Vt =r



[Figure 2 about here.]

Other Investment Criteria

Certain investment criteria emploved in business practice are definitely
erroneous. One such 1s rapidity of "payout” (the date when cash inflows first
balance initial outlays), a formula that obviously fails to allow properly for
time-discount. Controversy among theorists has centered upon a more interest-
ing concept known variously as the "internal rate™ or the "rate of return.”
The internal rate for a project (or set of projects) is defined as p 1in the

discrete discounting equation:

o? zl/(1+p) + 22/(1+p)2 + .. + zT/(l+p)T

(6) 0 =2z
As before the zy here are the successive terms, positive or negative, of the
payments-receipts sequence associated incrementally with a particular project.
In the special "deepening” case illustrated in Figure 2, the corresponding

concept under continuous compounding is defined implicitly in:

= - —-pt
) 0=-ig + vte

where once again the V. at any date is described by the productive
opportunity curve GG'. Under these conditions p represents an average
compounded rate of growth.

There has been some confusion between two quite different investment
decision rules that both employ the internal-rate measure p: (i) choose
projects so as to maximize p, versus (ii) adopt projects incrementally so
long as p > r.

Maximum—p Rule: If the internal rate p 1is interpreted as the average rate

of growth, it may seem plausible that the investor should maximize p rather

than wealth Woe (Of course, maximizing a growth rate would scarcely make

sense unless the initial outlay or scale of investment were held constant,



which would not in general hold true.) The solution of (7) that maximizes o
is shown in Figure 2 as t = B, notably earlier than the Present-Value

*
solution t =1t .

In favor of B over t* it has been argued that, if the growth
opportunity were to be replicated in perpetuity, returns from choosing the
earlier "rotation period” B must ultimately dominate those associated with
cutting on each cvcle at t*. That is certainly true. However, if the
decision problem concerns infinite rotation rather than a one-time cutting,
for a valid comparison the relevant Present-Value measure would have to be a
generalized one that allows for the associated infinite sequence of discounted
returns. It can be shown that this generalized Present Value does coincide
with B if the growth opportunity can be reproduced on an ever—-broadening
scale (e.g., on new land) -- but only as funds are freed by cutting the tree
or trees. This turns out to be an impossible or uninteresting case, because
it implies that the productive opportunity must be of infinite market value if
the maximized p exceeds the market interest rate r (and of zero value
otherwise). In contrast, if the opportunity is a unique one which cannot be
reproduced after cutting, as pictured in Figure 2, the simple t = t* solu-
tion remains correct. Another solution, t = F, found by the German forester
Faustmann, is appropriate when the opportunity can be reproduced over time by
cutting and replanting but cannot be broadened in scale. F would be found by
maximizing the Present Value Vj of an infinite sequence of rotations, each
being a constant-scale replication of the original opportunity. Like all the
correct solutions, it is equivalent to maximizing the present worth of the
opportunity under the stated assumptions. (F 1is not shown in Figure 2 but

would lie between B and t*.)



p vs. r Comparison Rule: The Comparison Rule says to adopt any project

whose internal rate p exceeds the market rate of interest r. This rule
remains popular in business practice, in part because it offers a convenient
division of labor: calculation of the p's on individual projects might be
delegated to subordlnates, while top decision-makers choose the cutoff rate r
that corresponds to the relevant market interest rate faced by the firm.
Unfortunately, however convenient such a decision of labor may be, once again
this is not in general a correct method of project selection.

The difficulty with the Comparison Rule first came to be appreciated when
it was discovered that a sequence of positive and negative cash flows could
have more than one p serving as solution of equation (7) above. A project
represented by the annual payments sequence -1,5,-6, for example, has two
solutions: p =1 and p = 2. (It can be shown that a project with T+1
Aated elements may have as many as T solutions.) This of course destroys
the idea that the internal rate can generally be identified with a growth
rate; an outlay of one dollar cannot be said to grow at both 100% and 200%.
Various answers have been offered to the puzzle of which p to use in such
cases. But the difficulty is immediately explained and resolved if we think
instead in terms of Present Value. It turns out that the sequence -1,5,-6
has positive V (and 1s therefore worth adopting) for any constant market
interest rate r between 1007 and 200%, but at other values of r has
negative Present Value (and should not be adopted). Perhaps even more illum-
inating is the project described by cash flows -1,3,—2%@ . This sequence has
no real solution for p 1in equation (7), the reason in Present-Value terms
being that V3 is negative for any constant r. Yet this is a perfectly
resnectable investment opportunity. After all, there is no justification for

postulating (as is implicitly done by the Comparison Rule) that the



anticipated sequence of market interest rates Tj,T9,e.«,IT must be constant
over time (always equal to a common 7r). It turns out that the cash-flow
pattern -1,3,-2 Ué has positive Present Value (i.e., the project would be
worth adopting) for many possible non-constant interest-rate sequences —— for
example, r; = 100% and r, = 200%.

Summing up, therefore, the Present-Value Rule for investment decision --
corresponding as it does to the principle of maximizing wealtﬁ within the
opportunities available —— is correct itself and also serves to define the
range of validity of all the other rules considered.

Generalizations and Extensions

The preceding analysis needs to be éxtended in at least two important
ways, so as to allow for: (1) uncertainty, and (2) imperfect and
incomplete markets.

Uncertainty: Investment choices, involving as they do present sacrifice for
future benefit, are peculiarly sensitive to uncertainty. However, so long as
we can continue to assume a regime of complete and perfect markets, the
Present-Value Rule is robust enough to retain validity even in a world of
uncertainty. For, the proximate goal of any individual (or group of individ-
uals organized in a firm or other joint enterprise) will still be to undertake
productive activities so as to maximize wealth. Having achieved that goal,
each and every individual investor will be in a position to distribute his
attained wealth as desired over all possible dated contingencies in accordance
with his time-preferences, degree of risk-aversion, and probability beliefs.

Economists use two main models for the analysis of uncertainty —— state-
preference and mean-versus—-variability analysis. Since the latter, under
certain assumptions, can be regarded as a special case of the former, for our

purposes attention can be limited to the state-preference model. If markets
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for state-claims are complete and perfect, any pattern of varying returns over

states of the world at a given date has a certainty-equivalent in value terms

as of that date. In equations (3) and (3'), the =z, for any project can now

be interpreted as certainty-equivalents (rather than as simple cash flows)

defined by:

(8) Zp = Pryzey + Peazep + oeee + PegZeg

Here 1z, , Trepresents the cash flow at date t contingent upon state of the
world s obtaining -- there being S distinguishable such states —— while

P is the price at which a unit claim to income in state s can be con-

ts

verted into (traded for) certainty income at date t.

Incomplete or imperfect markets: Markets are said to be incomplete if some

objects of choice are non-tradable. For example, futures markets for some
commodities at far-distant dates do not exist, nor is it possible to trade in
claims contingent upon each and every conceivable future uncertaln event.
Markets are said to be imperfect if there are costs of trading —- e.g.,
brokerage fees, transaction taxes, or expenses in locating exchange partners.
Any real-world regime of markets will necessarily be both incomplete and
imperfect, but for some purposes the assumption of complete and perfect
markets may be a usable idealization. Unfortunately, once we depart from this
idealization the problem of investment decision criteria becomes very diffi-
cult. The reason is that the Separation Theorem fails. Only under complete
and perfect markets is the concept of wealth or Present Value unambiguously
defined, so that the choice of productive investments can be entirely
disconnected from individuals' personal time-preferences, risk-preferences,
beliefs, ete. Failure of the Separation Theorem particularly subverts the
ahility of investors to join together in undertaking large projécts Oor groups

of projects.
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However, two different lines of analytical approach have yielded results
of interest: (i) a number of techniques have been devised for locating
"utility-free” or "efficient” investment choices. In general such techniques
cannot determine an optimal project set, but they can serve to filter out
options whose payoff patterns over dates and/or states are dominated by other
available projects or project combinations. (ii1) While investors' personal
circumstances may diverge in innumerable ways, there should be some tendency
for those similarly situated to group together. Thus, a firm whose investment
opportunities yield far—future payoffs should tend to be owned by a
"clientele” consisting of individuals with moderate time-preferences, willing
to forego current dividends in the hope of large long-term gain. It follows
that unanimity as to the investment choices to be made may after all govern
within the firm, for example as to the discount rate to employ in calculating

Present Value, even in the absence of perfect and complete markets.

NOTES ON THE LITERATURE

The modern theory of investment and intertemporal choice was set down in
classic form by Irving Fisher as part of his great works on interest (1907,
Ch. 8-9; 1930, Ch. 10-13). The seminal works on uncertalinty theory include
Arrow (1953) for the state—preference approach and Markowitz (1959) and Sharpe
(1964) for the mean-versus—variability model. Choice over time and choice
under conditions of uncertainty are integrated in the treatise by Hirshleifer
(1970) that builds upon these foundations. All these topics have been follow-
ed up in an enormous literature, of which only a few illustrative instances
can be cited here: on investment decision formulas, Samuelson (1976); on
utility-free or dominant choices, Pye (1966), Hanoch and Levy (1969), and

DeAngelo (1981). A survey of investment decision criteria used in current

business practice appears in Schall, Sundem, and Geijsbeek (1978).
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Investment and saving in a 2-period model
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Optimal duration of investment



