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PROTOCOL, PAYOFF, AND EQUILIBRIUM: GAME THEORY AND SOCIAL MODELLING

The purpose of this paper is mainly programmatic. My contention is that,
in applications of game theory, it will be productive and clarifying always to

maintain a sharp distinction between: (i) the payoff environment facing the

participants, versus (ii) the protocol that specifies precisely how the
players are permitted to interact. Consideration of these two elements, I
will argue, is needed in order to understand the nature and validity of
certain of the standard equilibrium concepts in game theory.

In applying game theory we are always attempting to model social

gituations. What I call the payoff environment is the set of distributed

opportunities offered by Nature to the "society” comprised by the players of
the game. It is typically displayed in the elementary normal-form matrices1
known as Chicken, Prisoners' Dilemma, etc. The protocol represents a
different aspect of the social situation, illustrated by the answers to such
questions as: At each point in time who is allowed to make what sort of move?
From what starting-point? What information is conveyed? How does the game end?
In fact, the protocol is just what we call "the rules of the game™ in common
parlance. (Game theorists employ the game-tree or extensive form to picture
at least some of these protocol elements, notably the sequence of moves and

the state of information.) In short, the payoff environment consists of the

available exogenously determined returns to the members of the social

1An elementary normal-form matrix has rows or columns only for what I
term the "execution moves” of the players (see below).



grouping, while the protocol of play models certain aspects of the internal

political and social institutions of the group.2

For concreteness, consider the social criterion of Pareto-efficiency.
The question might be raised, for example, is a Pareto—efficient outcome more
likely under social contexts corresponding to the game of Prisoners' Dilemma
or under those corresponding to the game of Chicken?3 Alternatively, we might
be interested in the question of relative advantage: what social structures
and corresponding games tend toward an equilibrium favoring one player over
another? We cannot validly answer such questions without attending both to
the payoff environment and to the protocol. As one instance, it is often said
that in the single-play Prisoners' Dilemma the solution outcome is Pareto-
inefficient. For many possible protocols that statement is indeed correct,
but in others it is incorrect (as will be shown below). Or it might be that
Pareto-efficiency is attained in one payoff environment only if the players
move simultaneously, in another only if they move sequentially. And in

addition, the protocol may be important in specifying whether the equilibrium

2Experimental economists have found it useful to distinguish between
"environment” and "market institutions” in a way that parallels the payoff vs.
protocol distinction employed here. Among the protocol aspects ("market
institutions”) explored in such studies have been, e.g., whether offers to buy
or sell are to be public or secret, whether either side mav bid or only buyers
or only sellers, etc. (see, for example, Plott [1982] and Smith [1983])). (In
contrast, those economists who emphasize the power of the Coase Theorem are
essentially saying that the details of market protocols do not really matter
for the final outcome.) The term “protocol” as used here also corresponds to
the agenda in political choice, and of course it is well known that the
details of the agenda may be crucial in determining the outcome achieved by
majority voting or other political process. The role of various protocol
elements has been emphasized by some game theorists, e.g., Schelling (1960)
who calls them "institutional and structural characteristics of negotiation”

(p. 28).

3For treatment of such questions see, e.g., Rapoport {1960, Ch. 11],
Snyder and Diesing [1977, Ch. 2].



is unique or multiple, stable or cyclic, etc.

It is of course by no means a new idea that the final outcome for any
game depends upon the specification of what I am calling a protocol. As
already mentioned, the game-tree or extensive-form picture of the game does
direct attention to the protocol, or at least to certain aspects thereof.
Nevertheless, while game theorists surely have understood the significance of
protocols, they have done surprisingly little in the way of systematic
analysis of the implications of games conducted under one protocol rather than
another. And in fact, even a taxonomy of the ways in which protocols might
vary is lacking.

My purpose here is to make a start at these tasks. I will be showing
systematically how various structural aspects of protocols — different
"architectures of the game-tree”, so to speak —- have predictable implications

for the final outcomes of strategic interactions.

A. ELEMENTS OF ALTERNATIVE PROTOCOLS
In the interests of expository simplicity I will consider only 2-person,

single-play games. In repeated-play games ("supergames,” in the current

jargon) the participants would earn multiple payoffs over time. 1In this
analysis, in contrast, the ultimate outcome is a single payoff-pair from the
elementary normal-form matrix. However, what is very important, the governing
protocol might allow for one or more rounds of what I shall call "negotiation
moves” -- offers, commitments, etc. —- before the players come to make their
"execution moves.” Only these final execution moves, however arrived at
through the negotiation process, determine the payoff-pair received.

Communications — explanations, threats, promises, etc. —— constitute one

category of negotiation move that may or may not be permitted by the operative

protocol. A commitment, by which a player can limit his own future freedom of



choice among execution moves (in the hope of influencing the opponent's
decision thereby) is another kind of negotiation move. To keep things still
simple, however, I will be concerned here only with one very elementary type
of negotiation move: what I will call a "try”". A try is a tentative execu-
tion move, i.e., one that may or may not (depending upon the provisions of the
protocol) become binding upon the player. The protocol might specify, for
example, that Row has the first try (he makes a tentative selection among the
execution moves available to him), then Column has a try, and finally Row has
one last chance to change his mind. In this 1 1/2-round protocol Row's first
move 1s a non-binding try, but the succeeding tries on each side lock into
execution moves.

It is quite essential to maintain a strict distinction between "move” and
"strategy”. A player's strategy is a detailed and complete plan covering both
negotiation and execution moves. The strategy could in principle be left in
the form of instructions for an agent, telling him which (negotiation or
execution) move to make on the player's behalf, in every context where the
protocol allows a choice. A plaver could have a strategy in which his chosen
negotiation or execution move at any point depends upon his opponent's pre-

vious visible moves. But, it is important to note, one's chosen move at any

point cannot in general be made to depend upon your opponent's strategy —-—

since that will ordinarily not be fully visible in the negotiation phase.
(0r, indeed, the opponent's strategy may not be fully visible even after the
execution moves have completed the game.)

While in principle strategies can be "pure” or "mixed” (probabilistic), I
will be limiting myself here to pure strategies. As still another simplifica-
tion, I will be considering only protocols that strictly limit the players to

the original payoff environment as displayed in the elementary normal-form



matrix. Thus, no side-payments or transfers (between the players, or with
third parties or with Nature) may take place. Also excluded are any agree-
ments or threats or promises, except insofar as these may be implicitly
conveyed by actual tries in the negotiation phase. In short, at any point the
Row player can do no more than select a try from one row or another in the
payoff matrix, and correspondingly for the Column player. Such protocols
define what I shall call "transition games.” Again for simplicity, I will
always be assuming that both plavers have full knowledge of the payoff matrix,
of the governing protocol rules, and of the past history of the negotiation or
execution moves already made. (But the players are not, to repeat, generally
in a position ever to know the opponent's underlying strategy.)

Among the different dimensions in which protocols may vary are: (1) the
status quo position; (2) the sequence of turns; (3) ordering rules for
allowable tries; and (4) the provision for termination.

1. The status quo position

Three different types of status quo or start-up positions can be
described. First, play may commence with each player already "endowed with”
an existing try. Thus, the negotiation phase begins with the parties
initially located in one particular cell of the normal-form payoff matrix.

Or, under the opposite assumption, the status quo could be an entirely clean
slate, with no tries at all having vet been chosen. In this latter case there
would have to be one round of "initializing"” tries before transitions proper
can begin. The third possibility is intermediate between the other two: one
player is endowed with an existing try, which specifies the Row or the Column
(as the case may be) of the start—up position, but the other party's slate is
clean. Here a half-round of initialization would be required before

transitions can commence.



2. The sequence of players' turns

The players may choose tries in alternation, or simultaneously. (Of
course "simultaneity” must be understood as referring to the state of know-
ledge rather than to clock time: 1f your choice is later in time but must be
made in ignorance of your opponent's current try, the moves are simultaneous
from the decisional point of view.) .Again, there are a number of intermediate
cases possible. One such is partial information. For example, if the other
player has options 1,2,3 you might know that on his current try he has not
selected 3 but still be unahle to determine whether his choice was 1 or 2.
As another intermediate case, the protocol may provide for some more or less
complicated switching between alternation and simultaneity in successive
rounds of negotiation play. In the interests of still keeping things simple I
will be dealing here only with protocols providing either for strict

alternation or else for strict simultaneity of tries.

3. Ordering rules for negotiation moves

There may be some limitations upon the order in which negotiation moves
may follow one another. In an ordinary commercial auction, for example, you
are permitted to raise your previous bid but not to lower it.
4. The termination procedure

Here there are a great number of distinguishable and interesting
possibilities. The following are some important examples:

(i) Fixed termination: The governing protocol may specify a fixed number

of negotiation rounds. Thus, a 1 1/2-round game is dictated by a
protocol like: "Row has a try first, then Column, then Row once more
-- after which execution takes place.”

(i1) "Natural™ termination: The negotiation phase "naturally” terminates

when all players are satisfied to stand fast (pass) rather than change



their last tries. Thus, in an open public auction, the negotiation

phase "naturally” terminates when no-one cares to raise his last bid.4

(11i) Player-biased termination: One player, but not the other, may have the

option of declaring the negotiations ended (even if he has just
switched).

(iv) Move-biased termination: A player's choice of one kind of try (of one

particular row or column, as the case may be), but not of another, may
bring about termination of the negotiation phase. As a practical
example, some historlans have argued that in the military situation
before World War I the decision of any nation to mobilize -- given the
strategic advantage of early mobilization and the absence of a stand-
down procedure —-- would have sufficed to put an end to further useful
negotiations., As it happened Russia, with her great distances and
inadequate transportation, felt it necessary to Initiate mobilization
first; that decision having been made, war became inevitable.
Combinations of termination rules are also conceivable. An example for
the simultaneous-move game might be: "At the end of the first round of tries,
Row but not Column has a termination option; should he not exercise it, the
game ends anyway after two more rounds (unless it naturally terminates

earlier).”

B. PRINCIPLES OF SOLUTION
I shall adopt the following principles (some already touched upon above)

for arriving at a solution under any specified payoff matrix and protocol:

4Brams and Wittman [1981], in an article which has certain parallels with
the present paper, limit their analysis to what I am calling "natural”
termination protocols.



(1) Rational behavior: Fach player maximizes his payoff, and is fully

able to compute even very long and complex chains of possibilities on the
order of "If I do this and then he does that....” Also, he assumes that his
opponent 1is equally rational, and that this mutual rationality is "common

5

knowledge”.

(2) Adherence to protocol: Every negotiation or execution move on the

part of the players must be explicitly permitted in the protocol.

(3) RKnowledge of the game: Each party is fully informed as to the

operative payoff matrix and protocol.

(4) Memory yes, telepathy no: Each player can remember the history of
all prévious tries. However, the player does not know his opponent's future
negotiation or execution moves (except insofar as he can infer them from the
rationality principle). Thus, as has been mentioned, he cannot in general
know his opponent's strategy.

These assumptions suggest that the way to find the solution is to apply
the principle of dynamic programming (Bellman [1957]). Working backward
through the game-tree the player, determining at every step the rational
option for himself and his opponent, can ultimately calculate his optimal
initial try.6 Allowing for such behavior on both sides leads to the "Subgame-

Perfect Equilibrium™ (SGPE) concent (Selten [1975]). However, since I want to

5With common knowledge each player 1is rational himself, knows that his
opponent is rational, knows that the other knows that he knows, etc. (see
Aumann [1976]). If the mutual rationality were not common knowledge, I might
correctly believe that you are rational but also believe that you mistakenly
think I am not rational. Failure of common knowledge would in general affect
the solution arrived at by two rational plavers.

6Dynamic programming may not lead to unique choices in a number of
circumstances, but in the simple games to be considered here this difficulty
will not arise.



highlight the sensitivity of the solution to the governing protocol, for
purposes of emphasis 1 will employ the term "Protocol-Dependent Rational
Equilibrium” (PDRE). Recall also that we are here considering only transition
games. This structuring of the situation is what will allow us to explore the
effects of the "protocol architecture” upon the equilibrium arrived at.

Figure 1 illustrates, for the payoff environment represented by Matrix 1,
two alternative single-round protocols: 1in Protocol A Row has the first move,
in Protocol B Column moves first. The ultimate payoff-palrs are indicated at
the end of each decision path, at the far right. The payoff-pairs appearing
at the earlier decision nodes represent the effect of allowing for optimal
choices at all downstream points. Under Protocol A, should node y' be
reached Row can predict that Column's later choice of move ¢y will lead to
the payoff-pair (2,4).7 Similarly, at node y" Row can predict the ultimate
payoffs (3,3). Since y" 1is therefore superior to y' from Row's point of
view, at his initial decision node x Row will select move Ty Thus, the
Protocol-Dependent Rational Equilibrium (PDRE) for this game is the path

{r2 + cz} generating (3,3) as payoffs.8 Similar reasoning under Protocol

7Follow1ng the standard notational convention, payoff vectors (shown in
parentheses) will always be written with the Row payoff coming first.

8Where the temporal sequence of moves is shown, Column moving first will

be indicated by a notation in braces such as {c2 *> rz} — meaning here that

Column has initially chosen move ¢y followed by Row's choice of Tye
Subscripted lower-case letters like ry or cy will be used to denote moves

(tries) on the part of the Row and Column players, while similarly subscripted
upper—case letters signify strategies. For the elementary normal-form
matrices, which show the payoffs to execution moves only, it is the lower-case
symbols that appear in the margins. But it will sometimes be useful to dis-
play in normal form some non—-elementary matrices (e.g., Matrix 3A below) where
the payoffs are shown as determined by pairs of more or less complicated
player strategies — in such cases upper-case letters appear in the margins.
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B (where Column has the first move) leads to a different PDRE —— the path

{c1 * rl} with payoffs (2,4).
[Figure 1 about here]

C. CRITIQUE OF CERTAIN SOLUTION CONCEPTS

When game theory is introduced in elementary textbooks, the story usually
starts with the constant—sum game and two opponents who seem rather over-
concerned with playing safe. The operative protocol is left vague, but the
impression is conveyed that the players move simultaneously, i.e., in ignor-
ance of the opponent's choice. The player on each side i1s supposed to be very
preoccupied with his "security level” — the best he can achleve were his move
to be discovered and optimally countered by the enemy. Thus the two contest-
ants seem to behave like over—cautious military commanders, who always credit
the enemy with the capacity of detecting and optimally responding to any
chosen move. Such "maximin" reasoning leads, in the constant-sum Matrix 2
below, to respective choices of execution moves r; and c;. So the maximin
strategy-pair is [R;,C;], with payoffs (2,3) to the associated execution
moves.9 Since each player here exactly achieves his security level, the

solution is a "saddle point."1|0

fn. 8 cont. ...For some very simple protocols, such as single-round
simultaneous play, the strategies on each side reduce down to choice among
execution moves, and so we can equivalently use either upper-case or lower-
case letters in the margins of the normal-form matrix.

9Here, by an obvious choice of notation made possible by the simplicity
of the situation, Row's strategy R; 1is identified with his move r; and
similarly Column's Cj is equivalent to his making move cj.

10Not all constant-sum matrices possess saddle-points in pure strategies,
but I will not be pursuing that point here.



Matrix 1

(see Figure 1)

€1 €2

rl *2,4 4,1
r2 1,2 3,3
Matrix 3

SILVER RULE

¢ €2

(Good) (Evil)
ry(Good)  *4,4 1,3

ry(Evil) 3,1 *2,2

11

Matrix 2

CONSTANT-SUM (with
saddle-point 1in
pure strategles)

¢ €2

131 *2.3 3,2

rz 1,4 4,1
Matrix 3A

SILVER-RULE EXPANDED (strategies
for 1-round alternation R
protocol, Row moving first)

Cy Cy C3 G
R %44 1,3 *4,4 1,3
R, 3,1 *2,2 2,2 3,1

TMoves and strategies for Matrix 3A

Rl = Play ry

Ry = Play 1

C, = Play ¢,

02 = Play ¢y

Cy3 = Play ¢ 1if ]
cp 1if ry

C4 = Play ¢; |if Ty,

cp 1if )
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While the maximin solution concept may possibly be defended on other
grounds, the protocol implied by the introductory textbook tale is logically
inconsistent. The generals cannot both be in the position of having their
execution moves subject to optimal refutation by the enemy. In a l-round
alternating-move protocol, for example, only the first-mover needs to be
concerned about the enemy's response to his move; in a simultaneous-move
protocol neither plaver's move would be vulnerable to refutation. (Each
general may believe that the other has such a capability, but if so at least
one of them lacks adequate "knowledge of the game™ -~ which would violate
solution principle #3 above. The same holds for the more reasonable
assumption that each commander believes only that there is a certain risk of
his move being found out.)

Where the maximin principle implies irrationally over-cautious
decisionmakers, just the opposite holds in the usual story presented to
justify the equilibrium principle most commonly employed for non-constant-sum
games —- the "Nash equilibrium” (NE) or "equilibrium point.” An outcome is
said to be an NE 1if, given the chosen strategy of the opponent, it does not
pay elther player to unilaterally modify his choice. Using Matrix 1 for
illustration, this reasoning suggests that the (2,4) payoff vector correspond-
ing to the [R;,C;] strategy-pair would be the sole NE. (Here and elsewhere
the NE's are indicated by asterisks.) Once again the specifics of the
protocol are left vague, but it is argued that since at the NE Row's payoff
is the highest in its column it does not pay him to switch, and similarly for
Column since his payoff at the NE 1is the highest in its row. Whereas the
maximin textbook story has each player thinking that his opponent has the last
move, in the Nash textbook story each player in effect believes.that he

himself has the last move. Instead of over-cautious generals we have over-
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confident ones, each "myopically” sure that the enemy will not respond to his
own chosen move.!l

However, 1 must hasten to add, while social scientists who use game
theory frequently do interpret the NE as just such a "myopic" solution, a
skilled practitioner of the art would not be led astray. The Nash equilibrium
should properly be defined in terms of strategies, which only in very simple
protocols reduce down simply to execution moves on each side. An expert game
theorist would therefore carefully examine the game-tree or extensive form
(i.e., he would congider the protocol) operative in any actual situation,
rather than draw conclusions simply from the elementary payoff matrix showing
the returns to the execution moves alone.

When defined in terms of the full set of strategies permitted by the
protocol, the Nash equilibrium solution concept cannot validly be criticized
as "myopic."12 It is possible to show the payoffs to the entire strategy set

via a suitably expanded normal~form matrix (as will be 1llustrated below).

The Nash equilibrium or equilibria in strategies can then be located by

inspection.

However, some substantial difficulties with the NE still remain and are
not so easily disposed of. Firgt, while the true PDRE — the equilibrium
under rational play, given the operative protocol -- will always be among the

Nash equilibria turned up by this “"expanded-strategy” process, there will

11For the constant-sum game it is a well-known result that the saddle-
point and Nash equilibrium (in pure or mixed strategies) coincide. This is
regarded by a number of analysts —- e.g., Shubik [1982, p. 221] and Zagare
{1984, pp. 26-27] —— as strong evidence in favor of that solution. I cannot
agree. Two invalid arguments, each based upon a logically inconsistent
protocol, carry no more weight than one.

12The very valuable paper by Brams and Wittman [1981] is therefore
somewhat unfair in attacking the Nash equilibrium as "myopic.”
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generally also be false soluti¢ns that have to be filtered out.
Unfortunately, it 1s easy to b+ careless on this score and mistakenly believe
that all NE's are of equal validity. Second, there may not be a valid
informational basis for optimi%ing in response to the opponent's "given”

i
strategy, which (depending upoﬁ the protocol) may or may not be visible to the
opponent. These points will be i1llustrated by example.

Consider Matrix 3 which represents the payoff environment (to execution
moves) that I will call SILVER RULE. The idea is that each player prefers to
respond Good for Good, but und#r less pleasant circumstances would want to
return Evil for Evil. Naive i&spection of Matrix 3 suggests two seeming Nash
equilibria: [rl,cll yielding:both sides their ideal payoffs (4,4), but also
the Pareto-inferior [ry,cy] yielding them only (2,2). (There is also a
third mixed-strategy NE which does not concern us.) Such a game matrix has
been employed to picture, for example, one possible cause of war: each nation

may behave aggressively because, once caught in the (2,2) NE, either side

can only lose by changing unilaterally from Evil to Good.

A more careful analysis requires that the protocol be spelled out before
any such conclusion 18 drawn. Specifically here, suppose the operative
protocol provides for simple one-round alternation: starting from a clean-
slate status quo, first Row moves, then Column, after which the game ends.
(This protocol could of course be pictured as before in game-tree or extensive
form, but doing so seems hardly necessary in such a simple case.) Evidently,
with two rational (and common-knowledge) players the equilibrium path will be
{r1 +> cl} leading to the ideal payoffs (4,4). Row as first-mover can confid-
ently choose Good, knowing that Column will then be motivated to respond in
kind. Thus in Matrix 3 one of the seeming NE's has been determined to be

the correct PDRE outcome under this protocol, while the other —— associated
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with the payoff-pair (2,2) -- has been shown to be incorrect.

Matrix 3A is the normal-form matrix in a suitably enlarged strategy
space. Under the specified protocol Row's strategies remain the same as his
execution moves, but Column now can adopt additional strategies which are
contingent upon his opponent's prior move. More specifically, Row's Ry is
his simple execution move r (Good) while his Ry remains ry (Evil). But
four distinct strategies are now available to Column, as follows:

Cy: Always play Good (execution move cy)

Cy: Always play Evil (execution move cy)

Cy: Answer Good with Good, and Evil with Evil

C4: Answer Good with Evil, and Evil with Good

0f course only C3 here 1s rational for Column. But in Matrix 3A we now
see three pure-strategy NE's (once again indicated by the asterisks). The
correct PDRE, which here appears as the strategy-pair [RI,C3] with payoffs
(4,4), is indeed among them. But two incorrect NE's have to be filtered out.
Thus, the "sophistication” that takes the form of expanding the elementary
matrix to allow for contingent strategies has not really helped. Filtering is
still needed, and can only be done by bringing protocol considerations to
hear.13 Employing the PDRE in the first place would have precluded an

irrelevant detour through the inadequate Nash equilibrium concept.

13The treatise by Van Damme [1983] is concerned to "refine"” the Nash
equilibrium concept, in order to filter out all but what he calls the
"sensible” solutions. His underlying idea involves the same principle, of
common-~knowledge rational forethought, as postulated here. However, Van
Damme's description of that principle seems somewhat flawed. His "sensible”
NE's are strategy-palrs that would constitute "self-enforcing agreements” —-—
suggesting, what 1s not actually required, that the protocol has to allow
negotiation or agreement-making moves prior to the execution phase.
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"equilibrium” or not.

D. AN APPLICATION: FIRST MOVE VS. LAST MOVE

In this and the next section I shift to a more constructive mode in order
to illustrate the utility of the payoff vs. protocol distinction. One
question to which that distinction naturally leads is the following: Given

some fixed protocol of play, how do the PDRE outcomes vary when we consider

the range of possible payoff environments? Such a question will be considered
in this section. 1In the section following, the opposite kind of issue will be

addressed: Given a particular fixed payoff environment, how do different

possible protocols affect the PDRE solution?

Many aspects of the solution arrived at might be of interest. Two main
questions will be considered here: (1) 1Is the outcome Pareto-efficient?
And, (2) Does one player or the other, Row or Column, have the advantage?
For each question, of course, our main theme is that the answer in general
will depend upon both payoff and protocol considerations.

Here a single-round alternating-move protocol will be assumed: starting

from a clean slate first one player chooses, then the other, and the game
ends. The range of payoff environments to be considered is the set of 2x2
matrices with ordinally ranked payoffs. For purposes of ordinal comparisons,
and if ties are ruled out, the numbers appearing in the cells of the matrix
for each player can be ranked 4,3,2,1 -- higher numbers corresponding to
greater payoffs. There are 576 such matrices. However, Rapoport and Guyer
(1966) show that many of these can be derived from others by inessential
transformations, to wit: (i) re-labelling of rows, (ii) re-labelling of
columns, or (1iii) re-naming of players. (Or any combination of the above.)

After elimination of inessentially different variants, only 78 matrices remain

to represent all the possible qualitatively different payoff environments in
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2x2 games, ties excluded. (The 78 such matrices are conveniently tabulated
in the paper by Rapoport and Guyer.)

Let us start with the question of relative advantage —— who does better,
first-mover or last-mover? In order to isolate this effect of priority, a
protocol consideration, we need to set aside aspects of the payoff environment

that may give one of the players the advantage whether or not he has the first

move. One way of isolating the priority effect is to narrow the field of
attention to the subset of the ordinally ranked 2x2 matrices that are
symmetrical in terms of payoffs. The symmetrical matrices are those that
"look the same" whether regarded from Row's or Column's point of view. TI.e.,
an interchange of the Row and Column players would leave each with the same
strategy choices and associated payoffs as before.

0f the 78 qualitatively distinct 2x2 matrices, exactly 12 are
symmetrical in terms of payoffs. Of these, however, 6 are "uninteresting” in
that they contain a (4,4) payoff element. Obviously, in a single-round
alternating-move protocol the pair of execution moves leading to such a
mutually preferred payoff-pair will always be achieved as the PDRE.14 The
remaining, more "interesting” payoff environments are tabulated below as
Matrices D.1 through D.6.15 (In each case the PDRE solution, for the case
where Row has the first move, i1s indicated by the symbol #.)

Turning back for a moment to our first question, in the 6 "uninteresting”
matrices not tabulated the PDRE represented by the (4,4) payoff-pair is of

course Pareto—~efficient. Inspection of the 6 tabulated matrices reveals that

14The (4,4) outcome will always be a Nash equilibrium as well, but as we
have seen it may not be the sole NE,

Vpor a discussion of these matrices from another point of view see
Rapoport (1967).
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Matrix D.1

PRISONERS' DILEMMA

¢1 c2
3,3 1,4 r|
4,1 2,2# ry
Matrix D.3
CHICKEN
Cl C2
3,3 2,4 Ty
4,24# 1,1 ‘T
Matrix D.5

DO IT MY WAY (1)

€1 €2
2,2 4,3# ’ ri
3,4 1,1 r2

Matrix D.2
NON-DILEMMA
c1 oy
3,3# 4,1

1,4 2,2

Matrix D.4
ANTI-CHICKEN
¢y c)
3,3¢# 4,2

2,4 1,1

Matrix D.6

DO IT MY WAY (1II)

¢ ¢
2,2 3,4
4,34 1,1
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Pareto-efficiency fails in only one case —— Matrix D.1 (PRISONERS' DILEMMA).
Returning to the question of first-mover or last-mover advantage, the result
is of course neutral when the (4,4) outcome is achieved in the 6 "uninterest-
ing” matrices. As for the 6 “"interesting” cases, exactly 3 are similarly
neutral while the other 3 all give the advantage to the first-mover (Row as
assumed here). Thus the possibly surprising result: In the symmetrical 2x2
game with strictly ordered payoffs, under the alternating-move protocol it is
never advantageous to have the last move.

Recall that our ultimate interest lies in using game theory to model
social outcomes and relationships. As an evident application, the question of
first-move versus last-move suggests the traditional problem of who has the
advantage in war (or conflict more generally) -- the offense or the defense?
We would certainly be incorrect to assert that the defense (last-mover) never
has the advantage in war! So the problem is to explain the seeming
discrepancy between theory and observation.

First-move versus last-move advantage is connected with the distinction
between the conflictual and the cooperative aspects of mixed-motive games.

The two aspects can be visualized if the payoff-pairs for any game are plotted
as in Figure 2 on Py (pavoff to Row) and Po (payoff to Column) axes.

Then, following a lead suggested by Snyder and Diesing (1977), the cooperative
aspect 1is suggestively measured by the distance within the bounded region
along or parallel to the main diagonal, and the conflictual element by the
corresponding distance along or parallel to the secondary diagonal.16 In

Figure 2 the payoff enviroument represented by Prisoners' Dilemma (top

16We are shifting ground here from an ordinal to a ordinal iunterpretation
of the tabulated payoffs.
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diagram) is thus seen to be relatively more conflictual than the environment

corresponding to Matrix D.5, termed here DO IT MY WAY (I)17 (bottom diagram).
[Fig. 2 about here.]

Where the players' interests are more allied than in conflict, as in the
two DO IT MY WAY matrices, the first-mover will often be able to capture more
of the mutual gain. Having the first move, he can vlace the second-mover in a
position where in trying to help himself the latter must automatically help
his opponent even more.18 Where the interests are sharply opposed, however,
the last-mover in helping himself will tend to injure his opponent, hence the
first-mover may be forced to go for a safer but less profitable strategy
option. An obvious quantitative measure of the association of interests is
the simple correlation coefficient. The argument preceding suggests that
first-move advantage 1s more likely where the correlation of payoffs is
high. Table 1 confirms this suggestion for the set of 6 "interesting”
symmetrical 2x2 matrices considered here.

Table 1

Correlation of payoffs and first-move advantage

Correlation Between Instances of first-

Row and Column Payoffs move advantage
Matrices D.1 and D.2 -.8 0 of 2
Matrices D.3 and D.4 +.2 1 of 2
Matrices D.5 and D.6 +.6 2 of 2

17The idea 1s, "Be reasonable —-— we can both benefit 1f you do it my
way.” (0Of course, "doing it my way"” is relatively better for the speaker than
for the person addressed.) Matrix D.6, DO IT MY WAY (II), represents a quali-
tatively similar though logically distinct game. Rapoport (1967) proposes the
names Hero for Matrix D.5 and Leader for Matrix D.6, but descriptive titles do
not seem very apt.

180n this see also Schelling [1960], p. 143.
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But it is natural to ask why it is that, in the very similar matrices D.3
and D.4 (CHICKEN and what I have whimsically termed ANTI—CHICKEN)19 which have
the same correlation coefficient, the former is associated with a strong
first-move advantage and the latter is not? The explanation is that, even
though the payoff-péirs are identical, the available strategles link them in
different ways. In Matrix D.4 (ANTI-CHICKEN) Row's execution move r; vyields
him (3,-) or (4,-) depending upon Column's move, while ry; yields him (2,-)
or (1,-). Thus, r; 1is completely dominant for Row, while analogously ¢
is completely dominant for Column.20 This symmetrical pattern makes the
[ry,c;] strategy-pair the PDRE regardless of who moves first. In Matrix
D.3 (CHICKEN), on the other hand, symmetry in this respect is lacking: there
is no dominance. Here Row as first-mover can force (4,3) -- since second-
mover's alternative strategy leads to the mutually undesired (1,1) — and
similarly Column as first-mover can force (3,4).

Although we see from the above that correlation of payoffs is not the
sole factor at work, it is a major element in the determination of whether or
not first-move advantage exists. Thus to find an instance of second-move
advantage we should look for even stronger negative correlation of returns
than in any of the matrices in Table 1 -- approaching the constant-sum condi-
tion in the limit. However, among the set of 12 symmetrical 2x2 matrices
there are no constant-sum cases if payoff ties are excluded. In order to find

symmetrical matrices that are constant~sum, we would have to allow for ties ——

19Rapoport (1967) offers the name Exploiter for CHICKEN, but leaves ANTI-
CHICKEN without a title.

207he concept of "complete dominance” employed here is stronger than
ordinary dominance, because the player can see which strategy is better for
him without even looking at his opponent's strategy options.
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that is, for matrices with only three or even only two distinct payoff levels
for each player.

A detailed investigation would lead into a number of issues that cannot
be pursued here, but the following two-level constant-sum symmetrical matrix

displays the possibility of a last-move advantage:

Matrix D.7
LAND OR SEA
Cl 02
Rl 1,2# 2,1
R2 2,1 1,2¢#

In the LAND OR SEA game, whether Row attacks by land or attacks by sea, Column
as second-mover can defend in a corresponding way so as to refute his
opponent's choice. The informational asymmetry in favor of the second-mover
is of course one of the great advantages of having the defensive in warfare.
The information asymmetry that tends to favor last-mover can he made even
stronger if we depart from our previously maintained protocol assumptions. In
particular, we might very plausibly suppose (instead of our previous full-
knowledge assumption) that each player know his own but not his opponent's
payoff elements. Then, it will be evident, being able to see the enemy's
chosen move before making one's own selection is a weighty advantage. Whether
it is this informational factor, or the near—constant-sum aspect, that some-
times tells so heavily in favor of the defense in war is an interesting issue

for further investigation.

E. SECOND APPLICATION: PRISONERS' DILEMMA UNDER DIFFERENT PROTOCOLS

The previous section examined aspects of the set of PDRE solutions

attained under a single-round alternating-move protocol, over a range of
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alternative payoff environments. This example reverses the emphasis. Only a
single payoff environment will be considered -— Prisoners' Dilemma (Matrix
E.1). A range of alternative protocols will be examined, aimed at the ques-
tion of whether the famous Pareto-inferior "trap” outcome, in which both sides
play DEFECT with payoffs (2,2), can ever be escaped. (And, if so, how this
corresponds to observable social institutions.) We will be dealing throughout
as before only with the single-play game —— which excludes, for example,

"2l 5r gimilar strategies which become

possible escapes based upon "Tit for Tat
possible in multiple-play games. We will however be considering protocols
permitting multiple rounds of negotiation moves or "tries"; nevertheless, the

negotiation-process must end with a single execution move on each side that

determines the payoff-pair attained in the elementary Prisoners' Dilemma

matrix.

Matrix E.1l

PRISONERS' DILEMMA

Loyal Defect
Loyal 3,3 1,4
Defect 4,1 2,2

By an argument too familiar to require extensive justification here, any
finite~termination protocol in Prisoners' Dilemms will inevitably lead into
the (2,2) trap. If the ultimate execution moves are to be made in alterna-
tion, the party having the last execution move will surely play DEFECT. Know-
ing this, his opponent would rationally play DEFECT in his previous execution

turn. Or, if the ultimate execution moves are to be made simultaneously,

21See Axelrod and Hamilton [1981].
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DEFECT is dominant over LOYAL for each player and thus again would rationally
be chosen by each. Thus, the only hope for escape from the trap in the
single-play Prisoners' Dilemma is a termination rule that does not provide for
a fixed number of negotiation rounds (tries). The most interesting
possibility is the rule called "natural” termination above.

A negotiation process "naturally” terminates only when each player,
though he has the option to change his previous try, chooses not to do so. It
turns out that the PDRE solutions under natural termination differ

importantly in the alternating-move versus the simultaneous-move cases.

Alternating moves

In an alternating-move game, once the negotiation process —— the
haggling, we might say — 1s well under way the game naturally terminates as
soon as any player passes. The start-up condition also has to be specified,
however. If the game starts with a clean-slate status quo, a pass in the
first round is not meaningful -- to initialize play, each party has first to
'choose a row or column, as the case may be. 1If on the other hand the status
quo is some particular cell of the matrix (an exogenously specified initial
strategy-pair), the first-mover could pass. But, consistent with the previous
discussion, the game will not be considered to have ended until the second-
trier also has a chance to make a choice of move. Summing up: “natural”
termination of the alternating-move game occurs when elither party passes, once
both players have had at least one try.

Figure 3 pictures the considerations bearing upon equilibrium under
“natural” termination of the alternating-move Prisoners' Dilemma. The four
cells of the underlying elementary Matrix E.l are laid out here in diamond
form. 1In the upper sketch Row's possible switches are indicated by the

(dashed) 1lines in the NE <{--> SW directions, while Colum's switches are
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shown by the (solid) lines in the NW <{-—> SE directions.
[Figure 3 about here.]

Consider now Column's (solid) line labelled #1. It represents a
transition from the payoff-pair (1,4) to the pair (3,3). Clearly, Column
would prefer to pass—and-terminate rather than make this switch. This
transition is therefore immediately ruled out, by a first-level analysis, and
has accordingly been deleted from the lower diagram. And the same applies, by
analogous reasoning, to Row's (dashed) #1 line.

Now consider Row's (dashed) #2 1line, representing a transition from (2,2)
to (1,4). Since as just argued Column would terminate if given the move at
(1,4), Row knows that if he (Row) has the move at (2,2) he had better pass-—
and-terminate right off. Thus, a second-level analysis rules out this switch.
Accordingly, Row's #2 line has also been deleted from the lower diagram,
together with the corresponding (solid) #2 1line for Column.

Finally, consider the #3 lines representing switches away from the
efficient (3,3) outcome. By an evident process of third-level reasoning, once
again either player having the move would do better to pass—and-terminate.
Take Row. A switch by Row along his (solid) 1line #3 would lead to outcome
(4,1) —- yielding a seeming profit. But this gain is illusory. Column in
turn would surely then switch (solid un-numbered line) to (2,2). Since, as
just seen, it does not pay either player to switch away from (2,2), failure to
terminate at (3,3) will ultimately make the switcher (and the other party as
well, of course) worse off. So the #3 lines have also been deleted in the
lower diagram.

We end up with a lower diagram that can be interpreted as follows. Once

the haggling is well underway, the (3,3) outcome is "retentive"” for both
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parties but not “attractive.22 The asymmetrical (4,1) is retentive only for
Row, while (1,4) is retentive only for Column, and once again neither of these
is attractive. Thus, so far everything still points to termination at (2,2)
-~ the Prisoners' Dilemma "trap”.
However, we have not yet taken the start-up condition into account.

Doing so, we find that if (3,3) were the initial status quo then neither

player would have any incentive to switch away from it. For, as we have just
seen, the efficient (3,3) outcome is retentive if the players ever find
themselves there.?3

What about the clean-slate status quo? Here the result is quite
different. Each player will realize that, should either diverge on the start-
up round from the strategy consistent with the efficient (3,3) outcome, the
result will inevitably be the (2,2) trap. In particular, if the trap is to be
avoided the first-mover (say, Row) must choose a try consistent with (3,3).
Can the second-mover profitably exploit such “good behavior”? The answer is
no. Suppose Row initially choose LOYAL and Column greedily responded with
DEFECT, leading to the (1,4) position. Row can still profitably punish Column
by switching into the trap. So Row will choose LOYAL, and Columm will respond
with LOYAL. Thus the efficient (3,3) solution 1s "attractive” after all in at
least one case: starting up from a clean slate. (In the lower diagram, this
is indicated by the arrow pointing toward (3,3) from above.) Summing up:
under "natural” termination, in the alternating-move game there are two

circumstances that permit escape from the trap in the Prisoners' Dilemma:

227he terminology is borrowed from Fiorina and Shepsle (1982).

237he efficient (3,3) outcome of the Prisoners' Dilemma is therefore a
"reactive equilibrium” in the sense of Riley [1979].
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(1) 1if the status quo condition has the players already at the efficient
solution, or (i1i) as a case with wider applicability, if the start-up is
from a clean-slate status quo.

Simultaneous moves

If moves are simultaneous, under natural termination a non-pass try is

always revocable. (There will always be another round of play unless both

parties have passed.) This consideration makes it possible for a player to
“"take a chance” in trying for the efficient outcome of the Prisoners' Dilemma.
Suppose we start with the clean-slate status quo, so that passing in the
first round is not allowed. Should Row try LOYAL but Column answer with DEFECT,
Row can count on being able to switch on the next move. So there is no reason
for Row not to try Loyal, and by symmetrical reasoning Column should do the same
— hence the efficient (3,3) outcome can indeed be achieved as the PDRE. (Row
has no hope of ever achieving (4,1) since Column would surely switch on his next
try, and similarly Column has no hope of ever achieving (1,4)).
Under this protocol, should the players ever find themselves away from
the (3,3) position — whether as an initial status quo, or as the consequence
of mistaken play earlier on — they can easily locate a path back to the
efficient outcome. From the (2,2) "trap” position, for example, as just
explained each should attempt to switch toward the efficient outcome -~ and,
if they each make the attempt, they will succeed. And of course either of the
asymmetrical outcomes will always cause the aggrieved player to switch. So in
general for the natural~termination, simultaneous-move game the Prisoners'
Dilemma "trap” is ineffective; the efficient outcome will be achieved as the

PDRE.

As an overall conclusion, then, consideration of possible alternative

protocols reveals that the Prisoners' Dilemma trap is by no means such an
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irretrievable "black hole” outcome as is often painted. In some protocols the
trap is indeed retentive, in others both retentive and attractive, but there
are important cases in which not the trap but the efficient solution will be
the PDRE,24

One instance that comes readily to mind is the problem of public goods.
Self-interested agents who can mutually gain from joint contributions to the
provision of public goods find themselves in a Prisoners' Dilemma — it pays
each separately to contribute little or nothing, regardless of whether others
contribute or not. Yet it is a notorious fact that individuals do far more in
the way of voluntary private provision of public goods than standard economic
theories allow for. Various more or less cogent explanations have been
offered: for example, Margolis (1982) postulates a utility function
containing an "altruistic” component, and Hirshleifer (1983) points to a class
of public goods where each individual can plausibly regard himself as the
"weakest link” in the chain of social provision (and therefore is inhibited
from shirking since he himself will directly suffer from doing so). The
discussion here suggests another possibility. To wit, that public goods ae
often provided by a societal negotiation process that corresponds, in effect,
to a protocol characterized by "natural™ termination. As seen above, where
one's "generous" try is not finally binding unless the other player or players
respond appropriately, the individual's risk of being exploited largely or
completely disappears.

The same argument can be put in a normative rather than positive way. If

individual members of a society find themselves in a Prisoners' Dilemma trap,

287he conclusion here is entirely consistent with that in Brams and
Wittman (1981).
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they may often be enabled to escape it by agreeing upon a different protocol
—- e.g., one providing for natural termination rather than a fixed number of
rounds of negotiation moves.
Consider the arrangement called "silent trade” or "dumb barter” among

primitive peoples:

«.s.0ne party goes to the customary spot, lays down goods and

retires....The other people then come, lay down what they consider

to he articles of equivalent worth, and retreat in their turn.

The first party then comes back and if satisfied with the bargain

removes the newly-deposited goods; if not, these are allowed to

remain until suitable additions are made. The people of the

second party then take away the original wares and the transaction

is concluded. (Firth [1947])
Assuming that there are effective sanctions against outright theft, this
interaction can be regarded as a Prisoners'Dilemma environment where LOYAL =
adequate reciprocation and DEFECT = inadequate. Clearly, a single round of
tries would not escape the trap, whereas the alternating-move, natural-
termination protocol described above evidently can do so. Furthermore, this
protocol can be regarded as a paradigm of the near-universal process of
bargaining. The point being that, since the transaction will not he executed

until both parties are satisfied, the possibilities for mutual gain can be

explored with little or no risk of being victimized by one's trading partner.

F. SUMMARY AND CONCLUDING COMMENTS
In applying game theory, the intention is to model patterns of social

interaction. I argue here that it 1s programmatically fruitful, in attempting
to achieve this end, to maintain a distinction between the exogenously given

payoff environment that faces the players versus the protocol of play which

corresponds to the endogenous institutional decision-making practices of the
group. Thinking always in terms of both payoff and protocol leads, for

example, in the single-play (non-repeated) game to an analytical distinction
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between the ultimate "execution moves” on the one hand, versus the preliminary
“negotiation moves" whose precise form must also be dictated by the governing
protocol.

The first element, the payoff environment, is best pictured by the
elementary normal-form matrix defined in terms of the "execution moves” of the
players; the second element, the protocol, is usually represented (in part at
least) as the extensive form or game—tree. However, in current expositions of
game theory there has been little or no analysis of how protocols may differ,
so that the consequences of alternative "architectures” of the game-tree have
not been systematically studied. It is shown here, in particular, that among
the dimensions across which protocols may significantly vary are: (1) the
status quo position, (2) the sequence of turns, (3) vpossible ordering
rules for allowable moves, and (4) the procedure for termination.

The analysis reveals that, once we attempt to be rigorous about the
implicit protocol of play, certain traditional equilibrium concepts much used
in game theory become subject to serious question. In particular, "maximin”
or "security level” reasoning as commonly employed for the constant—-sum game
is premised upon an internally inconsistent protocol —- in which, essentially,
each player assumes that his opponent will have the last move. The "Nash
equilibrium™ (NE) concept widely used in the analysis of non—-constant-sum
games has been criticized for the opposite defect. For, in current usage what
is described as the NE 1is often a "myopic” solution in which each player in
effect acts as if he himself has the last move, i.e., as if his opponent will
foolishly fail to respond to his move. However, this alleged "myopia” 1is not
really a flaw of the underlying concept. Properly speaking, the Nash equilib-
rium ranges over all possible strategies permitted by the governing protocol,

and in particular covers the complex or "expanded” strategies that do allow
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for the opponent's responses.

However, it remains a valid criticism of the Nash equilibrium concept
that situations involving such complex strategies typically lead to non-unique
NE's, of which the correct one or ones can only be located by attending
explicitly to the operative protocol. Also, and even more importantly, since
a plaver is normally only in a position to observe the opponent's ggggg_(from
which he cannot, in general, infer the underlying strategy), he will not
ordinarily ever be in a position to know whether the current achieved outcome
is an NE or not — and hence will not be able to decide whether a unilateral
shift of strategy would or would not be profitable. So the very condition
defining the Nash equilibrium, that neither player would want to revise his
chosen strategy, is not in general within the power of the players to
determine — once the informational aspects of the governing protocol are
considered.

In the constructive portion of the paper the solution concept used is the
so—-called Subgame-Perfect Equilibrium (SGPE); in this particular context, in
order to emphasize the dependence of the outcome attained upon the details of
the protocol, the term Protocol-Dependent Rational Equilibrium (PDRE) was
employed. This concept escapes the difficulty with the Nash equilibrium
since, using the assumption of common-knowledge mutual rationality, the

players can validly infer the strategy that the opponent is playing.

In the first applied example, the consequences of one particular protocol
—- simple one-round sequential play —— were examined over a range of
alternative payoff environments. The protocol employed was simple one-round
sequential choice of move. The alternative payoff environments considered
were the 12 possible symmetrical 2x2 ordinally ranked matrices. The questions

examined concerned Pareto-efficliency and first-move vs. last-move advantage.
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It was determined that 11 of the 12 PDRE outcomes are Pareto-efficient, the
sole exception being Prisoners' Dilemma. For 9 of the 12 payoff environments
the result is neutral as to first-move vs. last-move advantage, but for the
other 3 the advantage is always to the first-mover. The priority effect
favoring first-mover is somewhat counterbalanced by an informational effect
favoring the last-mover, the information effect being relatively stronger the
closer the payoffs approach the constant-sum condition. However, the overall
advantage actually swings toward last-mover only for certain payoff environ-
ments (not among the 12 originally studied) in which outcome ties are
permitted.

A second applied example reversed the emphasis, studying a single payoff
environment — Prisoners' Dilemma —-—- under a range of alternative protocols of
play. It turns out that the famous Pareto-inefficient “trap” solution for
Prisoners' Dilemma is by no means such an inescapable black hole as often
assumed. The mutually preferred Pareto-efficient outcome would be achieved
instead, it was shown, under a number of alternative protocols. In
particular, under what is here called the "natural termination” procedure
(where negotiations continue until each player is satisfied to execute his
current try), the Pareto-efficient outcome is quite generally attained in the
simultaneous-move game, and also in a number of cases in the alternating-move
game. And indeed this 1s not surprising, since the natural-termination
protocol can be regarded as a paradigm for the general process of bargaining
through which individuals tentatively explore for mutually-preferred

compromises.
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