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ABSTRACT

EX POST INFORMATION IN AUCTIONS

When buyers' private information about the value of an item for sale 1is
correlated, the seller can increase expected revenue in a sealed bid auction
by making the winner’s payment a function of information available after the
end of the auction. Specifically, revenue can be increased by making the
payment a function of all the losing bids. In addition there are gains to
making the payment contingent upon some signal of the object's value which
becomes public at a later date. That is, there are gains to introducing

positive royalty rates.



The foundation stone of the recent literature on auction choice is the
revenue equivalence theorem. This states that, under the assumptions of risk
neutrality, independence of valuations and symmetry of the underlying
distribution of valuations, (i) sealed high bid and open ascending bid
auctions generate the same expected revenue, and (1i) under a mild
additional restriction on the underlying distribution of valuations, these
auctions maximize expected seller revenue.l

Much of the ensuing literature has focused on relaxing one or more of
these assumptions. Maskin and Riley (1984a) show that when the amount a buyer
is willing to pay for the auctioned object 1s not independent of his wealth,
expected revenue tends to be lower under open bidding. In contrast, Milgrom
and Weber (1982) relax the assumption that valuations are independent.
ﬁaintaiﬁing Ehe che; assuﬁptioné they then shd; that expected revenue is
higher in the open ascending bid auction. The intuition behind this result 13.
that, under open bidding, more information is revealed in the auction and this
helps to reduce the différence in bidders' willingness to pay. This, in turn
results in buyers bidding away more of the surplus. Milgrom and Weber also
show that 1f the seller purchases and then publicly revealé information that
affects bidders' valuations, this also raises expected (gross) revenue from an

auction. Once again the intuition is that this helps to reduce the difference

in bidders' willingness to pay.

lpart (1) was first derived for the special uniform case by Vickrey
(1961). The optimality of the common auction forms was analyzed independently
by Myerson (1981) and Riley and Samuelson (1981). As Maskin and Riley (1984b)
have since shown, even when the additional restriction is not satisfied, the
common auctions are optimal if modified to exclude bidding over certain
intervals.



That such a reduction should raise expected revenue is easily understood
for the limiting case in which the seller's information includes all the
buyers' private information. For then all buyer asymmetry is eliminated and
so expected buyer profit is bid away to zero. The seller therefore reaps the
entire surplus,

In the following pages the implications of correlated signals are further
explored. While Milgrom and Weber emphasized the potential gains to a seller
who reveals information ex amte, the focus here is on ex post information. In
Section 2 it is shown that, under weak assumptions, the sealed high bid
auction is dominated by any auction in which the winners paymeat is a weighted
average of all bids. Surprisingly it appears that for auctions in which
payment is made by the winner, only a weak statement 1is possible about the
optimality of placing no weight on the high bid. |

In Section 3 the focus switches to auctions in which public information
about the value of the object becomes available after the auction. Tt is
shown that if this ex post information is anticipated by the seller, expected
seller revenue can always be increased by making the final buyer payment
contingent upon the nature of the information. As a practical application,
suppose that the seller of an oilfield observes the quantity of oil extracted
and that this quantity is a noisy signal of oilfield profitability. Then
expected revenue is raised by announcing that the winning bidder must pay a
royalty on each unit. Alternatively, expected revenue can be increased by
having buyers bid on the royalty rate that they are willing to pay rather than
a fixed fee.

Again the intuition behind these results is that differences in buyers'
valuations are reduced through the iantroduction of a royalty and so the

expected surplus of the winning bidder 1s reduced.



1. The Model

To simplify the exposition we begin by considering a two buyer auction.
Buyer 1 observes a signal s and buyer 2 a signal t, each of which yields
private information about the value of the item for sale. These signals are
realizations from an underlying distribution with joint density function

f(s,t).

Assumption 1., Symmetry of Signals:

The joint density function f£(s,t) 1s symmetric and strictly positive if and

only {f s and t belong to the unit interval.

Assumption 2. Linked Signals:2

For any permutation (x,y) of (s,t) and x < x'
Prob{x < x | x < x',y} = F(xly)/F(x"y)
is a noniuncreasing function of vy.
If the probability is strictly increasing for all x, x', y on the unit

interval we shall say that beliefs are strictly linked.

As an immediate implication of Assumption 2, if s and t are linked

F(s' [t) - F(s|t)
f(s'lt) '

limit as s + s8' we obtain:

8 ¢ 8' 1implies that is nondecreasing in t. Taking the

Lemma 1: If s and t are linked £(s|t)/F(s|t) 1is a nondecreasing

function of t.

2In the case of an n—-dimensional vector of signals (31’32""’xn)’ we
shall say that signals are linked if for all 1 and si < 8y
-~ ' -~
Prob{s1 < 8 | sy < si,s_i}

is a noningreasing function of s_i = (sl"'"si—l’si+1""’sn)'



Assumption 2 says that for any t' > t, the cumulative distribution function
for 8, given that s 1s no greater than s', F(s's < g',t') exhibits
first order stochastic dominance over F(s|s < s',t). Then if utility is

increasing in s, conditional expected utility is nondecreasing in t. To

summarize:

Lemma 2: If s and t are linked and u(s) 1is a nondecreasing function

E {u(s) | s < 8',t} 1s nondecreasing in t.
s

Milgrom and Weber make frequent use of this result and we shall do so here as
well., Actually Milgrom and Weber start with the assumption that signals are
affiliated. In the two signal case this is the requirement that, for any s <

8' ‘and t < t', the joint density function.satisfies

.

f(s,t) f(s',t') > f(s,t') f(s',t).

It is readily shown that affiliatedness is a strongly sufficient condition for

signals to be linked.3

Finally, we assume that buyers are risk neutral and the value to buyer 1
of the item for sale V(s,t) 1s a strictly increasing function of buyer 1's
private signal and a nondecreasing function of buyer 2's private signal.

Maintaining the symmetry of the model, the value to buyer 2 is assumed to be

v(t,s). These assumptions can be gsummarized as follows.

3Except for the special case in which the signals can take on only two
values the affiliatedness assumption is stronger. Consider for example the
matrix
.09 .02 .06
[fg41 =] .09 .12 .12
.12 .16 .12 |

If f(si,tj) = f1j signals are linked but f,;fy, < fy3f14 80 signals are not
affiliated.



Assumption 3: Symmetry of Valuations:

If 8 and t are the private signals of buyers 1 and 2, their valuations of
the object for sale are, respectively V(s,t) and V(t,s) where V 1is
strictly increasing in its first argument and is nondecreasing in its second

argument.

2. Utilizing all the Informatfon in a Sealed Bid Auction

Consider now a sealed bid auction in which each buyer 1s asked to submit
an "estimate” m of the object's value. The buyer submitting the high bid
will be awarded the object and will pay some weighted average A(m(l),m(z))

of the two bids, where ™) is the high and m9) is the second bid.

Assum gtion 4., Form of the Weighting Function.

The weighting function A(m(l),m(z)) is continuously differentiable, strictly

increasing in meyys and nondecreasing in m(z). Moreover,

(l) A(m,m) = Mo

The seller also announces that he will only accept estimates above some

minimum m, and that, in the absence of a second bid, replace m(9) by m,

in the weighting function. Given Assumption 4, the minimum price paid or
"reserve price" is therofore m,e

Let s, be the lowest private signal for which, in equilibrium, a buyer
1s willing to submit a bid. Let M(s) be the symmetric equilibrium bid
function for all s > so and let M(s) = m, for all s < 8y Then 1if buyer
2 bids according to the equilibrium bid function and buyer 1 bids m; = M(x),

and 1f, as we shall later confirm, M(.) is strictly increasing, buyer 1 wins

if and only if t < x. Buyer 1's expected return is therefore

(2) I(x|s) = [* [V(s,t) = A(M(x),M(£))]E(t]s)dE
0



Differentiating with respect to x and appealing to (1) we obtain

(3) 2,1‘ (x[s) = [V(s,x) - M(x)]£(x|s)

- M'(x) [* Al(M(x),M(t))f(tls)dt
0

But, for M(.) to be the equilibrium bid function, buyer 1l's best reply must
be to bid m; = M(s). That is H(x's) must take on its maximum at x = 8.

Therefore, from (3)

(4) [V(s,s) - M(s)]£(s]s) - M'(s) [° A (M(s),M())E(t[s)dE = O.
0

Given Assumption 1, H(slt) is a continuous function. Therefore, for

s, to be signal level below which it is not worthwhile bidding,

N q(so|so) = E{V(s,,t) | tis} - my = 0.

Conditions‘(k) and (5) are necessary for M(.) to be the equilibrium bid

function. The following theorem establishes conditions under which they are

also sufficient.

Proposition 1: Existence of an Equilibrium Bid Function:

If Assumptions 1-4 hold there exists a solution M(.) to (4) and (5). If, in
addition, Alz(m(l)’m(Z)) is nonpositive, M(.) 1is an equilibrium bid

functiou.4

In deriving this result, and some of the results to follow we appeal to the

following simple Lemma. (For a proof see Riley and Samuelson (1981).)

4This additional restriction is strongly sufficient. Clearly it holds
if A 1s a convex combination of the two bids.



Lemma 3: Suppose that g(s) and h(s) are continuous and differentiable on

[0,1] and that

g(s) > h(s) => g'(s) < h'(s)
Then

g(x*) < h(x*) => g(x) < h(x) for all x e (x*,1]

Proof of Proposition 1: Let 9 be the family of differentiable, nondecreas-
ing functions bounded above in the sup norm by V(1,1) on the interval
[80,1], where s, 1s defined implicitly by (5). By Assumption 4,
Al(m(l)’m(Z)) > 0 for all m1ys Mgy € [O,V(l,l)]. Therefore for any

H(t) e Q there is a unique solution M(s) to the ordinary differential

equation

& M'(s) [° A (R(2),H(e)) £(t[s)ds = [V(s,8) - M(s)]£(s]s)
0

with boundary condition M(so) =m,.
We first establish that m, < M(8) < V(s,8). For any 8 such that
M(s) » V(s,s), it follows from (6) that M'(s) < 0. Since V(s,s) 1is

strictly increasing in s it follows that
M(s) > V(s,8) => M'(s) < o
Also, from (5) M(so) = E{V(so,t)lt < so} < V(so,so). Therefore, by Lemma 3,

m, < M(s) < V(s,8), 8 € [80,1]

From (6) it follows that M(s) 1is an increasing function, hence M(s) € Q.
Since M(s) 1is bounded it follows also from (6) that M'(s) 1is
bounded. Indeed there exists some k such that, for all H e @ and all

8 € [30,1]

(7N 0 < M'(8) <k



We can now use a fixed point argument to establish the existence of a
solution to the differential equation (4). Let T be the mapping from H to

M and define T to be the image of {. Define
o = {H ¢ Q|H 1s differentiable and H'(s) <k, s € [so,ll}

By Arzela's Theorem Q* is compact. By construction @Q* 1is also convex.
From (7) T € @*. Then we can appeal to the fixed point theorem of Schauder
(1930) to establish the existence of some H € Q* such that H = TH.

It remains to confirm that, for such a function, the necessary condition

(4) is buyer 1's best reply. But, from (3)

x| [V(s,x) - M(x) oAt

L Gt MeEe]oar [T A () Me) LD

- M'(s)

By Lemma 1 the numerator of the first expression inside the lérge bracket is

increasing in s. By Lemma 2, if Al2 < 0 the denominator of this expreséion

is nonincreasing in s. Therefore

s > X = an
ax

<) Q9

(x,8) > %g'(x,x) = 0

It follows that, for each x > 849 NM(x,s) takes on its global maximum at

x = g. That is, bidding m; = M(s) 1is buyer 1's best reply. N.E.D.

We now turn to an examination of the equilibrium expected revenue
received by the seller. If buyer 1 wins, buyer 2's signal must lie on the
interval [0,s]. The expected payment by buyer 1, if he is the winmner, is

therefore

(8) p(a) = [° ACM(e) m(e)) 512 ar.

0

Differentiating (8) we obtain



f~§§ :) + ({S M' (8)A; (M(8) ,M(¢))

- (({S A(M(s) ,M(t) ;g: :; dt) Tg(:}:%

A CORCS £eix) 4
X0

f(t)s)
F(s|s

(9 P'(s) = A(M(s),M(s)) dt

F(s|x x=g"°

Substituting for the second term from (3) and for the third term from (8) we
obtain

f(sl|s
F(sl|s

X=3

(1) P'(s) = [W(s,8) - R(a)] o5 17 Ao e R a

From Lemma 2, since A 1s nondecreasing in its second argument, the last term
on the right hand side is nonnegative. Moreover, if A 1is strictly increas-
ingvin_its_second argupent and signalg are gFrictly 1}nked.th;§ tgrm‘LgA”
striétlj éfeatér fhan zero: We now compare revenﬁe from this auction with
that derived from the common sealed high bid auction. The latter is just the
special case in which A(m(l),m(z)) =M. Writing the expected payment by

the winner of this auction as Pl(s) we therefore obtain
(11) PI(s) = [V(s,8) - P (e)] SR,

Since Pl(so) =m = P(so), (10) and (11) together lead to the following

result.

Proposition 2: 1If signals are strictly linked, expected revenue from a sealed

bid auction in which the winner's payment is a strictly increasing function of
all bids strictly exceeds expected revenue from the common sealed high bid

auction.

We now consider the "Vickrey auction” in which the winner's payment is

equal to the second highest bid. From (1)
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M(x|s) = [* [V(s,t) - M(£)] £(t|s)dt.
0

Differentiating with respect to x we obtain

x'S) = [V(s,s) - M(s)]f(x's).

2l

Arguing as before, for M(.) to be the symmetric equilibrium bid function,

dll/3x must be zero at x = s, that is
V(s,s) - M(8) = 0.

Thus the bid by buyer 1, M(s) 1is equal to buyer 1's valuation if he and the

second buyer both have the same signal 3.5

Given such a bidding strategy, the expected payment by buyer 1, if he is

the winner 1is
(12) P,(8) = g V(t,t) FesTsy dt

Differentiating by s and substituting from (12) we obtain

(13) Py(s) = [V(s,8) - P,(s)] £
3 rs f(elx
* ]V aln) 9 |xes”

Comparing (11) and (13) we have the Milgrom and Weber result, viz.
expected revenue from the Vickrey or second bid auction exceeds that from the
high bid auction. Note furthermore that this holds even 1f valuations are
independent, that is V(s,t) = G(s). Conversely, if beliefs are independent

so that f(t,x) is independent of x, (13) reduces to

5To understand this result suppose buyer 1 were instead to bid M(s-€) =
V(s-eg,8~€) and find that he had lost out to a hid of M(s-8) where & < €.
Since M(s=-68) = V(s-§,s-8) 13 less than buyer 1l's ex post valuation,
V(s,s-8), this strategy is dominated by the bid M(s) = V(s,s).
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f(s]s)
P(s{s)"*

Comparing (11) and (14) it follows that expected revenue from the high and

(14) Pé(s) = [v(s,s8) - Pz(s)]

second bid auctions is the same. Since, with independent beliefs, the second
bid auction is equivalent to the open ascending bid auction we therefore have

the followlng generalization of the original revenue equivalence theorem.

Proposition 3: General Revenue Rquivalence Theorem

Suppose buyers' signals are independent draws from the same distribution.
Then expected revenue from the sealed high bid and open ascending bid auctioms

is the same, even if valuations are not independent.

Remark 1: When signals are linked and not independent it 1s not necessarily

the case that expected revenue from. the open aucton is strictly greater. One

density‘funcﬁion which genérates'linked'signals and equal expected revenue is
that depicted in Figure 1. For this example, the c.d.f. F(t't < x,8) 1s not
strictly decreasing in s at s = x, for all s # a, and so the second term

in equation (13) is zero.

Remark 2: For the Milgrom and Weber ranking theorem it is critical that
signals be linked. F¥igure 2 depicts a density function similar to that in
Figure 1 except that cuts have been made along the ﬁlanes ABD and ACD. It
is clear from the figure that signals are "pairwise positively correlated”,

that 18, for all s and ¢,
f(s,s)f(t,t) > f(s,t)f(t,s).

Moreover, a minor modification of the proof of Proposition 1 establishes the

existence of a monotonic equilibrium bid function as long as the vertical



Figure 1: First example

Figure 2: Second Example
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distance between A and D 18 sufficiently small.6 It 1is also
straightforward to confirm that, for this example, the c.d.f. F(tlt < x,8)

is everywhere nondecreasing in 8 and is strictly increasing for s > a.
Therefore the second term in (13) is nonpositive for all s and negative for
s > a. It follows that expected revenue is strictly higher in the sealed high

bid auction.

Proposition 3 is important because it provides a strong rationalization
of the common practice in art auctions of accepting a mixture of sealed and
open bids. For even if a buyer 1s considering a possible later resale so that
his valuation is a function of other buyers' private signals, the two auctions
.generate the same expected revenue as long as buyers' signals (use valuations)
are independent.

Returning to the case when private signals are étrictly linked, the
remaining question 1s whether or not there are welghting funcfions
A(m(l),m(z)) which generate higher expected revenue than the second bid
auction. While I do not have a general answer to this question, my conjecture
is that, under mild additional restrictions, the second bid auction is optimal
among auctions in which only the winner makes a payment to the seller.7 This

conjecture is suggested by the following result:

6In general, even with pairwise positive correlation, it is possible to
construct examples in which the equilibrium bid function for the high bid
auction 1s not monotonic.

7More generally an auction could have payments by losers as well as the
winner. In this case, if valuations are strictly affiliated it is possible to
design a selling procedure which has a Bayesian equilibrium with all surplus
going to the seller (Myerson (1981), Cremer and McLean (1985)).
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Proposition 4: Without loss of generality we can choose a scale so that the

signal s 18 equal to a buyer's reservation price in a symmetric open
auction, that is V(s,s) = s. Suppose that for such a scale, f(s's)/F(sls)
is a strictly decreasing function and that signals are strictly linked. Then
for sealed bid auctions in which the payment is a convex combination of the
high and second blds, expected revenue is a strictly increasing function of

the weight on the second bid.

Proof: We must show that 1f

(15) Almeyyampy) = (I=Mm )y + dmyy, 0 €A1

expected revenue is a strictly increasing function of A. Let M(s,A) be the

equilibrium bid functipn for each value of ;pe parameter ‘A.; From (4)‘_J
[V(s,8) - M(s,0)] £(s|8) = & (1-1)F(s]s)

Dividing both sides by F(sls) and then differentiating logarithmically we

obtain

BZM

d . M 4. f(s]s)
e - i S
M T V(s,s) - M(s)  E(s|s)
3s F(s|s)

By hypothesis the last term on the right hand side is negative. Therefore

2 2
_@,“).g.,v(sls) =>.-a-—b1-<0-£l___v(s’s).
s ~ ds 2 2

3s ds

Since %%-( %% at 8 = 8, it follows from Lemma 3 that for all s

(7) —g;M(s,A) <%; V(s|s), 0 <A1

Next let P(s,)A) be the equilibrium expected payment by a buyer 1f he wins

with a bid of M(s,A). From (10)
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ap £
3 (8,0 = [V(s,8) = B(s,M)] pofes+
218 M T
ax - S’A) + AM(t,A)] F(t x) dt Xx=g

Also, from (13)

%g(s,l) = [V(s,s8) - P(s,1)] g : :) * %§ [° vt g(i Xy 4 |xms
Hence, for all A< 1
(18) _g%(s,l) - —g%(s,)\) = [P(s,)) - P(s,1)] %%::l%
+-%; és [v(t,t) - a(t,N)] §§§ :g x=8

From (17) V(t,t) - AM(t,A) 1is a strictly increasing function of . t. . There--
fore, by Lemma 2, the second expression on the right hand side of (18) is

positive. Hence,

(19) D) - 35s,0) > [2(s,)) = B(s,1)] £e13

P aP
Hence P(s,\) - P(s,1) >0 => é;(s,k) <-5;(s,l). Since P(go,k) = P(so,l) =

m, 1t follows from Lemma 3 that P(s,1) > P(s,A). Q.E.D.

Remark 3: The assumption that f(s|s)/F(s|s) is decreasing is satisfied for
broad classes of distribution functions. For example s and t are strictly

linked 1if

F(s't) = g3t 4>

f(sis) _ ats
F(s|[s) s °

I conclude this section with some observations on open auctions with more

In this case

than two buyers. Consider an “open exit” auction in which the auctioneer

ralses the price continuously and a buyer is committed to purchase unless he
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signals his decision to exit. Suppose that buyer 1 has signal s and when
the price reaches P there is only one remaining buyer.

Extending the earlier definition, let V(SI’SZ""’Sn) be the value to
buyer 1 if the private signals to the n buyers are 815895+++,8 « Suppose
that buyer 1 has signal 8; and all buyers but the second have exited. Since
the private valuations of all the other buyers can be inferred from the exit
points, the problem reduces to a two buyer problem. Indeed it becomes
equivalent to the Vickrey auction analyzed above. Thus buyer 1's equilibrium

strategy 1s to remain in the auction as long as
(20) V(SI,SI,S3,000,SH) > P.

With three more bidders this auction is not equivalent, however, to the

Vickrey second price sealed bid auction, since in the latter the signals of . - .

| the other buyers remain unknown. As Milgtom and Weber show, the additional
information available in the "open exit" auction increases bidding competition
and hence raises expected revenue, whenever signals are strictly linked.
Nonetheless, it is wrong.to infer that open bidding dominates sealed bidding.
It 1s not really the availability of the information which‘is critical to the
extraction of greater revenue, but the fact that the final payment is
contingent on all available information. We now show that the seller can
replicate the open auction by using a sealed bid auction in which the final

payment is a weighted average of all the losing bids.

As a preliminary, the symmetry assumption of Section 1 is generalized as

follows:

Assumption 3': Symmetry of Valuations

The value of the object to buyer 1 is

vy = V(si’s-i)’
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where s_; = (sl""’si-l’si+l""’Sn)’ V(si,s_i) is a strictly increasing

function of s; and is a symmetric nondecreasing function of S_g-

Proposition 5 Replication of the "Open Exit" Auction:

If Assumption 3' holds the symmetric Bayesian equilibrium of an open exit

auction is also the symmetric Bayesian equilibrium of a sealed bid auction in

which the winner's payment 1s a weighted average
A(m(z) ,oo.,m(n)) = V(m(z) ,m(z) ,m(-;) ,...,m(n))

of the losing bids, where LE)) is the jth ranked bid.

Proof: Suppose all buyers other than the ith bid their true signals while
Abuyer 1 submits a bid of x. TLet S(j) be the jth ranked bid among buyers

other than 1. Then buyer -i's expected. gain .is.:

) X
H(xlsi) =({ Es(z),...,s(n_l){V(si’s(l)""’S(n-l))

- V(S(l)’s(l)’s(z)’°"’s(n—1))} dF(l)(s(1)|si).

Differentiating by x

oll
ax (XQSO) = Es(z),...’s(n—l) {V(Si,x,s(z),...,s(n_l)
' > <
V(x,x,s(z),...,s(n_l)} f(l)(x|si) 3 as x3 s,
Thus buyer 1's best reply is to bid his true signal also. 0.E.D.

Milgrom and Weber have also argued that the common English ascending bid
auction is, to a first approximation, equivalent to what I have called the
"open exit” auction. However, in the English auction buyers take pains to

conceal their identities from each other. With strictly affiliated signals

there is a clear incentive to do so. Suppose there are just two active
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bidders in the early going and both conclude that a third potential buyer has
a valuation less than the opening price Po. Suppose buyer 2 drops out at a

price P, and buyer 3 continues the bidding in his place. If buyer 1 does

not observe the switch he will exit at the price

E{v(s,s,t) | £ < Po)}
t

However, buyer 3, even if he has the identical signal will have a higher
valuation and will therefore gain from the deception. Whenever such deception
is successful it follows also that expected revenue will fall short of that

achlevable in the "open exit" auction.

" 3. Exploiting Public Information Available After the Auction

Returning again to. the 2 buyer cage,.we noy agsume that., .at some“date
after the aﬁction, the winniag buyer and. seller obsefve a further verifiable
signal q which 1s affiliated with each buyer's private signal.

Let f(s,t,q) be the joint density function of the three signals. If

for any permutation (x,y,z) of (s,t,q) and any x',x"
Prob{x < x' | x < x",y,z}, x' < x"

is nonincreasing in y and 2z then we shall say that the three signals are
linked. If the probability is strictly decreasing in y we shall say that
x and y are strictly linked signals.

Ex post signals are almost always present when the winning bidder must
undertake some production decision. For example in oil lease bidding, while
profit is extremely difficult to verify, the output of the oil field is read-
i1ly monitored. Moreover in competitive bidding for contracts, while actual
costs are often hard to verify, certain types of inputs into the production

process can be monitored.
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With buyers bidding for some valuable right, and with q observable, the
seller can make the winner's payment a function of q 1instead of a pure
"fee". We begin by examining an extreme alternative in which the total pay-
ment is a proportion r of the observable q. Instead of submitting a fixed
fee, each buyer submits the "royalty rate” r that he is willing to pay.8

Let V(s,t,q) be the value of the item for sale to buyer 1. As in
Section 1 we continue to assume symmetry across buyers so that the value to

buyer 2 is V(t,s,q). It will also be convenient to define the expected value

(21) V(s,t) = E{V(s,t,q)}.
q

We seek to characterize the equilibrium royalty bid funection

2 r = R(.).,

1]

' Suppoée, as we shall later verify, R(.) 1is strictly increasing. Then
if buyer 2 adopts the equilibrium bidding strategy and buyer 1 bids r =

R(x), buyer 1's expected profit is

(23) L(x|s) = [* [V(s,t) - R(x)E{q|s,t}] £(t[s)dt.
0

Arguing almost exactly as above, H*(xls) must take on its maximum at x = s.
Then differeatiating (23) with respect to x and setting x = s we obtain

R'(S) - [‘7(8.8) = R(S)E{q‘ls:s}]f(s,!s).
[® E{q|s,t}f(t|s)as
0

Rearranging we have

(<5221 - R(s)1£(s]s)

ey LElqls, .
(24) R'(8) = “Sg[3]s, e<a]/Elalar8]

8Reece (1978) also examines royalty rate bidding for the special case 1in
which the observable q 1s equal to the actual value V.
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This has exactly the same general form as the differential equation (4).
Therefore, from the proof of Proposition 1, as long as V(s,s)/E{qu,s} is
strictly increasing, there exists a royalty bid function R(8), satisfying

(24), which 18 strictly increasing and satisfies the boundary condition
(25) H*(solso) = E{V(so,t)lt < so} - R(so) E{qlso,t<so} = 0.
If buyer 1 is the winner, his expected payment P,(s), can be expressed as

(26) Pu(s) = R(s) [° E{a]s,t} “““f.-(';"':) de
0

Differentiating (26) by s and thean substituting from (24) and (26) we obtain

(27) PL(s) = [V(s,8) = P,(8)] 522 :)
. R(s) %;jgs'E{ﬂ|x?Fl g(; :; dt | ms®

But 1f q and t are strictly linked. E{q's,t} is a strictly increasing
function of t. Then by Lemma 2, if 8 and t are strictly linked, the
second term on the right hand side of (27) is positive and so

f(s|s)

(28) PL(s) > [V(s,s) - B (s)] D]

From (25)
P (0) = R(so) E{qlso,t < so} = E{V(so,t)lt < So} =m

where m, is the reserve price in a common sealed high bid auction. Then

comparing (28) and (11) we have the following result.

Proposition 6: Royalty versus Fee Bidding

If Assumptions 1-4 hold, private and public signals are strictly linked and
V(s,s)/E{qls,s} is strictly increasing, then the expected payment by the
winning bidder is strictly greater under royalty bidding than under pure fee

bidding, for each value of the signal s > 84°
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Remark: While the assumption that V(s,s)/E{q's,s} increases with s 1is not
innocuous, it is easy to write down examples for which it holds. Indeed, for
any ex post signal q, 1t is always possible to define a concave transforma-

tion q = g(q) such that V(s,s)/E{q's,s} is increasing.

0f course royalty bidding 1s just one possible way of exploiting the
additional information contained in the ex post signal. In the auctioning of
oil field leases the winning bidder must pay a pre-set royalty rate in
addition to his bid. As Robinson (1985a) has shown, for some simple examples,
it 1s possible to raise expected revenue by introducing such a royalty rate.

We now show that this result is a very general one.

Proposition 7: The gains to pre-set. royalty rates "

Suppose Assumptions 1-4 hold the public signal is strictly linked with the

private signal of the winning bidder and
(29) Vn(s,t) = V(s,t) - RE{q|s,t}

is positive, strictly increasing in 8 and nondecreasing in t. Then 1f the
minimum bid is set so that, in equilibrium, only those with signals of at
least 8, have an incentive to bid, expected revenue from a high bid auction

is a strictly icreasing function of the royalty rate.

Proof: Let b = BR(.) be the equilibrium bid function and suppose that
BR(.) is strictly increasing. (Since the arguments parallel those in the
proof of Proposition 1 we omit a formal derivation of existence.) Then buyer

1, bidding b1 = BR(x), has an expected profit of

I (x|s) = gx [T(s,t) - RE{q[s,t]} - B (x)] £(t[s)de

But HR(xls) must take on the maximum at x = s. Setting anR/ax =0 at
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X = s we obtain

S|sS

(30) Bi(8) = [V(s,s) - RE{q[s,s} - Bp(s)] lf;(s s)

By hypothesis, S, is the value of the private signal below which, in

equilibrium it is not worthwhile bidding. Therefore the minimum fee B; must

satisfy
(31) HR(solso) = f {V(so,b) - R: {qlso,t} I t < so} - B; =0

If buyer 1 wins with a bid of BR(s) his equilibrium expected payment is

8 f(t]s
(32) P(s,R) = R g E{q|s,t} FCeley 4t + Br(®)
Differentiating by s and substituting for Bﬁ and Bp from (30) and (32)
we obtain
. o ,23 oo =. B .; C 'f(g .
(33) 38(‘8’R) [V(S,S) P(S’R)] F(s|s +

Also, from (31), the minimum total payment P(so,R) is given by

o -
(34) P(s,,R) = By + RE {q]s_,t < s} = E {W(s_»t) | t <}
As long as q and 8 are strictly linked E(qls,t) is strictly increasing

in s. Therefore the second term on the right hand side of (33) 1is strictly

positive. It follows that even i1f private signals are iundependent

(35) B, > [TCs,0) - 2(s,0)] EEHEL for a1 s> 0

Comparing (35) and (11) we can conclude that, for each s > 0 the expected
payment by the winner is higher with a positive royalty rate than under pure
fee bidding.

However we can prove a stronger result. Differeﬁtiating (33) by R we

obtain
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9 L3P, _ f(s|s) F(sls) a s £(t P
(36) ' G T F(s|s) "f(s]s §§'g E{qlx,t} F(s :) dt| =5 = 3R]

But we have just argued that the first term in the bracket 1s positive if ¢

and s are strictly affiliated. Hence

oP ) P
BR(S’R) =0 => '5'8" ('SE) >0

But from (34), P(so,R) is independent of R. Therefore 3P/3R > 0 for all

R > 0. Q.E.D.

This result has been termed the "bid intensification” effect of a higher
royalty rate by McAfee and McMillan (1984), who analyze the special case in
) which private signals are independent and the public signal is an unbiased
estimate of the winner's private signal. The intuition 1s that by introducing
'a higher royalty rate; the seller reduces ‘the fémaininé asémﬁétry'in‘gujéfS"
valuations neé of the royalt& pa&ments. ' This induces the buyer§ to bid more
aggressively and thus increases the expected revenue of the seller.

As McAfee and McMillan also observe, in many practical applications the
ex post signal q 1s not exogenous but instead is influenced by decisions
made after the auction. For example, in the oil field case the amount of oil
extracted is a choice variable for the firm. Taking this simple case, with a
royalty rate R, the ex post choice of the winning bidder is to choose q*(R)
to solve

Max {V(s,t,q) - Rq}
q

It is readily confirmed that the value of the right to drill
V(s,t,R) = V(s,t,q*(R))

is a decreasing function of R. That is, the bid competition effect of a

higher royalty rate is offset by the moral hazard effect on production.
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However, it can also be readily confirmed that

-

v
(37) R (s,t,R) =0 at R =0,

Since the bid competition effect of increasing R 1is strictly positive, and
since the moral hazard effect is zero at R = 0 we can conclude that the
expected revenue maximizing R is strictly positive.
Finally, it should be noted that, with a royalty rate R and a minimum
fee Bg, the winning bidder has an expected minimum payment of Bg +
RE{E'S,t < s}. Thus we can interpret the latter as a minimum bid which varies
with the ex post signal. A natural question, therefore, is whether it is
necessarily optimal for the seller to choose a strictly positive minimum fee.
Recently, Robinson (19853) has egtended the earlier litergtu;e pq'm{nimnm .
.pricéé to‘éh§ﬁ thét, withiéf;111a£ed beliefs, thé-seller can always increase
expected revenue from the sealed high bid auction by announcing a pésitive
minimum price. It is a straightforward matter to apply his arguments to show

that this result continues to hold even with positive royalty rates.9

4. Concluding Remarks

The primary conclusion of this paper is that, whenever a seller has an
opportunity to collect and utilize ex post information, he has an incentive to
do so. 1In Section 2 it was argued that expected revenue can always be
increased by making the winner's payment a function of all the losers bids as
well as his own. Then, in Section 3 it was shown that if information will

emerge after the auction the seller can exploit this to his advantage by making

9More precisely, Robinson's results generalize as long as the seller has

no use value, and for sufficiently low s, V(s,8) = E{als,s} = 0.
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the winner's payment depend on this information. More specifically, expected
revenue is increased with the introduction of a’positive royalty rate.

There remain, however, a number of important open issues. First of all,
it 1s assumed throughout the paper that buyers are risk neutral. Analysis of
the risk averse case 13 significantly more complicated. Under strong
simplifying assumptions McAfee and McMillan (1984) and Samuelson (1984) have
shown that risk aversion also tends to create an incentive for the seller to
charge a positive royalty rate. The intuition behind this conclusion
parallels that for the risk neutral case. By charging a royalty the seller
reduces the residual risk facing the buyer and hence increases the certainty
equivalent value of the item for sale. This tends to raise bids. At the same
time the positive royalpy rate reduces the size of the asymmetry between
ﬁuyerlealuétions én& ﬁhié'élso iﬁfeﬁsifieé bﬁyeré; biadiﬁg;' fﬁe fﬁo effects
are therefore reinforcing. However, it remains an open question whether this
result continues to hold under 1es§ stringent assumptions than those of
constant absolute risk aversion and normally distributed returns.

Second, there has been no attempt in this paper to derive profit
maximizing rules for the seller. TIn Maskin and Riley (1980) a very simple
example is analyzed in which buyers' signals can take on one of 2 values. If
these signals are affiliated it is shown that there exists a selling
procedure, involving payments by both winners and losers, which extracts the
entire surplus when buyers adopt their unique Bayesian equilibrium strategies.
Whether or not this result can be generalized remains to be resolved.

In order to extract the entire surplus, it is necessary to exploit the
assumption that private signals are strictly affiliated. Another interesting
cagse arises if private signals are independent but an ex post signal is

observed which is positively correlated with the winner's private signal. 1In
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such an environment, extraction of all buyer surplus is no longer possible.
However, the simple linear royalty schemes analyzed in this paper are certain-
ly not optimal from the seller's viewpoint. A natural next step would be to
attempt to characterize the royalty function which maximizes expected revenue.
Finally, throughout the paper it has been assumed that buyers behave
noncooperatively. Recently Robinson (1985b) has argued that the open
ascending bid auction (and sealed second bid auction) is particularly
susceptible to manipulation by a group of bidders behaving as a cartel (or
"ring”). Here we have argued that, when buyers do behave noncooperatively,
and the payment is a convex combination of the first and second bid, expected
revenue is a strictly increasing function of the weight on the second bid.
Together, these arguments suggest that there 1s, on average, an advantage to
employing a payment scheme that depends on both the high and second bids (and,

possibly, lower bids as well).
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