FIRM SIZE AND OPTIMAL GROWTH RATEST

by
Uzi Segal*
and

Avia Spivak**

August 1985

Revised January 1986

UCLA Working Paper #380

TWe are grateful to Siegfried Berninghaus, Richard Kihlstrom, Ariel
Pakes, Joel Sobel, and John Sutton for their comments.

*Department of Bconomics, University of California, Los Angeles, 405
Hilgard Ave., Los Angeles, CA 90024,

%k
Department of Economics, Ben Gurion University, Beer Sheva, Israel



Abstract
This paper presents a theoretical model in which, due to dissolution
costs, the rate of growth of small firms tends to be higher and more variable
than that of larger firms. This model also predicts that for large firms the

rate of growth is fixed, as claimed by Gibrat's Law.



1. Introduction

One of the major decisions a firm must make is how to allocate the
profits between dividends and retained earnings. Retained earnings reinvested
in the firm provide for future growth. The rate by which the firm grows is
thus an endogenous decision variable, arrived at as a result of intertemporal
maximization.

This consideration 1s entirely overloocked in discussions of growth rate
and firms' size. Simon, who contributed significantly to this literature (see
Simon and Bonini (1958) and the references therein), adopted Gibrat's Law, the
assumption that a single firm's rate of growth is independent of its size. He
proceeded to obtain the stationary size distribution consistent with this
assumption. Jovanovic (1982) also assumed that rates of growth, albeit
stochastic, are exogenous to the firm.

This paper seeks to close this gap by regarding the growth rate as a
solution to an explicit intertemporal maximization problem. In order to avoid
the agency problem, it is assumed that the firm is owned by a single
shareholder who is also the manager. The owner is risk-neutral and seeks to
maximize the expected discounted value of his income from the firm. The
firm's growth rate is stochastic and diversified. Increasing reinvestment in
the firm changes the parameters that govern the stochastic growth process so

that the expected growth rate increases as well. Reinvestment of profits is

thus beneficial on two counts: First, it increases the expected size of the
firm and hence the tctal expected future profits. Secondly, bigger firms are
less likely to go out of business (and to suffer dissolution costs), because
the growth is diversified. Hence, investment in growth decreases the expected

dissolution costs of the firm,



Our modeling thus introduces increasing returns to scale, not because of
technology, which shows constant returns to scale, but because units of the
firm insure each other mutually against the disappearance of the firm.

Since there are scale economies, one may suspect that the rate of growth
will change with the size of the firm. This indeed is found to be true. Our
major result is that smaller firms on the average grow faster than bigger
firms. We also show that when the size of the firm tends to infinity, the
growth rate converges to a positive number. In other words, large firms
satisfy Gibrat's Law, that the firm grows at a fixed rate.

Jovanovic (1982) explained the same empirical phenomenon with a different
approach. TFirms enter an industry not knowing their true cost function but
only the industry's average. Every period they use the observation on the
noisy cost to update their estimate of cost and their optimal production
decisions. So, firms that are more efficient than the average will (on the
average) learn that their output will grow. The other, less efficient firms,
will produce less and less and eventually will exit the industry. In this
model it turns out that rates of growth for smaller firms are larger and more
variable than those of bigger firms. An entirely different theoretical
approach, that of Lucas (1978), determined the size and growth of firms by the
optimal managerial span of control.

The empirical evidence supports our theoretical finding that for small
firms growth rates slow down with size and that for large firms growth rates
tend to be fixed. Mansfield (1962) found an inverse relationship between size
and rate of growth for a sample of small firms. Pasigian and Hymer (1962) and
Hart and Prais (1956) foun& for their samples of large firms that growth rates
were independent of size. One must realize, though, that the sample of small

firms may have an upward sampling bias of the growth rates for small firms



because of possible bankruptcy and hence exclusion from the sample of small
firms with low rates of growth.

The rest of this paper is organized as follows. Section 2 presents the
model. Section 3 considers optimal growth under the assumption that the rate
of reinvestment in the firm does not vary throughout the firm's life. Section
4 relaxes this assumption and allows the rate of feinvestment to change at the

firm's will. Section 5 concludes the paper.

2. The Model

We agsume a firm whose units are independent. If a unit is successful,
it will give rise to another unit. 1If it fails, the unit will disappear.
This stylized description of diversified growth fits the way that some firms
develop, especially firms that are R&D intensive: each unit ("division”) of
the firm produces a single product. New products are conceived in existing
divisions, and then are produced in newly created divisions.l

Formally we assume that the firm is a collection of units which are
stochastically identical and independent. The number of units at time t 1is
N(t), and is assumed to be a random variable. Denote by N the initial
number of units, N = N(0). Each unit has a Adt probability of changing in
the following time interval dt into two units and a wudt probability of
disappearing, A,u Z 0. Thus, the model is assumed a continuous time model.

Each unit generates an income stream of y as long as it exists. The number

of units is changing at random discretely up and down by one unit at a time,
the probability of two units changing simultaneously is zero. If the number

of units go down to zero, the firm goes out of business.

lsee the description of the organization of Minnesota Mining &
Manufacturing Co. in: "In Search of Excellence”.



A major assumption of this model is that the firm's owners suffer a loss
of L when the firm dissolves. These dissolution costs are the intangibles
that are implied in the existence of the firm such as reputation, the ability
of people to work as a team, etc. L 1is related to the cost of putting a new
firm together and acquiring a reputation., The risk-neutral owners of the firm
are interested in the expected value of the profits, discounted at a positive
discount factor 6. (8§ > A - p to ensure boundedness of this value).

Initially, we assume that A, p, and y are given to the firm. We will
explore the following questioﬁ: What is the value (at t = 0) of a firm,
comprised of N wunits, to its owners. Later, we will consider optimizing
behavior, where the firm uses the tradeoff between A, p, and vy.

Given A, u, and vy, the expected discounted income stream is made up

of two parts: expected discounted income and expected discounted loss.

2.1 Expected Discounted Income

We start the discussion with a firm of one unit, so N =1 at t = 0,
The size of the firm as a function of time, N(t), is a random variable. The

expected discounted value of the income stream is

)

Y =£ [[7 e %nee) at] = [ e %y BIN(E)] dt

0 0
-t(u-1) -
Following Harris (1963, p. 104), E(N(t)) = e « (Note that when u = A
E[N(t)] =1 and when X > u, E[N(t)] grows exponentially with time.)
Substituting and integrating with respect to time, with the assumption

§+ u~-A>0, we obtain

Y -—
S+u=X

Since the N wunits grow independently, the total expected discounted income

is simply NY. Thus, regarding the income aspect, we have constant returns to



the size of the firm.

2.2 Expected Discounted Loss

Let ¢ = ¢(A,u,8;N) be the expected discounted loss. In the Appendix

is proved that

N
© -8t '1 - "t 2
L§ [ e ——— dt for A # yu.
0 ,1 --% e t(u=2)
¢ =
LS f“ e-at [1%§21N dt for A = yu
0

We now list some properties of this loss function.
Property 1: ¢ 1s decreasing in &8 and X and is increasing in .

When § 1is higher, future loss is less important. An increase in A

decreasés the death probability £ and so does a decrease in u.3

Property 2: ¢ is homogeneous of degree 0 in X, u, 8.

Proof: Multiply A, u, § by a and substitute x

ot. The same ¢

integral is obtained.

it

-t (u~X
2For computational purposes, one may substitute x = e e(u=2) and obtain
)
-T -1
A-u N
¢ = af ®X = #x—l] dx for A # .
o | [x-1]
v
3Foma11y, .4 [° e 5t ¢ (t)dt < 0. 3o 1f
36 0 N 9A
3 et(k‘l-l) _
— [———] < 0, which follows from the fact that 1 - x - e * < 0 for
x A et(x—u)_l
H

all x # 0, A similar argument shows that %%-) 0.



Properth 2 amounts to saying that ¢ 1is invariant to the units by which
the time is measured.
Property 3: ¢ 1is declining and convex in N, and 1im ¢ = 0. Furthermore,
N~

1im N¢ = O,

N+

Proof : 2 LS f“ e—GtENzn € dt < 0 because £ <1 for all t.

N 0
32 o -8t N 2 4
b1 [T e Nan 0% ae > 0.
oN 0
o -8t N
To show that ¢ = [ e £ dt and N¢ tend to zero as N tends to
0
infinity, we use the facts that for all t, E< 1, e—qu:Z 0, and £ 1is

- N
nondecreasing in t. It follows that the sequence of functions e GCE

converge to the zero function uniformly in t, hence ¢ + 0 as N + o, A

similar proof holds for N¢ by noting that NEN +0 as N + =, Q.E.D.

The last property will be very useful in the sequel because it
characterizes the returns to scale that the firm possesses. Note that the
only assumption used here is that the probability of disappearance £ 1is less
than one., This assumption must be satisfied in every stochastic model. The
stronger assumption, responsible for Property 3, is the independence of units.
Note that even if the loss from bankruptcy was proportional to size, we would

still get the same returns to scale properties.

4Mat:hematically, the function is defined for all N. 1Its properties can
thus be found by differentiation. Economically, ¢ 1s defined for
N=1,2,3, We will later use the fact that for N =0, ¢ =L,



2.3 Value ofthe Firm to its Owners

From the above analysis we know that the value of a firm of size N to

its owners equals NY - ¢(N). Since ¢(N) 1is convex and dminishing to zero,

NY - ¢(N) 1s concave and asymptotic to the straight line NY.

NY-¢ (N)

Figure 1

In Figure 1 we use the mathematical fact that for N =0, ¢ = L. The

interpretation is that when N = 0 the firm is dissolved and must pay the

cost L. We see that a sufficiently large firm has the same value to its

owners in the presence or ahsence of dissolution cost. This suggests that the

case L =0 might be a useful benchmark for the behavior of firms.

3. Optimal Growth: The Naive Approach

The firm can change the parameters A and u by plowing back more or
less of its income, thus changing the dividend stream y. We assume that each
existing unit creates a total income stream of y, The firm retains a stream
of g that 1s reinvested in the firm to obtain growth and distributes divi-

dends y = ; - g It is assumed that the sum b = )\ + y, which governs the



chances of one unit to change, is constant. Thus, an increase in g
increases XA according to the relationship g = g(A) and decreases u by
the same magnitude. We assume that g' > 0, g" > 0, 1lim g'(A) = 0, and
&im g'(1) = », Because the units are independent, the ;;Zameters and income
s::eam may, in principle, vary across different units. However, because of
symmetry and the convexity of g, the decisions for all the units will be
identical.

In this section we consider two problems. The first is the optimal growth
for a firm without bankruptcy cost. The second is the case of the myopic or
naive firm. This firm plans on the assumption that the optimal g will not
change with N. However, when N changes the firm finds it optimal to

change g again. We will show that for this case, g 1s inversely related

to N. This will be the first proof that growth rate decreases with size,

3.1 The Zero Dissolution Cost Case

When L = 0, the expected discounted profits of the firm are NY =

N —L—, Substituting =y -g(A) and p=b ~ A, the problem becomes
S X y=y-¢g ,
y-g()
Mex N erb-2x

The first order conditions for maximum are

y 2(r=2(0) = g"()(&+b=20) _ o
2
[ 8+b-2]]

or

g'(\) = 2 _y-g(})

Because &+b-2) = §+y-A > 0, a sufficient condition for maximum is g"(A) > O.

This condition may take an alternative form. Denote by g*, A* = A(g*), and

—y
¥ =b - M the solution to the maximum problem and a* = 3{;%:3;. Then at



g*,
1) g' (M%) = 2a%

As expected, the optimal growth decision is independent of N and the maximum

value of the firm is simply a*N.

3.2 Optimal Growth Rate as a Function of Size: The Myopic Approach

Let L >0 and assume that the firm decides on the optimal A when its
size is N, based on the myopic assumption that this A will be kept
unchanged in the future. Since A 1is constant in all subsequent periods, the

loss function ¢ 1s well defined and the firm seeks to solve

_ - y=g()) _ © -6t N
M;x NY(A) - ¢(N,)) Mix [N Shoax — LS g e £ dt]

where
e.l= gfc(b—zx)
1 - A ~t(b-2))
b-A €
We denote the solution to the myopic problem by AN). The following theorem

states that growth declines with size:

Theorem 1l: The sequence X(N) is a monotonically decreasing sequence

converging to the optimal no dissolution loss A*,

Proof: The proof is by comparative statics of the optimum conditions.
Mathematically, the function is defined for all nonnegative values of N

although it makes economic sense only for nonnegative integer values. Thus,

we will show that %% <0,

The first order conditions are (the superscript =~ on A 1is deleted for

convenience):

(2) an,n G8E N2 s TN 2 g - 0
A : 2
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By the implicit function theorem, %% = - EH' Hl < 0 by second order
A

conditions for maximum. To show that %% < 0, it suffices to prove that

Hy < 0. Now,

3Y o ~§t _N-1 3 o -8t _N-1 )
HN=_3_)\—L6({ e E -a—xdt—LG({ e NE lnﬁﬁdt

By (2) the sum of the first two entries is zero and

- _ o -8t N-1 K13
Hy LS g e NE n £ n dt.
13 b
£< 1, hence, £&n £< 0, EYN <0 for A #-5 by straightforward differentia-

tion,5 hence Hy < 0.

Since 1lim NY()) » O, X(w) equals X*, the non-bankruptcy cost
N-poo

solution. N.E.D.

4, Optimal Growth: The Dynamic Programming Approach

The firm may learn from experience that the optimal growth rate changes
with size., It may then take into account the dependency of A on N in its
optimization. This more sophisticated firm solves a dynamic programming

problem. Intuitively, the knowledge that a decision on today's A does not

dictate tomorrow's A allows the firm greater freedom and we expect X to be
more responsive to the change of N, Using the dynamic programming approach,

we will show that A decreases with the size of the firm.

Safter some manipulations, one finds that %% <0 1iff

A t(2X-b) t(2Xx-b) b 2\b
e e Il +
b=\ (b-n)2 A

t(22-b)

2¢[1 - 1 »[1 - or equivalently if the

function 8(X) = 2t(b=-A)(b-21) - b(1l-e ) 1is always positive. 6(}X) 1is

a convex function with the minimum occurring at A = gu 6(%) = 0, hence

83 >0 for all A ¢§.
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4.1 The Dynamic Program

We denote by V(N) the maximum expected discounted profit that a firm of
slze N can attain, if 1t chooses a different optimal ) for different sizes
of N. By definition, V(0) = -L. Given the choice of A, a firm starting
with N operating units will have a stream of income Ny = N[}-g(x)] until
the firm changes 1its size to either N+1 or N-1. Denoting the random date
of the change by t1» the expected discounted value of the firm is

tl -8t~ A —Gt:l -6t
W(N,A) = E [[ ~ Ne”°F[y-g(N)]dt + e V(N+D) + -
t 0 +u A+u
1

1 V(N-1)]

The first part of the sum is the discounted value of the income stream that

the N wunits produce. In the second part, is the probability that the

A
A+u
firm will grow in one unit, conditional upon the occurrence of change,
Because we have a continuous time model, the change affects one unit only.
The probability of more than one unit changing at exactly the same time is
zero and hence this event is ruled out. The second and third parts are thus
the discounted values of N+1 and N-1 wunits, weighted by their conditional
probabilities. W depends on A because the distribution of t depends on

A, V(N+1) and V(N-1) are given numbers, and p =b - A, If W(N) is

maximized, V(N) 1is obtained. So

V(N) = max W(N, ) =

A
¢ -8t -5t
max B [f 1 N (Fg0lae + e Lvawn) +5e 1 vwD)]
A t, 0 M ¥

1

We first calculate W(N,)A) and then apply the optimization. Noting that
t -4t

/ 1 Ne ét[y-g(x)]dt =-% (1-e 1)[y—g()\)], we obtain

0

-8t A -6t1 -8t

() LD = E [p e DR +yge VR £y o)

1
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The probability distribution of t; 1s the solution to the following well-
known elementary problem: given N light bulbs whose life is distributed
exponentially with a parameter b, what is the probability distribution of

the time t; elapsing until the first bulb dies out? The density function

—thl 6
obtained is f(tl) = Nbe . We can now calculate
-6t -6t -8t ~-bNt
E Je 1] = fw e 1 f(tl)dtl = fm e 1 Nbe 1 dtl = gg%g
t 0 0

Substituting into (3) one obtains

N

Tng 78R + AV(RHL) + (b-0)V(N-1)]

(4) W(N,A) =
The optimal X satisfies the following first order conditions:

(5) g'(2) = V(N+1) - V(N-1)

g"()) > 0 1is a sufficient condition for a maximum.

4,2 Optimal Policy for Zero Dissolution Cost Using Dynamic Programming

We illustrate the use of the optimality conditidn by showing that in the
case of no dissolution cost, V(N) = a*N, or that the best policy A* found
above may be obtained by using our new criterion. Of courge, since the best
policy in the case L =0 1is independent of N, the use of dynamic
programming is redundant and this illustration merely checks the consistency
of our two different approaches. We assume that V(N+1) = a*(N+1) and
V(N-1) = a*(N-1)., We obtain V(N) = a*N, and that the optimal policy A*

satisfies equation (1):

6Formally, the cumulative distribution is F(tl) =1 - [1 -
t -bNt :
f 1 be—btdt]N =1 -e 1. The density function is £(t) . F(t,) =
0 dtl 1

—bNtl
Nbe .
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(1) g'(A*) = 2a*

V(N+1) - V(N-1) = a*(N+1) - a*(N-1) = 2a*, Now

First, g'(})

V(N) = g [7-8(A%) + AV(NHD) + (b=X)V(N-1)]

Substituting ; - g(A*) = a*(&+b-21) (see the definition of a* 1in Section

3.1), V(N+1) a*(N+1), V(N-1) = a*(N-1), one obtains V(N) = a*N,/

4,3 Properties of the V(N) Function

The major property that we want to establish here is the concavity of the
function V in N. The concavity is likely to be present because the loss
becomes less likely when size increases, and the incremental improvement

eventually goes down to zero. As we will see later, the concavity implies that

the growth rate decreases with size.

Claim 1: V(N) 1is strictly increasing.

Proof: Suppose that instead of N wunits the company has N+1 units. If it

operates N units with the former policy and the N+18%%  unit with some A
such that ; - g(2) > 0, it will have an additional expected income. 1Its
expected loss will go down because the expected loss decreases in N. Since
it has a feasible policy that creates more value, V(N+1) > V(N).

Q.E.D.

8

Claim 2: a*N - ¢(N,2*) < V(N) < a*N., Hence, 1lim V(N) - a*N = 0.

N-+oo

TThis "proof"” depends, of course, on the assumption that V(N+l1) =
a*(N+1) and V(N-1) = a*(N-1). This section illustrates the dynamic
programming process; it does not solve the zero dissolution cost case.

8The right hand inequality holds only for L > O,
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Proof: The left hand inequality follows from the fact that V(N) is optimal
for the loss L and a*N - ¢(N,A*) is available. The right hand inequality
follows from optimality of a*N for the no loss case, and from the fact that
the loss decreases the income stream., The limiting results follow from

1im ¢(N,>*) = 0, 0.E.D.

N0
According to Claim 2, the V function is bounded between two concave func~
tions (see Property 3 in Section 2.2). One is thus inclined to believe that V

is itself concave. This more difficult result is proved in the next claim.
Claim 3: V(N) 1is a concave function. It is strictly concave when L > 0.

Proof: We wish to show that for all N > 1, V(N+1) - V(N) < V(N) - V(N-1)
and equivalently, that 2V(N) - V(N+1) - V(N-1) > 0. V(N) » W(N,x*), thus it

1s sufficient to show that

2W(N,A*) - V(N+1) - V(N-1) > O

- * %
(y-g*) + 2+gb V(N+1) + g%:%glg V(N-1), hence

By equation (4), W(N,A*) = SENb
2W(N,A*) - V(N+1) - V(N-1) =

N{2(3-g*) + (2A%-b) [V(N+1) - V(N-1)]} - &[V(N+1) + V(N-1)]
S + Nb

When a firm with N-1 units receives two more units, it can always
operate these two units with the strategy M*, creating an extra discounted
expected income of %&%E%%%, The two extra units also decrease the expected
loss, hence the maximum value V(N+1) satisfies

1y + 23-g%)
(6) V(N+1) » V(N-1) + S
By Claim 2, V(N+1) < a*(N+l1l) and V(N-1) < a*(N-1), hence

. - oy LB
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Using (6) and (7) one obhtains
2W(N, A*) ~ V(N+1) - V(N-1) >

L 5 _py 203=8%)) | ey yog*
grvs (N2(r-g%) + (2a%-b) g0 - 288 g} = 0

4.4 A Proof That Optimal Growth Declines With Size

We now have all the elements to show that the optimal ) declines with N,

Theorem 2: When L > 0, the optimal growth rate A(N) is monotonically

decreasing with N and converging to the no loss growth rate A%,

Proof: By (5), XA(N) 1is defined by the condition g'(A(N)) = V(N+1) -
V(N-1) or equivalently, A(N) = (g')-l [V(N+1)-V(N-1)]. The inverse function
(g')_'1 exists, is continuous, and is monotonically increasing because
g” > 0. By Claim 3, V(N+1) - V(N-1) is monotonically decreasing with N,
hence A(N) 1s monotonically decreasing. A simple application of Claim 2
yields 1im [V(N+1) - V(N-1)] = 2a*., Since (g')—1 is continuous and since
o
by equat?gﬁ (1), (g9)71(2a%) = 2, 1im MN) = a*, Q.E.D.
N+
Theorem 2 states that the inverse relationship between size and rate of
growth becomes weaker as the size of the firm increases. In other words, for
sufficiently large firms the growth rate is independent of size. This result

is known as Gibrat's Law, thus the Theorem shows that Gibrat's Law holds for

large firms.

5. Concluding Remarks

This paper looked at the growth process as an endogenous process where
the firm chooses its optimal growth rate to maximize 1ts expected present

value. The firm is a collection of independent units whose fates are
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independent. At each instant, each unit may turm into two independent units
or disappear, according to a well defined stochastic process. If all the
units disappear, the firm goes out of business and suffers costs of dissolu-
tion. The firm 1s small relative to the industry, hence its growth potential
is independent of its size. The owners of the firm are risk-neutral and
interested in the discounted expected value of the firm's profit, including
the dissolution cost. The size of the firm is the number of units that it
operates. Because the units are independent, the discounted probability of
bankruptcy is smaller when the firm is larger and thus the source of the
returns to scale,

The stochastic process discussed above is called bfanching process., It
was first studied by Dalton in the context of a family's survival., We add to
this classical process a discounting of the future. Farrel (1970) used
branching processes without discounting to examine questions of survival of
firms.

By retaining earnings and reinvesting them in the firm, the firm can
change the parameters governing the stochastic process, increasing the
probability of multiplication and reducing the probability of disappearance.
We assume that the sum of these probabilities is fixed, thus the firm's
decision variable is the size of retained earnings.9 For any number of units
that the firm owns and operates, it will decide on the growth rate. A
consistent optimization must take into account the change in growth that will
follow the expected increase or decrease in the firm's size or, in other

words, will solve a dynamic program.

e abstract from consideration of differential tax rates on dividends
and capital gains, often cited as a reason for reinvestment and growth,
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This paper found that smaller firms grow faster. This finding is true
both for myopic (or constrained) optimization where the firm does not plan or
cannot effect a future change 19 its behavior, and in the non-myopic optimiza-
tion, where the firm takes fully into account its future reaction of the
growth rate to the size. In both cases, the effect of size on change of
growth diminishes. Very large firms grow at a rate independent of their size.
The model also predicts that the actual rate of growth for smaller firms
varies more than that of larger firms because the rate of growth for the firm
is an average of the rate of growth of its units. Since units' growth is
independent, variability must decrease with size.

The results of this paper depend crucially on the existence of
dissolution costs. These costs are independent of size because in our model
before a company goes out of business it must dwindle to a firm of the minimal
size poésible, which is one unit,

Our concept of dissolution costs includes a subset of the bankruptcy

10 We do not have the

costs discussed in the financial literature.
administrative costs of selling the firm's assets to pay for its loans because
we do not allow debts. Our dissolution cost is the loss of intangibles of the

firm such as reputation, organization, etc., related to the cost of putting a

new firm together,

10rhe significance of bankruptcy cost was discussed in the financial
literature because of its bearing on the debt—equity decisions (Modigliani-~
Miller (1963)). There is ongoing debate about the importance of bankruptey
cost. Robinchek and Myers (1966), Baxter (1967), and others underscored their
importance while Haugen and Senbet (1978), Miller (1977), and Warner (1977)
claimed that bankruptcy costs are rather insignificant. (See also Ang, et al.
(1982)).
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Appendix

We start with N wunits and look for a distribution function FN(t) for
the event that all N units disappear exactly at or before time t. Denote by

fN(t) the corresponding density function. If this function is known, then

S

the expected discounted loss is ¢ = fw Le Ot fN(t)dt. Because units are

0
independent, FN(t) = EN, where £ 18 the probability that one unit will

disappear before or at time t., Referring again to Harris (1963, p. 104),

1 - e"t(u_)\) At A
i 1 - 2 o t(H=2) for A #u and & =757 for u=2. (The case U=

can be obtained by letting u + A 1in the former expression, using

1'Hospital's rule.) Note that when u » A 1lim £ =1, hence ruin is certain,
t+oo
but when uy < A 1lim £ =-§ < 1, so the unit has a positive probability of

t>oo
living forever while giving birth to other units. Since 1im EN <1, the

t+oo
whole firm has a positive probability of eternal life. Note also that when
A=0 and u> 0, the process is reduced to the exponential distribution.

We can now calculate the expected discounted loss function ¢. Using

integration by parts and the fact that FN(O) =0,

-
[

= /™ Le”%% (t)dar = Le~StF _(v) |¥+ L [7 se St ()t =
N N N
0 0 0
=1s [ e'stFN(c)dc = L8 [° e %% Nar
0 0
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