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Abstract

In regression applications, it is not uncommon to find that the data for
the desired dependent variable have been grouped or rounded. Other
investigators have explored maximum-likelihood-based methods for fitting these
models. This paper is a lateral extension, using Monte Carlo experiments and
an empirical illustration to demonstrate (1) that the coarseness of the
grouping will affect the need for special estimation methods, and (ii) rthat
departures from the conventional linear Normal regression model will increase
the distortion in parameter estimates due to the use of interval midpoints as
an approximation. Researchers using the familiar log-linear Normal specifica-

tion with grouped data should be advised to proceed with caution.

*The author would like to thank Edward E. Leamer, Jay Stewart and Kenneth J.
White for helpful suggestions and comments.



I. Introduction

In regression applications, it is not uncommon to find that the data
available for the dependent variable are less than ideal. The data may be
grouped (perhaps for confidentiality), rounded upward or downward, or rounded
conventionally to the nearest whole number. Furthermore, the rounding
interval is sometimes large relative to the range of the data. The most
typical recourse in these situations is to adopt the midpoint of the relevant
interval as a proxy for the mean of the variable over that interval. ‘However,
this is at best only an approximation -- sometimes satisfactory, but at other
times poor enough that it would be preferable to recognize the rounding
explicitly in the regression process. This paper is a lateral extension of
previous work in the area. Two issues are addressed: (a) the consequences
of grouping or rounding in non-normal regression models, especially models
which assume highly skewed distributions, and (b) the behavior of parameter
estimates as the rounding or grouping of the dependent variable becomes
increasingly coarse.

The layout of this paper is as follows. Section II examines the related
literature and identifies the innovations of the present work. Section III
specifies a general linear grouped-data regression model and then specializes
this model to particular distributions. Section IV does the same for the log-

linear model. Section V describes the implementation of the optimization
algorithms. A set of simulation experiments is described in Section VI with
particular emphasis on the more-common linear normal and log-linear normal
regression models. Section VII demonstrates the impact of the correction in a
log—-linear Normal model of long-distance telephone call durations, and Section

VIII summarizes.



II. Proximity to the Literature

Before proceeding, it is important to note that this is the usual
textbook example of errors in variables. The grouping intervals are
completely exogenously determined. The explanatory variables are assumed to
be uncorrelated with the error term. Furthermore, in the conventional case
with random measurement error in the dependent variable only, we would expect
an unbiased estimator of the slope (for example). This is not the case here.
I am addressing a fundamentally different (but pervasive) data problem.

The type of correction strategy explored in this paper was proposed first
by Hasselblad, Stead and Galke (1980).1 In their example, the dependent
variable is the quantity of lead found in blood samples; explanatory variables
are year, race and age group. The maintained hypothesis 1is that the original
blood lead levels come from a lognormal distribution, so that the logarithm of
this variable is normally distributed around a mean value which depends on
time and several dummy variables. They find "...some justification for our
uneasiness with the simple use of midpoints....” The present paper emphasizes
that the consequences of using midpoints depend on the particular application.
Depending on the specification, on the underlying error distribution, as well
as on the coarseness of the grouping, the midpoint technique can yield a
better or worse approximation to the true underlying parameter values.

A portion of the procedure to be described here is related to work by
Stewart (1983), who chooses to focus on cost-saving OLS-based approximations
to the preferred maximum likelihood estimation techniques. He undertakes a
set of simulations, but uses only ten grouping intervals, devoting primary
attention to the influence of different assumptions about the regressors. He
considers true error distributions which violate the underlying assumption of

normality, but does not work with fundamentally non-normal regression models.



Recognizing that computing technology is making algorithm complexity less of
an issue in the choice of estimation technique, I opt for the theoretically-
preferred maximum likelihood approach.

Burridge (1981), has also worked with grouped-data regression estimation.
He examines maximum likelihood estimation where the underlying unobserved
dependent variable has either a normal distribution or an extreme value
dist?ibution. Burridge's emphasis, however, lies with the use of special
reparameterizations of the likelihood function which render it concave,
thereby ensuring the existence of a global maximum. Simulations focus upon
the relative conve?gence speeds of different algorithms.

Going beyond Burridge's extension to the extreme-value distribution I
choose to explore in greater detail a common empirical consideration for
economic models: many dependent variables may take on only non-negative
values. To assume that the variable is distributed lognormally (so that its
logarithm follows a normal distribution) is but one of many possible assump-
tions. The Generalized Gamma family of distributions has been explored by
Cameron and White (1985) for both linear and log-linear regression models. A
subset of these models is adapted here for grouped dependent variables. Aside
from the Normal (N) distribution, I have limited the selection to distribu-
tions with closed forms for their cumulative density functions: the

Exponential (E) and the Weibull (W).

I1I. Linear Regression Models

In this section, and in Section IV, the details of the optimization
algorithms are provided. Subsection A in each case gives the general form of
the algorithm, relevant to whatever specific underlying distribution might be
assumed. While these formulas are not the focal point of the paper, they are

provided to emphasize the adaptability of grouped-data strategies to a whole



range of distributional assumptions.

A. The General Case

For these linear models, the range of the true dependent variable, E,
fs -o <t < +o for the N model and O < t < +» for the E and W
models. For the following description we will assume that t 1is rounded
within a known interval. Also assume that the observed datum, t, takes on
the value of the midpoint of the interval of E which it represents (i.e.,

t =ty if cz < E < cu). In the general case, we have:

Pr(t =t ) = F(t ) - F(x ), 1
m u 2

where, F(.) 1is the c.d.f. for E. We assume that the distribution of t is
conditional upon a vector of p explanatory variables, x. For a random
sample of n observations, the log-likelihood function will be:
n .
% = 121 log[F(tui) - F(tzi)] (2)

In a linear regression model, the conditional distribution function will
have a mean of x'B and (usually) at least one separate shape parameter, C.
Optimization of the likelihood function in (2) requires the derivatives of
this function with respect to the unknown parameters (B,c). With the follow-

ing simplifying notation:

Fy = F(ty) - F(e )

= 6 = eeny >
F(e)i aFi/ae Bl, Bp c

2
F(GY)i = 3 F/aan e,Y = Bl,'oo,ep,c,

these derivatives can be stated generally as:

2L _ o
36 - . Feoyt

/F (3a)
i=1 1



2% ® FiFevys ~ FroniFens
333Y = X 2 G,Y = Bl,o-o,sp,c- (3b)
i=1 (F,)
i
B. Specialization to Specific Distributions
a. Normal
2

For Normal errors, we have the parameter vector (Bl,...,Bp,o). The
components of the likelihood function and its gradient will be as follows.
(The components for the Hessian have been relegated to Appendix l.) To simpl-

i = - ! = - ! . H
fy, let 24 (tui xiB)/o and Z04 (tﬂ'1 xiB)/o Then

Fy = o(z ) - ®(z,)) (4)

=X
ir
F(Br)i = (o] [¢(zui) = ¢(zzi)] r = 1,0..,p

1
Floyr = = o [Zus #(2yqg) — 2y $(zpp)]

b. Exponential

For an Exponentially distributed dependent variable, we need only
estimate the parameters (Bl,...,Bp). There 18 no separate shape parameter.
The components required for the likelihood function and its gradient are as

follows. (Let vz = vi/xiB, for any variable v.)

P, = exp(-tzi) - exp(-tzi) (5)

[t*

-tk = cee
1 exP( tui)] r 1, P

—_% - *
exp(-t3,) = Ty

F(Br)i =%

¢ce Weibull
For a Weibull-distributed dependent variable, we must estimate both
(Bl,...,Bp) and the shape parameter, c¢. Recall that the simple Weibuli
probability density function is given by:
~c-1

£(2) = th exp[-(£/b)€], 0 < £ < +=,
b




As described in Cameron and White (1985), the Weibull linear regression model

begins with a simple Weibull density and substitutes for the scale parameter,

b, the expression x's/r(EEl). To simplify, set c* = (c+l)/c and again let

v; = vi/xiB for any variable v. Also, let T

[tzir(c*)], and let T'(k) = 3ar(k)/3k. Then:

= * * =
21 [tzir (c )]) Tui

F; = exp(—Tii) - exp(-Tzi) (6)

C c c c
= * - - _ -
F(Br)i cx} [T, exp( To) = Ty exp(-T )] r =1,ec0,p

I'(ce*) (ec-1) c c
= X ——t— - - -
Floye = 25 =% Tt Tyq log Tyl exp(-T )

I'(c*) (c-1) _ ¢ _mC
o T Tui log Tui] exp( Tui)'

*
[tui ul

IV. Log-Linear Regression Models

A. The General Case

Lawless (1982) describes the derivation of log-linear regression models
under several non-normal error distributions. We assume that the actual de-
pendent variable, E, 18 distributed around its expected value, exp(x'B),
according to a density function g(EIx). In log-linear models, we define the
dependent variable as ; = log (E), which has a density function given by
f(;|x) = exp(;) . g(exp();)lx).3 When Z is rounded to the midpoint of an
interval with bounds tz and to the observed values of t and Yy are

thus:
t=t,y= log (tm) if t, <t ¢h)

A further transformation, =z = (y - x'8)/¢ yields the error term for the

log-linear regression model. Now we may argue that:
Pr(t=tm) = Pr [(-x'8 + log(tz))/o <z < (~x'B+ log(tu))/o] (8)

To simplify, let zz = (-x'B + log(tz))/o be the lower 1limit of the interval



wherein the error term z may lie and let 2z, = (-x'B + log(tu))/o be the

upper limit of this interval. Then:
Pr(t=tm) = F(zu) - F(zz) (9)

As before, the underlying parameters B and o are determined by the method
of maximum likelihood. To simplify the following exposition, we will use the
abbreviations given below (where f£(.) 1is an arbitrary p.d.f., and F(.) 1is

the corresponding c.d.f.):
Pi = F(Zui) - F(Zzi)

P{ = f(zui) = f(-zli)

o
firy
[ |

zuif(zui) - zzif(zzi)

qq = zuif'(zui) - zzif'(ZZi)

2 2
L - L
zaf'(2yy) = 2y, £7(2 )
p, = pi/l’i

w = Q /P

The log likelihood function for n independent observations on ¢ and

x 1is:

n
2= I log P, (10)
i=1

The elements of the gradient vector are given by:

n x
‘g—é_" X -'—%_Lpi r’l,o-o,p (lla)
T 1=]
n w
% _ , 1 ~ (11b)
3o o
i=]1

and the elements of the Hessian are:



2 n x, X
9 2 ir’is
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BB T o 2 147P ’ ’
2 n x
9
'W'g'c?‘ T ——215— [o, + a;/B; = o] T =1,000,p (11d)
r i=1 o
2 n
AL 5 1 12u + R, /P, - o] (11e)
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90 i=]1 ¢

B. Specialization to Specific Distributions

a. Lognormal
If the conditional distribution of E is lognormal, then z has a
standard normal distribution.A To obtain estimates for both B and o, the

required components of equations (10) and (11) for the normal distribution
(for z = zu,zz) are:
z 1 -1 2
F(z) = &(z) = [ —— exp(—5 t")dt (12)
- 27 2

1 -1 2
£(z) = ¢(z2) = — exp(—5 2z )
Y27 2

- -1 2
£'(z) = —z¢(z) = zz_ exp(— z°)
Y2n 2

b. Exponential
If the conditional distribution of t is exponential, 2z follows a
standard extreme value distribution (see Hastings and Peacock, 1974) and o

is constrained to unity, so we need estimate only B. We will use only the

derivatives (11la) and (llc). The necessary functions are (for z = zu,zz):
F(z) = 1 - exp(-exp z) (13)
f(z) = exp(z - exp 2z)

f'(z) = [1 - exp z] exp(z - exp z).



ce Weibull

If the conditional distribution of E is Weibull, then 2z follows a
the same standard extreme value distribution but ¢ 1s no longer constrained
to unity and must now be estimated, so we will use the full set of derivat-

ives, (1la) through (lle), but the same set of components, (13).

V. Estimation Techniques

Maximum likelihood techniques are utilized to determine which values of
the parameters in question maximize the joint probability of occurrence of the
data in the sample. While a variety of algorithms are available for generat-
ing maximum likelihood estimates, I have found it expedient to utilize the
GQOPT computer program with its Fortran-based subroutines. While this package
offers the programmer the option of numerically computed derivatives; this
choice can make the program quite slow and therefore very expensive. Where
the researcher is confronted with a binding constraint on computing funds, the
use of analytical first and second derivatives can reduce costs. Hasselblad,
Stead, and Galke (1980) utilize the so~called EM algorithm developed by
Dempster, Laird, and Rubin (1977) for their blood lead study. A variant of
this technique is also used by Stewart (1983), and explored by Burridge
(i982). This algorithm is also a cost-saving measure, but it has the disad-
vantage of failing to provide an asymptotic variance-covariance matrix for the
estimated parameters. Without this information, hypothesis testing regarding
these parameters 1s not feasible unless the point estimates for the parameters
are combined directly with the data to generate either the estimated Hessian
matrix, or alternatively the estimated gradient-outer-product matrix (Berndt,
Hall, Hall, and Hausman, 1974). (Either of these will approximate the
Information Matrix under appropriate assumptions.) In either case, the

formulas for the analytic derivatives are required, which justifies their full



10

presentation in this paper.

VI. Simulation Experiments

The matrix of possible simulations which could be undertaken is very
large. Obviously, it is only practical to present a select subset of these.
In particular, the grouping processes considered here involve
(1) only equal intervals of the dependent variable, and (ii) only simple
regressions (although the algorithms have been designed for multiple regres-—
sion). The same set of values was used for the (deterministic) explanatory
variable in all of the following models. Two hundred values of x were drawn
from a one-time sampling from a uniform (0,1) distribution. The "true”
parameters of the regression relationship vary across models, but for each of
the one hundred Monte Carlo samples used in each model, the values of the
dependent variable are constructed as random drawings from the appropriate
distribution (having a conditional mean of x'B).

A comprehensive set of tables detailing the numerical Monte Carlo
simulation results is available from the author. Here, for clarity,
approximate graphical summaries will be employed. For some perspective on the
severity of the rounding process, scatter diagrams of the untransformed
dependent variable plotted against x for the first 100 observations are

occasionally provided.

Linear Normal Regression Models

We begin by examining the relative performance of ordinary normal linear
regression using interval midpoints, versus the grouped dependent variable
model. The “"true” model is t = 1.0 + 2,0x, and the standard deviation of
the error distribution varies between .10 and 2.5.

When the true standard deviation is relatively small (on the order of 0.5

or less) the mean slope and intercept estimates are extremely close, provided
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the rounding interval is kept to less than (roughly) three times this standard
deviation. In this case, the only apparent shortcoming of the OLS midpoint
method is that the standard deviation 1s systematically overestimated. This
tendency can be seen in Table 1. As the rounding intervals widen, the
midpoint method overestimates the true standard deviation by an increasingly

- greater margin. This implies that use of the OLS midpoint method could result
in failure to reject null hypotheses when there actually is sufficient
resolution in the data to reject the hypothesis in question.

For larger values of the true standard deviation (on the order of 0.75
and larger), both methods, when applied to grouped data, yield biased
estimates of the true intercept and slope. In particular, the slope becomes
biased downwards and the intercept biased upwards; the degree of bias also
increases approximately linearly with the width of the rounding interval.

This is not surprising. 1In the limit (as the intervals become more and more
coarse) the entire sample range of the dependent variable falls into one
interval, the fitted slope goes to zero, the intercept becomes the mean of
that interval, and there is no remaining information about the variance. (It
is just this obscurity about the variance that limits the sizes of the
rounding intervals actually explored.)

The slope and intercept parameters (in the models with larger underlying
standard deviations), the OLS midpoint method yields virtually identical point
estimates to those obtained (at the expense of considerably more effort) from
the theoretically more-valid grouped data maximum likelihood method. There is
a slight divergence of the point estimates at extreme (unrealistic) degrees of
coarseness, but it seems justifiable to consider the two sets of estimates to
be identical for practical purposes. It is worth noting that both sets of

estimates for the standard deviation begin to underestimate, rather than
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TABLE 1

Mean Point Estimates (and Mean Asymptotic Standard Errors)

For the Error Standard Deviation Parameter, o©

(Linear Normal Regression, 100 samples, n = 200, t = 1.0 + 2.0x + 0€)

True error
Ste dev.z [+

0.10

0.25

0.50

Rounding
Interval

width

0.10
0.20
0.30

OLS
Midpoint Method

MLE

Grouped
Data Method

0.1042
0.1153
0.1291

0.2610
0.2879
0.3323

0.5190
0.5745
0.6692

(0.0052)
(0.0057)
(0.0064)

(0.0131)
(0.0144)
(0.0166)

(0.0260)
(0.0287)
(0.0335)

0.1001
0.0997
0.0995

0.2508
0.2486
0.2512

0.4984
0.4956
0.4885

(0.0054)
(0.0065)
(0.0076)

(0.0136)
(0.0163)
(0.0202)

(0.0270)
(0.0328)
(0.0418)
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overestimate, the true parameter value as the true standard deviation
increases beyond 0.75.7 In any event, the similarity of the estimates at
smaller rounding interval widths should be good news for those who do not wish
to incur the fixed costs of setting up the more elaborate technique.

Regarding specification testing, it should be noted that the midpoint and
grouped data techniques are not nested models, and do not even model the same
"data"™, so there are no straightforward statistical criteria for evaluating
the importance of differences in the maximized values of the log-likelihood
values. Bear in mind that the log-likelihood for the midpoint model reflects
the joint density, not for the actual data, but for an artificial construct:
the midpoint of each interval. It is not surprising that the maximized log-
likelihood value for the grouped data model should get progressively larger as
the grouping intervals widen, since the task of the model becomes easier when
it is only necessary to predict "residence” of the dependent variable within a
wider interval.

Log—-linear Lognormal Regression

Here we begin to see the potential advantages of the grouped data
techniques. When equal intervals in the raw dependent variable get trans—
formed into unequal intervals in the logarithms of the dependent variable, the
distinction between the alternative estimation methods becomes quite marked.
Figure 1 illustrates the differences in a regression model where the true
relationship (selected arbitrarily) is y = log t = 0.0 + 1.0 x. The figure
consists of three horizontal panels, each describing the Monte Carlos results
for one underlying model. In each panel, the three graphs describe the
results for each of the three parameters: intercept (BO), slope (Blj, and
standard deviation (o). The horizontal axis in all cases describes the width

of the rounding interval for the dependent variable (anchored at zero).8 (An



N se(m) .015 - .048 B se(m) .026 - ,083 ' se(m) .005 - .017
° se(g) .017 -~ .022 1 se(g) .028 - 037 se(g) .006 - .013
0.1 A 1.6 0.6
’ A
0.0 M_T“_‘*- grouped 1.5 FEY 0.5
[} S
v Py
-0.1 3 midpoint 1.4 H a 0.4
3 H H Ll SOUPY
i -0.21 L ! 1.3 i : 0.3 / -
ianel (i) b \ ! i a /' atapotne
true o= . i 4 ! ]
-0.31 ‘\ ;;‘ 1.2 : imidpoint 0.2 /./
-0.4 \J 1.1 x 0.1 ":——-——grouped
-0. .01 ¢ 0.01
3 1.0 ™ grouped
y 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5
rounding interval width rounding interval width rounding interval width
B_ se(m) .038 - ,060 'y se(m) .065 - .104 " se(m) .013 - ,020
| se®) .037 - .046 t se(g) .063 - ,077 se(g) .013 - 020
0.04 "ﬂv—'. grouped 1.4 0.50¢
) ~
H 1_3. -.-‘ '\ 0.45
. midpoint ! .
v > i f”'\\
<0.1 : ! 1.2 H ! 0.404 i -
H ? 1 N R
H H H \midpoint ; by
Panel (ii) B H 1.1 # P 0.35 1 ) midpoint
H { . Y
(true o= .25) 1 ! 3
-0.2 i H 1,01 H 0.30
! f grouped
3 i 0.9 i 0.25 $#€=nepe—e grouped
[ 4
‘ E
-0.31 4 0.8 0.20
0.5 1,0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2,0 2.5
rounding interval width rounding interval width rounding interval width
il Bl _ < | _
se(m) .073 - ,086 se(m) ,126 - ,149 se(m) ,025 - .030
.15 se(g) .072 - .085 se(g) 124 - .139 se(g) .025 - .033
.10 1 . . 0.6
midpoint 1.1 Vs " \
.05 4 ! 1.04 padfpes Y
grouped /f grouped .‘-.. \
.00 . . .
Panel (iii) “‘Qf““ } 0.9 \ o N
= Y ) o5 ¢ otfmgtpmne X
(true o= .5) .05 4 \\ / 0.8 ) grouped Y
3 “ »
-.10 1 \'\ // 0.7 Y midpoint
et .
15 ] 0.64 midpoint 0.4
0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5

rounding interval width

rounding interval width

rounding interval width

Figure 1 - Mean point estimates, log-linear Normal models, 100 Monte Carlo
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interval of width zero implies no grouping.) The vertical dimension gives:
(a) the mean of the 100 Monte Carlo estimates by the midpoint method;

(b) the mean of the 100 Monte Carlo estimates by the grouped data method; and
implicitly, (c) the "true"” parameter value used to generate the samples. To
avold clutter in the graphs, standard error bounds at each grouping coarseness
are not deplicted. Instead, the approximate range of values for the asymptotic
standard error point estimates (across all grouping intervals) is stated sep-
arately (as "se(m)" for the midpoint method and as "se(g)" for the grouped
data estimates). Furthermore, as the rounding intervals widen, there is
eventually too little information remaining in the rounded data to identify
the dispersion in the dependent variable, and the grouped data estimates
become unattainable after a certain point. Midpoint estimates remain feasible
even when the grouping coarseness becomes unreasonable.

In Figure 1, panel (1) deseribes the effects of increasingly coarse
rounding intervals in a model where the true standard deviation is 0.10. (To
illustrate, Figure la shows the first 100 observations on t and x for this
model, and for comparison, also gives the scatter diagram when t 1is rounded
to the midpoint of an interval of width 0.50.) We see that for rounding
intervals up to about 0.5, the midpoint method seems to yield relatively good
approximations to the grouped data estimates. For coarser groupings, however,
the midpoint method begins to oscillate away from the grouped data estimates.

Panel (i1i) describes the same basic model, but this time with a true
standard deviation of 0.25. (Figure 1b shows the corresponding scatter dia-
grams.) Here the correspondence between the two methods is reasonably good
for rounding interval widths up to about three standard deviations (i.e.,

0.75), but the midpoint method estimates diverge rapidly for larger interval

widths.
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Panel (iii1), along with Figure 1lc, describes the situation for the same
regression, but with a true standard deviation of 0.50. The divergence
between estimates using the two techniques is now quite marked. Note that the
estimates for the grouped data technique are consistently very close to the
true parameter values, but the midpoint method estimates diverge rapidly and
. markedly from the true values. The midpoint estimates, intérestingly, are
biased first in one direction, and then swing back to become biased in the
opposite direction, with the bias in the second direction apparently becoming
monotonically larger with increasing interval width.

The important result, then, is that —— especially in log-linear models --
the parameter estimates from the midpoint method can be markedly biased and
the grouped data method tends to produce much more accurate point estimates.
Furthermore, the direction of bias in the midpoint method seems to vary with
the width of the rounding interval, so that it is not even possible, for the
log-linear model, to claim that the incorrect midpoint method estimates
represent either an upper or lower bound on the true parameter values., In
light of this, the grouped data method would seem to be much preferred.

Non—-Normal Regression Models

Detailed assessments of the consequences of grouping in the linear and
log-linear Exponential and Weibull models are presented in Appendix 2. 1In
summary, it appears that the linear and log-linear Exponential Regression
Models yield biased estimates in small samples, even with no grouping in the
dependent variable. Conditional on this fundamental bias, however, the
grouped data estimates exhibit consistently better conformity with the
parameter estimates obtained using ungrouped data. The Weibull regression
estimates also show small-sample bias. While the superiority of the grouped

data MLE slope and intercept estimates is less obvious for these models, the
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shape parameter for the conditional distribution is much more accurately
estimated by the grouped data technique than by the midpoint method. See

Appendix 2 for diagrammatic summaries.

VII. An Illustration: Long Distance Telephone Call Durations

To illustrate the impact of using ordinary least squares regression
analysis with rounded data in a log—linear Normal model, I will make use of
two datasets pertaining to long-distance telephone calls (utilized in Cameron
and White (1985)). One shortcoming in the datasets is that the telephone
utility in question rounds the duration of each call upwards to the next
integer number of minutes. (This is a common practice in long-distance
billing, although some smaller companies now bill in tenths of minutes.) The
previous paper focuses on using the Generalized Gamma density function for the
conditional distribution of call duration. The overall conclusion of the
paper is that the Generalized Gamma distributions can be superior to the
typical assumption of normality for the logarithm of the dependent variable.
For both datasets, however, the log—linear Normal model yielded coefficients
which were very close to the log—~linear Generalized Gamma model (and markedly
different than those for the simple Gamma, Weibull, or Exponential log-linear
regression models). Consequently, I will use the log—linear Normal model to
illustrate the consequences of ignoring the grouping in the data.

The first dataset consists of a stratified sample of 21,738 residential
long distance telephone calls originating in the Canadian province of British
Columbia on July 13, 1983. These calls were directed to Canada and the U.S.
(except Alaska). A second (complete) sample consists of both business and
residential calls to all overseas destinations, yielding a total of 4,934
calls. The dependent variable in both datasets is the log of duration in

minutes. The explanatory variables common to both datasets include: marginal
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per-minute rate in dollars, log of distance in miles, and a set of dummy
variables taking on a value of one if a call is credit card or third party,
person—~to—person, or originating in the vast, sparsely-populated Northeast
region. For the first sample, there are also dummy variables for the evening
rate discount period and for the night discount period, as well as for collect
calls. For the overseas sample, there is only a single (night) discount
period, and a dummy variable is also included for business calls. Table 2
gives the parameter point estimates and the asymptotic standard errors
obtained (i) the "midpoint” (in this case, "endpoint”) method, and '(11) by
the more-correct grouped data technique.

Scatter plots of the data for the original study reveal that there is
considerable dispersion in the data. For the logarithms of the data on dura-
tion, the first sample has a marginal mean of 1.368 and a marginal standard
deviation of 1.007. For the overseas sample, the corresponding mean is 1.635
and the standard deviation is .9484. Given the Monte Carlo evidence, this
suggests that the parameter bias introduced by the rounding up to the nearest
minute in the raw data could be quite significant. Table 2 bears out this
hypothesis. It would seem that we are at a level of rounding coarseness
comparable to that in Figure 1, panel (ii1) beyond about 2.25. Explicit
recognition of the rounding process in the estimation yields a smaller
estimate for the intercept, larger estimates for the slope coefficients, and a
larger estimate of the standard deviation.

For rate policies, telephone companies may be very interested in the
change in the typical durations of long-distance calls aé a result of adjust-
ments to the marginal per minute cost of a long-distance call. For the-first
sample, rates do not appear to be a statistically significant determinant of

duration in the log-linear model (although they are significant, with a
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TABLE 2

Comparison of Estimates by OLS and by Grouped Data Technique

Canada and U.S.

Destinations
MLE
OLS Grouped
Midpoint Data
Method Method
<4747 «0040
(.0228) (.0301)
.0280 «1118
(.0894) (.1163)
«1482 .1756
(.0111) (.0145)
«4318 «5507
(.0198) (.0257)
«4171 «5539
(.0381) (.0495)
.1740 «2349
(.0266) (.2451)
(.0284) (.0366)
.0284 .0469
(.0726) (.0923)
-.0731 -.0936
(.0133) (.0172)
«9511 1.189

(.0068)

Overseas
Destinations
MLE
OLS Grouped
Midpoint Data
Method Method
2.251 2.216
(.754) (.9991)
-01184 “01547
(.0557) (.0706)
-+0453 -.0521
(.0954) (.1283)
.0794 .0829
(.0489) (.0594)
-.0780 -.0957
(.0301) (.0360)
«1572 .1819
(.0731) (.0869)
«4245 «5153
(.0706) (.0834)
-.0344 .0458
(.0433) (.0516)
«9404 1.107
(.0126)
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negative coefficient, in a linear Log-normal specification in the Cameron and
White paper). The point estimates are more intuitively plausiblie for the log-
linear Normal specification with the overseas data. In this second sample,
the model which corrects for the rounding suggests that in response to a 10-
cent per minute decrease in marginal per-minute rates, the mean duration of
calls will increase by .01l5 percent, rather than by .01l percent. Thus the
grouped data model uncovers an apparently greater elasticity of duration with
respect to rates than would be implied by the OLS method using rounded data.
Given the large number of calls involved per year, even seemingly modest
differences in the elasticity estimates could mean a very large change in

revenue predictions.

VIII. Implications and Conclusions

With a study of this nature, the ideal summary statement would include a
strategy for diagnosis of a "rounding bias hazard” and guidelines for assess-
ing the circumstances under which acknowledgement of this bias is called for.
Unfortunately, the range of simulations has not been sufficiently exhaustive
to allow such a concise summary. The primary purpose of this paper has been
to demonstrate that there do exist conditions under which the grouped techni-
qde is very 1likely to be superior.

Clearly, if the true errors are normally distributed, there is negligible
loss from using the midpoint technique instead of the grouped data regression
method. Both appear to be about equally accurate (inaccurate). A researcher
with strong convictions about the normality of the error distribution of the
grouped variable around the true regression relationship could probably argue
that no special techniques are necessary. However, one of the important
findings of this paper is that when the density function for the true errors

deviates from the familiar normal curve, the midpoint technique does not
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perform as well. In particular, the popular log-linear normal model can yield
seriously blased parameter estimates when the untransformed variable is
grouped or rounded. The adverse consequences of using the midpoint approxima-
tion technique instead of the more-appropriate grouped data method are most
important when the ungrouped data would exhibit a very diffuse relationship.

I have i1llustrated the potential quantitative consequences of incorrect
estimation using two samples of real data on the durations of long-distance
telephone calls.

I have also offered formulas for estimation in other situations where the
dependent variable is constrained to be strictly positive, so that an
Exponential density, or perhaps a Weibull form is more appropriate. By making
available a set of general formulas for these alternative models, I hope to
facilitate the efforts of other researchers who may wish to explore the conse-
quences of deficient data. Whiie even ungrouped regressions yield biased
point estimates in small samples in these alternative models, the grouped
regression method can easily claim superiority in large samples, or if
identical correction formulas can be applied to both sets of estimates.

In sum, when working with grouped or rounded data for a dependent
variable, one must pay attention to two factors: (i) the coarseness of the
grouping interval, and (ii) their priors regarding the true shape of the
underlying conditional density of the dependent variable. But as usual,
whether or not the bias in parameters introduced by the use of midpoint
regression on grouped or rounded data actually matters in the "grand scheme of

things" will depend on the precise application involved.
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Footnotes

1Kreiger and Gastwirth (1984) address the issue of grouped data when
accurate interpolation of different percentiles is required. In lieu of
fitting a parametric curve, they introduce a method for deriving upper and
* lower bounds on percentiles assuming only that the underlying demnsity function
is unimodal and that the interval in which the mode lies is known. It must be
emphasized, however, that this is a univariate technique; regression analysis
is not involved. They conclude that data providers should be encouraged to
report group means along with group frequencies. When this information is
available, the spread between the percentile bounds can be dramatically
reduced.

230me of the MLE formulas in this subsection are similar to those derived
in Section 2 of Stewart (1983). They are reproduced here for consistency with
the general notation adopted in this paper.

3After the transformation, it is possible to express § in "location-

scale” form: ; = x'B + oz.

4While the symmetry of this distribution could be exploited, as in Tobit
models, I leave the values as they are so that this version conforms to the
general model.

51t follows from the probability integral transformation (DeGroot, 1975,
pp. 127-29) that a single value from an exponentially-distributed random

variable with mean xiB can be generated from a value uy drawn from a

U(0,1) distribution by the transformation:

ti = -(xiB)log(ui).

For the linear Weibull model, the corresponding transformation is:
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(xiB)
ti = c+l
I‘(T)

[-log(ui)]-

6For the log-linear models, the means of the conditional distributions

must be exp(xiB). Exponential samples for t; can be generated from random

drawings from a U(0,1) distribution through the transformation:

t, = ~exp(xi8)log(ui)

Weibull samples can be generated by:

exp(xis)
1 peth

c

[-log(ui)]

7For a given slope and intercept, the bias is larger, the largef the
underlying error variance. Similarly, for a given error variance, the bias is
larger for smaller slopes. Other results have shown the same direction for
the bias in the absolute magnitude of the coefficients when a negative slope
is considered. In general, the regression line becomes "flatter" due to
rounding.

8An alternative strategy might have been to formulate the ad hoc midpoint
assignment in terms of the midpoint of the logarithms of the intervals (rather
than using the logs of the midpoints). This technique has not yet been
examined. In any event, it would require the ad hoc assignment of a value for
the midpoint of the interval between 1log(0) (negative infinity) and the log

of the upper limit of the first interval.
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APPENDIX 1 - Specialized Hessian Components

A, The Linear Normal Regression Model
Be)M =" 35 [¢'(z ) = ¢'(z;)] 1,8 =1,.00,p.
xir
F(ﬂrU)i = T [(¢(zui) - ¢(z£i)) + (zui¢(zui) - zzi¢(z£i))] r = 1"'°Dp'

(oot =3 [Za1®'(Zyg) = 240" (20 )]

v+ 1z 6z ) -z, 0(2,,))

2 Zat®%u) T Zeq %

B. The Linear Exponential Model

= wk w& R - * -tk -— X - k] —-tK
F(srss)i xf xyg [(ef-2)eyy exp(-ty)) = (e}, -2)e}, exp(-ty )]

ry,8 = 1,...,p

C. The Linear Weibull Model

(o} [ od Cc Cc
= - * ] - -— .
F(Brﬁs)i (L+e)ext xi o [T,y exp(-Ty,) = Ty exp(-T )]
2 2¢c 2¢
* * - = see .
toexpoxi [Ty ~ Tyl T8 = Lieeosp

Cc C Cc Cc
= * - - -
F(Brc)i X} [Ty exp(=Tgy) - Ty exp(=T )]

aTS

(o4
21 c c aTu
3e ) exp(-TLi) - (l-Tui) (

i c
ac ) exp(—Tui)] r = 1,ooo,p

c
+ exf [(1—T£1) (

aT¢

i, _ ,n(e-1) _, I'(c*) c
where (—32—9 = (T.i e + T.i logT. )
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(log T ) T(C 1)

({Ir,, + ‘i L) 1{eD) 4 roemy [(e-D)T
C

Fleo)t = giRet * Sy D1

c
[(cR"'1 ) logT exp(-Tzi) +

+ Ryl

c
{-[erpy + Ty 8,,1 [(Ryy = S,.) exp(-T, 1)1}

t*
_-({[Rui + g (-r gc*) Tﬁ: D + I"(c*)[(c-]')TuiR'\.li + suil)]
c

c
[(cRui + Sui) logT , + Ruil} exp(—Tui) +

(o]
{=ler g + T 48] IR -S ) exp(-T )1}
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APPENDIX 2 - Results for Models With Alternative
Distributional Assumptions

I. Linear Models With Alternative Distributional Assumptions

A. Linear Exponential Regression

The relative performance of exponential regression compared to ordinary
least squares will not be evaluated here. (See Cameron and White, 1985.)

Since an exponential density function is highly skewed, we would expect
qualitatively different results than in the normal case. The mean of an
exponential distribution completely characterizes its shape, so only intercept
and slope parameters are involved in an exponential regression model. Figure
A3.1 summarizes the consequences of grouping the dependent variable for three
different underlying true regressions.

Observations on these results are:

a) Unlike the outcomes with the normal error terms, we see in Figure
A3.1 that the point estimates for the grouped data regressions, while biased
even with no grouping of the data (interval width = 0), correspond more
closely with the true underlying parameters than do the midpoint regression
estimates. While, as expected, the two methods yleld virtually identical
results at very narrow grouping intervals, the midpoint regression estimates
depart quite rapidly from the grouped data results as the intervals widen.

b) The fact that the means of the sample point estimates are biased even
without grouping seems to be a small-sample property of the MLE estimators in
these models. For the exponential model with slope parameter 1.5, reruanning
the ungrouped simulations with 2000 observations instead of just 200 yields a
mean intercept estimate of .998 and a mean slope estimate of 1.498. Both

values are much closer to the true parameters than in the small sample

simulation.
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Since the likelihood function for this model is a highly non-linear
function of the unknown parameters, finding a simple analytic formula for the
bias is likely to be a non-trivial task. However, if such a formula were
available, and if it could be applied to both the grouped data and midpoint
estimates, the result would be extremely accurate estimates from the grouped
data method and rapidly unsatisfactory results from the midpoint technique.

B. Linear Weibull Regression

The linear Weibull regression model is simply a generalization of the
exponential regression model which incorporates a “"shape” parameter c.

(When ¢ = 1, we have the linear exponential model.) One interesting aspect
of the grouped data problem is the extent to which grouping will bias the
model choice for or against an exponential specification, when the underlying
errors are Weibull-distributed.

Figure A3.2 shows the simulation results for one Weibull linear
regression model.

a) Note first of all that the Weibull regression algorithm also seems to
yield biased estimates of the intercept and slope parameters in small samples,
even with no grouping.

b) For these graphs, bear in mind that the entire range of the ungrouped
dependent variable is approximately O to 10, so that an interval width of 7
units, is rather extreme and would probably not be relevant to any sensible
empirical application. A researcher might, however, attempt a regression
model when the grouping intervals are up to a width of 2 or 3. In this
context, the remaining observations are made.

¢) The grouped data technique performs marginally better in estimating
the slope parameter, but marginally worse for the intercept parameter. For

the shape parameter, however, the grouped data technique performs much better,
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ylelding estimates very close to the true shape parameter of 2.00. The
midpoint technique, though, rapidly begins to underestimate the shape para-
meter, suggesting an error distribution that is initially closer to
exponential. After the rounding becomes extremely (unreasonably) coarse, both
methods begin to overstate drastically the magnitude of the shape parameter.
(Incidentally, a shape parameter of 3.0 yields an almost-symmetric Weibull
density function.)

d) The asymptotic standard error magnitudes given in Figure A3.2 pertain
only to rounding intervals up to 4. Beyond this level, the standard errors of
the estimates quickly become exceedingly large.

e) In sum, since economists are generally more interested in the slope
estimates than in the intercept estimates, the grouped data technique would
seem to be marginally preferred when errors are Weibull-distributed,

especially if some correction for small-sample bilas can be made.

I1. Log-Linear Models With Alternative Distributional Assumptions

A, Log-linear Exponential Regression

The density function for the logarithm of an exponentially distributed
random variable has a standard extreme-value density function. Again, we use
interval midpoints of the untransformed data as proxies for the true values of
the dependent variable. These midpoint estimates are compared to the results
for the corresponding grouped data regression in Figure A3.3. Bear in mind
that these parameters pertain to an underlying relationship of the form:
t = exp(x'B).

a) The configurations of the point estimates are reminiscent of those in
Figure A3.1. The point estimates are blased, but again, there is strong

suspicion that this is merely a small-sample phenomenon.
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b) If & formula to correct for the underlying bias in the parameters
could be derived, correcting both types of estimates by the same factor would
again result in much-superior estimates by the grouped method than by
midpoints.

B. Log-linear Weibull Regression

For log-linear specifications, the Weibull model is again a
generalizaticn of the exponential regression model. To facilitate estimation,
the ¢ parameter is transformed into o = 1/¢ (the slope and intercept para-
meters reflect the linear relationship which results after taking the log of
the dependent variable). Results are depicted in Figure A3.4, from which we
make the following observations:

a) With no grouping of the data, this regression model yilelds an
intercept estimate which is biased slightly downward, and a slope estimate
with a slight upward bias. With an appropriate correction for these sample-
size biases, the grouped technique will again be superior.

b) For the shape parameter, the grouped data technique gives remarkably
constant (if again slightly biased) point estimates. The midpoint method,
however, exhibits a behavior pattern similar to the results for the =c
parameter in the linear model. (Note that this graph shows o = 1/c.) The
midpoint estimate of ¢ 1is first biased towards 1 (exponential errors), but
then returns to shoot well beyond the true value, becoming very small with

wider rounding intervals.

¢) TFor rounding intervals beyond 5, some of the 100 random samples
resulted in data sets which, due to groupings too large relative to the

variance in the errors, did not allow the algorithm for the grouped data model

to converge.
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